Math 142-2, Group work 6

Problem 1

Each of the derivations below is incorrect. Find the mistakes.
(a) Problem: Let $f(x, y)=2 x^{2}+y^{3}$ and $g(x, y)=f(x, y)+f(y, x)$. Compute $g_{x}(1,2)$.

Solution 1:

$$
\begin{aligned}
f(x, y) & =2 x^{2}+y^{3} \\
f_{x}(x, y) & =4 x \\
f_{x}(1,2) & =4 \\
f_{x}(2,1) & =8 \\
g(x, y) & =f(x, y)+f(y, x) \\
g_{x}(x, y) & =f_{x}(x, y)+f_{x}(y, x) \\
g_{x}(1,2) & =f_{x}(1,2)+f_{x}(2,1) \\
& =4+8=12
\end{aligned}
$$

Solution 2:

$$
\begin{aligned}
g(x, y) & =f(x, y)+f(y, x) \\
& =\left(2 x^{2}+y^{3}\right)+\left(2 y^{2}+x^{3}\right) \\
& =2 x^{2}+x^{3}+2 y^{2}+y^{3} \\
g_{x}(x, y) & =4 x+3 x^{2} \\
g_{x}(1,2) & =4+3=7
\end{aligned}
$$

(b) Let $K=\frac{1}{2} m v^{2}$ be the kinetic energy of a particle. Define the quantity $A=\frac{\partial^{2} K}{\partial m^{2}}$. In some contexts, velocity is an inconvenient variable, and momentum $p=m v$ is preferred instead. In such cases, one would write $K=\frac{p^{2}}{2 m}$. Compute A if $m=2$ and $p=4$.
Solution 1: From the momentum form of $K, A=\frac{\partial^{2} K}{\partial m^{2}}=\frac{p^{2}}{m^{3}}=\frac{16}{8}=2$.
Solution 2: From the velocity form of K, it is clear that $A=0$.
(c) Let $K=\frac{1}{2} m \dot{x}^{2}$ be the kinetic energy of a particle that is falling from rest under gravity $(\ddot{x}=-g)$. Does K depend on time?
Solution 1: No; $\frac{\partial K}{\partial t}=0$, so K does not depend on time.
Solution 2: Yes; $\frac{d K}{d t}=m \dot{x} \ddot{x} \neq 0$, so K does depend on time.

Problem 2

A disk spins about the origin, as shown in the diagram.
(a) Let P be a dot painted on the disk, initially at location $\left(x_{0}, y_{0}\right)$. Assuming the angular velocity $\dot{\theta}$ is constant and that the disk makes one complete revolution after time T, find the velocity and position of P at an arbitrary time t.

(b) Under the assumptions of part (a), find the velocity field $\vec{u}(\vec{x}, t)$.
(c) Does the velocity change with time?
(d) Assume instead that the angular velocity decays exponentially. That is, $\ddot{\theta}=-r \dot{\theta}$. The disk completes its first rotation at time T, by which time its angular velocity has halved. What is r ? Find the velocity and position of P at an arbitrary time t.
(e) Under the assumptions of part (c), find the velocity field $\vec{u}(\vec{x}, t)$.

