Problem 1

For each of the following, assume that $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are vector valued functions of t. Assume f(t) is a scalar function of t. The vectors \mathbf{r} and \mathbf{s} as well as the scalars a and b are constants. Simplify each expression below:

(a)
$$\frac{d}{dt}(\mathbf{u} \cdot \mathbf{v})$$

(b) $\frac{d}{dt}(f(||\mathbf{u}||^2))$
(c) $\frac{d}{dt}(||\mathbf{u}||)$
(d) $\frac{d}{dt}(\frac{\mathbf{u} \cdot \mathbf{r}}{\mathbf{u} \cdot \mathbf{s}})$
(e) $\frac{d^2}{dt^2}((\mathbf{u} \cdot \mathbf{r})\mathbf{v})$
(f) $\int \mathbf{u} \cdot \dot{\mathbf{u}} dt$

Problem 2

Find the general solution to each system of ODE's:

(a)
$$x' = y, y' = -x$$

(b) x' = y + 2x, y' = -z, z' = -3x - 3y + z