Math 142-2, Group work 1

Problem 1

This group work activity is based around exploring the second order ordinary differential equation

$$
t x^{\prime \prime}+x^{\prime}+t x=\frac{1}{4} \sin t
$$

Write this second order ODE as a first order ODE of the form $z^{\prime}=f(z, t)$ by introducing a new variable $v=x^{\prime}$. Note that z in our case will need to be the vector $\langle x, v\rangle$. Find $f(z, t)$.

Problem 2

Write a Matlab function which takes two arguments and computes $f(z, t)$ (note that the argument z and the result will be vectors). You are not required to use Matlab; you may use another language if you prefer. You will need to be able to generate line plots.

Problem 3

Plot the vector valued function $f(\langle\cos t,-\sin t\rangle, t)$ for $t \in[0,4 \pi]$ using the Matlab function you wrote. Plot the function at around hundred or so sample points. (Note that you will have difficulty at $t=0$; one simple solution is to plot it at a tiny value like $t=10^{-10}$ instead.)

Problem 4

When solving ODE's numerically, we compute approximate values for $z_{n} \approx z\left(t_{n}\right)$ at a large number N of sample times $t_{0} \ldots t_{N}$ in the interval $[0, T]$. The sample points are equally spaced $\left(t_{n+1}=t_{n}+h\right.$ for fixed h), with $t_{0}=0$ and $t_{N}=T$. The forward Euler method for approximating the solution to an ODE $z^{\prime}=f(z, t)$ is given by

$$
\begin{aligned}
z_{0} & =\left\langle x(0), x^{\prime}(0)\right\rangle \\
z_{n+1} & =z_{n}+h f\left(t_{n}, z_{n}\right)
\end{aligned}
$$

Compute $z_{0} \ldots z_{N}$ for $N=400, T=20, x(0)=1$. (What is $x^{\prime}(0) ?$)

Problem 5

Generate a plot of the points $\left(t_{n}, x\left(t_{n}\right)\right)$.

Problem 6

Approximate the maximum and minimum values of $x(t)$ over the interval $[0, T]$.

