Math 142-2, Project 3

Your name here

Problem 1

Assume that $u=u_{\max }\left(1-\rho / \rho_{\max }\right)$. Show that if $\rho(x, 0)=\rho_{\max }-\rho(a-x, 0)$ then $\rho(x, t)=\rho_{\max }-\rho(a-$ $x, t)$ for all $t \geq 0$.

Your solution goes here

Programming

Let $\rho_{\max }=1$ and $u_{\max }=1$. You will use your numerical method to compute a numerical solution to the PDE and plot the solution over the interval $-2 \pi \leq x \leq 2 \pi$ at selected times to provide a picture of what is going on with the solution at key times. The plots should be submitted, but the code will not be collected or graded.

Problem 2

Let $\rho(x, 0)=\frac{\rho_{\max }}{2}(1+\sin (x))$ for the remaining parts of this problem. At $t=0$, where will the cars move slowest? Plot the density profile at this time.

Your solution goes here

Problem 3

At $t=0$, where do the traffic waves move slowest?

Your solution goes here

Problem 4

When will the first shocks form? Let this time be T.

Your solution goes here

Problem 5

Where will the first shocks form?

Problem 6

Plot the density profile at $t=T$ and $t=\frac{T}{2}$. What qualitative event happens to the density profile at $t=T$?

Your solution goes here

Problem 7

With what velocity will those shocks move?

Your solution goes here

Problem 8

For how long S will there be stopped cars?

Your solution goes here

Problem 9

Plot the density profile at $t=S$. What qualitative event happens to the density profile at $t=S$?

Your solution goes here

Problem 10

Plot the density profile at $t=4 T$ and $t \rightarrow \infty$. What is the long-term behavior of the density profile?

Your solution goes here

