# Math 142-2, Homework 5 

Your name here

## Problem 63.6

Assume that $\hat{u}=\hat{u}(\rho)$. If $\alpha$ equals a car's acceleration, show that

$$
\alpha=-\rho \frac{d \hat{u}}{d \rho} \frac{\partial u}{\partial x} .
$$

Is the minus sign reasonable? Note that I have given $\hat{u}$ and $u$ different names to make their different functional dependence explicit. In particular, $u(x(t), t)=\hat{u}(\rho(x(t), t))$.

Your solution goes here

## Problem 63.7

Consider exercise 61.3. Suppose that drivers accelerate such that

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=-\frac{a^{2}}{\rho} \frac{\partial \rho}{\partial x}
$$

where $a$ is a positive constant.
(a) Physically interpret this equation.

Your solution goes here
(b) If $u$ only depends on $\rho$ and the equation of conservation of cars is valid, show that

$$
\frac{d u}{d \rho}=-\frac{a}{\rho}
$$

Note: You may assume $\frac{d \hat{u}}{d \rho}<0$.

Your solution goes here
(c) Solve the differential equation in part (b), subject to the condition that $u\left(\rho_{\max }\right)=0$. The resulting flow-density curve fits quite well to the Lincoln Tunnel data.

Your solution goes here
(d) Show that $a$ is the velocity which corresponds to the road's capacity.

Your solution goes here
(e) Discuss objections to this theory for small densities.

Your solution goes here

## Problem 64.1

Consider the linear car-following model, equation 64.2, with a response time $T$ (a delay).
(a) Ignore this part.
(b) Assume the lead driver's velocity varies periodically

$$
v_{0}=\operatorname{Re}\left(1+f_{0} e^{i \omega t}\right) .
$$

Also assume the $n$-th driver's velocity varies periodically

$$
v_{n}=\operatorname{Re}\left(1+f_{n} e^{i \omega t}\right),
$$

where $f_{n}$ measures the amplification or decay which occurs. Show that

$$
f_{n}=\left(1+\frac{i \omega}{\lambda} e^{i \omega T}\right)^{-n} f_{0},
$$

where $0<f_{0}<1$. Note: $f_{n}$ will be complex, $f_{0}$ is real. Unlike the problem as stated in the book, I am assuming $f_{0}<1$, since otherwise the model predicts that even the first car stops frequently. If $f_{0} \approx 0$, then the first car drives quite smoothly, and the effects on later cars are more meaningful. This alteration does not make the problem more difficult.

## Your solution goes here

(c) Show the magnitude of the amplification factor $f_{n}$ decreases with $n$ if

$$
\frac{\sin \omega T}{\omega}<\frac{1}{2 \lambda} .
$$

## Your solution goes here

(d) Show that the above inequality holds for all $\omega$ only if $\lambda T<\frac{1}{2}$.

## Your solution goes here

(e) Conclude that if the product of the sensitivity and the time lag is greater than $\frac{1}{2}$, it is possible for following cars to drive much more erratically than the leader. In this case we say the model predicts instability if $\lambda T>\frac{1}{2}$ (i.e., with a sufficiently long time lag). (This conclusion can be reached more expeditiously through the use of Laplace transforms.)

Your solution goes here

## Problem 65.1

Determine the solution of $\frac{\partial \rho}{\partial t}=(\sin x) \rho$ which satisfies $\rho(x, 0)=\cos x$.

Your solution goes here

## Problem 67.3

Suppose initially $(t=0)$ that the traffic density is $\rho=\rho_{0}+\epsilon \sin x$, where $|\epsilon| \ll \rho_{0}$. Determine $\rho(x, t)$.

Your solution goes here

## Problem 67.5

Based on a linear analysis, would you say $\rho=\rho_{0}$, a constant, is a stable or unstable equilibrium solution of equation 66.1?

Your solution goes here

## Problem 68.1

Explain why a density wave moves forward for light traffic. Consider both cases in which the traffic is getting heavier down the road and lighter.

Your solution goes here

