Math 142-2, Homework 5

Your name here
May 5, 2014

Problem 57.2

57.2. Suppose a velocity field is given:

$$
u(x, t)=\frac{30 x+30 L}{15 t+L}
$$

(a) Determine the motion of a car which starts at $x=L / 2$ at $t=0$. [Hint: Why does $d x / d t=(30 x+30 L) /(15 t+L)$? Solve this differential equation. It is separable.]

Your solution goes here
(b) Show that $u(x, t)$ is constant along straight lines in the $x-t$ plane, but the car does not move at a constant velocity.

Your solution goes here

Problem 57.3

Suppose that the velocity field $u(x, t)$ is known. What mathematical problem needs to be solved in order to determine the position of a car at later times, which starts (at $t=0$) at $x=L$?

Your solution goes here

Problem 57.5

Suppose that $u(x, t)=e^{-t}$.
(a) Sketch curves in $x-t$ space along which $u(x, t)$ is constant.

Your solution goes here
(b) Determine the time dependence of the position of any car.

Your solution goes here
(c) In the same $x-t$ space used in part (a), sketch various different car paths.

Your solution goes here

Problem 57.6

Consider an infinite number of cars, each designated by a number β. Assume the car labeled β starts from $x=\beta(\beta>0)$ with zero velocity, and also assume it has a constant acceleration β.
(a) Determine the position and velocity of each car as a function of time.

Your solution goes here
(b) Sketch the path of a typical car.

Your solution goes here
(c) Determine the velocity field $u(x, t)$.

Your solution goes here
(d) Sketch curves along which $u(x, t)$ is a constant.

Your solution goes here

Problem 59.2

Suppose that at position x_{0} the traffic flow is known, $q\left(x_{0}, t\right)$, and varies with time. Calculate the number of cars that pass x_{0}, between $t=0$ and $t=t_{0}$.

Your solution goes here

Problem 59.3

In an experiment the total number of cars that pass a position x_{0} after $t=0, M\left(x_{0}, t\right)$, is measured as a function of time. Assume this series of points has been smoothed to make a continuous curve.
(a) Briefly explain why the curve $M\left(x_{0}, t\right)$ is increasing as t increases.

Your solution goes here
(b) What is the traffic flow at $t=\tau$?

Your solution goes here

Problem 60.1

Consider a semi-infinite highway $0 \leq x<\infty$ (with no entrances or exits other than at $x=0$). Show that the number of cars on the highway at time t is

$$
N_{0}+\int_{0}^{t} q(0, \tau) d \tau
$$

where N_{0} is the number of cars on the highway at $t=0$. (You may assume that $\rho(x, t) \rightarrow 0$ as $x \rightarrow \infty$.)

Your solution goes here

Problem 60.2

Suppose that we are interested in the change in the number of cars $N(t)$ between two observers, one fixed at $x=a$ and the other moving in some prescribed manner, $x=b(t)$:

$$
N(t)=\int_{a}^{b(t)} \rho(x, t) d x
$$

(a) The derivative of an integral with a variable limit is

$$
\frac{d N}{d t}=\frac{d b}{d t} \rho(b, t)+\int_{a}^{b(t)} \frac{\partial \rho}{\partial t} d x .
$$

(Note that the integrand, $\rho(x, t)$, also depends on t.) Show this result either by considering $\lim _{\Delta t \rightarrow 0}[N(t+\Delta t)-N(t)] / \Delta t$ or by using the chain rule for derivatives.

Your solution goes here
(b) Using $\frac{\partial \rho}{\partial t}=-\frac{\partial}{\partial x}(\rho u)$ show that

$$
\frac{d N}{d t}=-\rho(b, t)\left(u(b, t)-\frac{d b}{d t}\right)+\rho(a, t) u(a, t)
$$

Your solution goes here
(c) Interpret the result of part (b) if the moving observer is in a car moving with the traffic.

Your solution goes here

Problem 61.3

Assume that a velocity field, $u(x, t)$, exists. Show that the acceleration of an individual car is given by

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}
$$

Your solution goes here

Problem 63.6

Assume that $\hat{u}=\hat{u}(\rho)$. If α equals a car's acceleration, show that

$$
\alpha=-\rho \frac{d \hat{u}}{d \rho} \frac{\partial u}{\partial x} .
$$

Is the minus sign reasonable? Note that I have given \hat{u} and u different names to make their different functional dependence explicit. In particular, $u(x(t), t)=\hat{u}(\rho(x(t), t))$.

Your solution goes here

Problem 63.7

Consider exercise 61.3. Suppose that drivers accelerate such that

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=-\frac{a^{2}}{\rho} \frac{\partial \rho}{\partial x}
$$

where a is a positive constant.
(a) Physically interpret this equation.

Your solution goes here
(b) If u only depends on ρ and the equation of conservation of cars is valid, show that

$$
\frac{d u}{d \rho}=-\frac{a}{\rho}
$$

Note: You may assume $\frac{d \hat{u}}{d \rho}<0$.

Your solution goes here
(c) Solve the differential equation in part (b), subject to the condition that $u\left(\rho_{\max }\right)=0$. The resulting flow-density curve fits quite well to the Lincoln Tunnel data.

Your solution goes here
(d) Show that a is the velocity which corresponds to the road's capacity.

Your solution goes here
(e) Discuss objections to this theory for small densities.

Your solution goes here

