Math 142-2, Midterm

Name: _____ ID: _____

Problem 1

Consider a damped spring given by the equation mx'' + cx'|x'| + kx = 0.

- (a) Show that total energy can never increase. Can it decrease?
- (b) Why is $c(x')^2$ not used for the damping term?
- (c) What are the units of c?

Problem 1 (continued)

Consider a damped spring given by the equation mx'' + cx'|x'| + kx = 0.

(d) Determine using linearized stability analysis whether the system is stable, unstable, or neutrally stable.

(e) Is the system stable, unstable, or neutrally stable? Why?

Problem 2

Consider the ODE mx'' = f(x) for a particle, where the force f(x) has the potential energy function $\phi(x)$. Below is part of the phase plane diagram for the resulting ODE. The phase plane is symmetrical left-right and up-down.

(a) The phase plane shows three energy levels: dotted, dashed, and solid. Which of these corresponds to the highest energy level? Which corresponds to the lowest energy level?

(b) On the phase plane diagram above, mark the stable equilibria with " \bullet " and the unstable equilibria with " \circ ".

(c) On the phase plane diagram above, sketch the curves whose energy matches the energy of the unstable equilibria. These energy curves may contain more than one piece; be sure to sketch all of them.

(d) Put arrows on all of the curves (including the ones you drew in part (c)) to show the trajectories.

Problem 3

A pulley of radius r_1 has wrapped around it a long cable with an object of mass m_1 hanging from it. Another object of mass m_2 is attached to the pulley at a distance of r_2 from the pulley's center. Let θ be the polar angle the attached mass. Assume the cable is arbitrarily long.

- (a) What is the potential energy of the system (in terms of θ)?
- (b) What is the total energy of the system (in terms of θ and $\dot{\theta}$)?
- (c) Show that this system obeys the ODE

 $(m_1r_1^2 + m_2r_2^2)\ddot{\theta} + r_2m_2g\cos\theta + r_1m_1g = 0.$

Problem 3 (continued)

(d) If $m_2 < M_e$, for some critical mass M_e , then this system has no equilibria. Find M_e .

(e) If $m_2 < M_e$, describe qualitatively the dynamical behavior of the system.

