Ideal Gas Law

Lecture Notes (Math 142-1)

December 3, 2015

1 Diffusion

- Box with a small hole in it; how quickly does gas escape?
- $K E$ proportional to T
- $K E=\frac{1}{2} m \bar{v}^{2}$
- $\bar{v}=\sqrt{\frac{2 K E}{m}}$
- How quickly does a particle with velocity \bar{v} escape?
- Assume probability of $0<p<1$ for escaping each time it hits the wall with the hole
- $\Delta t=\frac{2 L}{\bar{v}}$ between wall hits
- Probability of escaping after i failed attempts is $p(1-p)^{i}$
$-E[t]=\sum_{i=0}^{\infty} i \Delta t p(1-p)^{i}=\frac{1-p}{p} \Delta t=\frac{1-p}{p} \frac{L \sqrt{2 m}}{\sqrt{K E}}$
- This suggests that the rate of diffusion is proportional to $\frac{\sqrt{T}}{\sqrt{m}}$
- This can be used in principle to determine the relative masses of gas particles

2 Subtlety is required

- Setup
- Box, separated in two
- Right side empty
- Left side contains gas
- Case I
- Divider is slowly moved back allowing gas to occupy full box
- Gas gets cooler
- Case II
- Divider is punctured to allow gas to occupy full box
- Divider can then be removed
- Gas stays same temperature
- Why the difference?
- In case I, but not case II, we got energy by moving the wall
- In case II, the system is far from equilibrium

