Ideal Gas Law

Lecture Notes (Math 142-1)

November 25, 2015

1 Temperature

- Defining temperature is very difficult
- Thermodynamics
- Very deep rabbit hole
- Tip-toe around it
- Modeling assumptions instead
- Adding energy (heat) increases temperature
- Assume energy input proportional to temperature increase (empirical)
- Assume energy input proportional to amount of gas
- $\Delta K E=\hat{R} N \Delta T$
$-K E=\hat{R} N\left(T-T_{0}\right)$
* $T=T_{0}$ when $K E=0$
* T_{0} observed to be the same for different types of gas (empirical)
* T_{0} is absolute zero
* Measure temperature in Kelvin (K) so $T_{0}=0$
* $K E=\hat{R} N T$
- $P V=\frac{2}{3} K E=\frac{2}{3} \hat{R} N T$

2 Ideal gas law

- $P V=k N T$
$-k=\frac{2}{3} \hat{R}$
- k observed to be the same for all gases (empirical)
- Boltzmann constant: $k \approx 1.381 \times 10^{23} J K^{-1}$
- Measure amount of gas in moles
- Moles: n
- $N=N_{A} n$
- Avogadro's number: $N_{A} \approx 6.022 \times 10^{23} \mathrm{~mol}^{-1}$
- 1 mol of gas is 6.022×10^{23} molecules of gas
- Convenient macroscopic description
* 1 mol of hydrogen gas is 2.016 g
* 1 mol of helium gas is 4.003 g
* 1 mol of nitrogen gas is 28.01 g
* 1 mol of oxygen gas is 32.00 g
* 1 mol of carbon dioxide gas is 44.00 g
* Nearly integers
- Gas constant: $R=N_{A} k \approx 8.314 J K^{-1} \mathrm{~mol}^{-1}$
$-P V=n R T$

3 Internal energy

- Internal energy U
- $K E$ is part of it
- Can be other contributions
- Molecules can rotate
- Molecular bonds can vibrate (like a spring getting longer and shorter)
- When adding energy (eg, heating the gas)
- Part of energy goes into $K E$
- Rest goes elsewhere
- Assume constant fraction α goes into $K E, 0<\alpha \leq 1$
- $K E=\alpha U$
- Note that $K E$ contributes to pressure, but U as a whole does not
- Note that U is well-defined only up to a shift; $K E=\alpha U$ effectively fixes this

4 Equilibrium

- Molecules collide
- Exchange energy with each other
- Colliding off center can make molecule rotate
- Hitting atoms can make the bonds vibrate
- Hitting at an angle mixes up velocity components
- Everything gets mixed up over time
- Gas is normally close to equilibrium
- This is why gases appear isotropic
- Gas velocities end up in a characteristic velocity distribution

