Ideal Gas Law

Lecture Notes (Math 142-1)

November 25, 2015

1 Temperature

- Defining temperature is very difficult
 - Thermodynamics
 - Very deep rabbit hole
 - Tip-toe around it
- Modeling assumptions instead
 - Adding energy (heat) increases temperature
 - Assume energy input proportional to temperature increase (empirical)
 - Assume energy input proportional to amount of gas
 - $-\Delta KE = \hat{R}N\Delta T$

$$-KE = RN(T - T_0)$$

- * $T = T_0$ when KE = 0
- * T_0 observed to be the same for different types of gas (empirical)
- $* T_0$ is absolute zero
- * Measure temperature in Kelvin (K) so $T_0 = 0$
- $* KE = \hat{R}NT$
- $PV = \frac{2}{3}KE = \frac{2}{3}\hat{R}NT$

2 Ideal gas law

- PV = kNT
 - $-k = \frac{2}{3}\hat{R}$
 - -k observed to be the same for all gases (empirical)
 - Boltzmann constant: $k\approx 1.381\times 10^{23}\,J\,K^{-1}$
- Measure amount of gas in *moles*
 - Moles: n
 - $-N = N_A n$
 - Avogadro's number: $N_A \approx 6.022 \times 10^{23} \, mol^{-1}$
 - -1 mol of gas is 6.022×10^{23} molecules of gas
 - Convenient macroscopic description

- * 1mol of hydrogen gas is $2.016\,g$
- * $1\,mol$ of helium gas is $4.003\,g$
- * $1\,mol$ of nitrogen gas is $28.01\,g$
- * $1\,mol$ of oxygen gas is $32.00\,g$
- * $1\,mol$ of carbon dioxide gas is $44.00\,g$
- * Nearly integers
- Gas constant: $R = N_A k \approx 8.314 J K^{-1} mol^{-1}$
- -PV = nRT

3 Internal energy

- Internal energy U
- *KE* is part of it
- Can be other contributions
 - Molecules can rotate
 - Molecular bonds can vibrate (like a spring getting longer and shorter)
- When adding energy (eg, heating the gas)
 - Part of energy goes into KE
 - Rest goes elsewhere
- Assume constant fraction α goes into $KE,\, 0<\alpha\leq 1$
- $KE = \alpha U$
- Note that KE contributes to pressure, but U as a whole does not
- Note that U is well-defined only up to a shift; $KE = \alpha U$ effectively fixes this

4 Equilibrium

- Molecules collide
- Exchange energy with each other
- Colliding off center can make molecule rotate
- Hitting atoms can make the bonds vibrate
- Hitting at an angle mixes up velocity components
- Everything gets *mixed up* over time
- Gas is normally close to equilibrium
- This is why gases appear isotropic
- Gas velocities end up in a characteristic velocity distribution