Ideal Gas Law

Lecture Notes (Math 142-1)
November 24, 2015

1 Gases as collection of particles

- Gases have several measurable properties
- Density ρ
- Pressure P
- Temperature T
- Composition (water vapor, nitrogen, oxygen, helium, carbon dioxide, etc.)
- Mass M
- Volume V
- Want a relationship between these
- Some are obvious, such as $\rho=\frac{M}{V}$
- Assumptions
- Container is a box
- Gas has one type of substance
- Gas is made of small descrete particles (molecules)
* Identical
* Spherical
* Tiny size
- Molecules do not interact
* Sparse gas, low density
* low probably of collisions

2 One dimension

- Start with 1D, will lift to 3D later
- Start with one particle

2.1 Microscopic

- One particle
- Mass: m
- velocity: v
- Container length: L
- Particle collides with walls of the container
- Elastic (no energy loss)
- Collision
- Velocity before: v_{0}
- Velocity after: v_{1}
- No energy loss: $\frac{1}{2} m v_{0}^{2}=\frac{1}{2} m v_{1}^{2}$
- Particle reverses direction
- $v_{1}=-v_{0}$
- Change in particle momentum due to collision: $\Delta p=m v_{1}-m v_{0}=-2 m v_{0}$
- Particle adds $2 m v_{0}$ momentum to wall
- How many hits in Δt time?
- Must travel $2 L$ before returning to wall
- Covers this distance in $T=\frac{2 L}{\left|v_{0}\right|}$
- Hits $\frac{\Delta t}{T}=\frac{\Delta t\left|v_{0}\right|}{2 L}$ times
- Total momentum exchange: $\Delta p=\left(\frac{\Delta t\left|v_{0}\right|}{2 L}\right)\left(2 m v_{0}\right)=\frac{\Delta t m v_{0}^{2}}{L}$ times
- Force: $F=\frac{\Delta p}{\Delta t}=\frac{m v_{0}^{2}}{L}$

2.2 Macroscopic

- N particles
- Total force
- Force per particle: $F=\frac{m v^{2}}{L}$
- Total force: $F=\sum_{i} \frac{m v_{i}^{2}}{L}=\frac{m}{L} \sum_{i} v_{i}^{2}=\frac{m N \bar{v}^{2}}{L}$
- Average velocity (root mean square, L_{2} norm): $\bar{v}=\sqrt{\frac{1}{N} \sum_{i} v_{i}^{2}}$
- Kinetic energy
$-K E=\sum_{i} \frac{1}{2} m v_{i}^{2}=\frac{m N \bar{v}^{2}}{2}=\frac{L}{2} F$
- Energetic particles apply more force
- Note that we care about the distribution \bar{v} of velocities

3 Three dimensions

- Velocity $\mathbf{v}=\left(\begin{array}{l}v_{x} \\ v_{y} \\ v_{z}\end{array}\right)$
- Box dimensions: L_{x}, L_{y}, L_{z}.
- Face areas: $A_{x}=L_{y} L_{z}, A_{y}=L_{x} L_{z}, A_{z}=L_{x} L_{y}$
- Volume: $V=L_{x} L_{y} L_{z}$
- Collision
- Velocity before: $\mathbf{v}_{0}=\left(\begin{array}{l}v_{x 0} \\ v_{y 0} \\ v_{z 0}\end{array}\right)$
- Velocity after: $\mathbf{v}_{1}=\left(\begin{array}{l}v_{x 1} \\ v_{y 1} \\ v_{z 1}\end{array}\right)$
- No energy loss: $\frac{1}{2} m \mathbf{v}_{0} \cdot \mathbf{v}_{0}=\frac{1}{2} m \mathbf{v}_{0} \cdot \mathbf{v}_{0}$ or $v_{x 0}^{2}+v_{y 0}^{2}+v_{z 0}^{2}=v_{x 1}^{2}+v_{y 1}^{2}+v_{z 1}^{2}$
- Assume hits a wall in x direction
- Assume collision applies normal force only
* Velocity after: $\mathbf{v}_{1}=\left(\begin{array}{l}v_{x 1} \\ v_{y 0} \\ v_{z 0}\end{array}\right)$
* $v_{x 0}^{2}=v_{x 1}^{2}$
* $v_{x 1}=-v_{x 0}$
- Each dimension is independent of the others
- Pick a direction (x)
- Force: $F_{x}=\frac{m N \overline{v_{x}}}{L_{x}}$
$-\overline{v_{x}}=\sqrt{\frac{1}{N} \sum_{i} v_{i x}^{2}}$
- Pressure: $P_{x}=\frac{F_{x}}{A_{x}}=\frac{m N \overline{v_{x}}}{L_{x} L_{y} L_{z}}=\frac{m N \overline{v_{x}}}{V}$
- Isotropic
- Pressure is the same on all sides of container
- $P_{x}=P_{y}=P_{z}$
$-\overline{v_{x}}=\overline{v_{y}}=\overline{v_{z}}$
$-P V=m N{\overline{v_{x}}}^{2}$
- Energy
$-K E=\sum_{i} \frac{1}{2} m \mathbf{v}_{i} \cdot \mathbf{v}_{i}=\frac{m}{2} \sum_{i} \mathbf{v}_{i} \cdot \mathbf{v}_{i}=\frac{m}{2}\left(\sum_{i} v_{i x}^{2}+v_{i y}^{2}+v_{i z}^{2}\right)=\frac{m N}{2}\left({\overline{v_{x}}}^{2}+{\overline{v_{y}}}^{2}+{\overline{v_{z}}}^{2}\right)$
- Isotropic: $K E=\frac{3}{2} m N \overline{v a}^{2}=\frac{3}{2} P V$

