Ideal Gas Law

Lecture Notes (Math 142-1)

November 24, 2015

1 Gases as collection of particles

- Gases have several measurable properties
 - Density ρ
 - Pressure P
 - Temperature ${\cal T}$
 - Composition (water vapor, nitrogen, oxygen, helium, carbon dioxide, etc.)
 - Mass M
 - Volume V
- Want a relationship between these
 - Some are obvious, such as $\rho = \frac{M}{V}$
- Assumptions
 - Container is a box
 - Gas has one type of substance
 - Gas is made of small descrete particles (molecules)
 - * Identical
 - * Spherical
 - * Tiny size
 - Molecules do not interact
 - * Sparse gas, low density
 - * low probably of collisions

2 One dimension

- Start with 1D, will lift to 3D later
- Start with one particle

2.1 Microscopic

- One particle
 - Mass: m
 - velocity: v
- Container length: L
 - Particle collides with walls of the container
 - Elastic (no energy loss)
- Collision
 - Velocity before: v_0
 - Velocity after: v_1
 - No energy loss: $\frac{1}{2}mv_0^2 = \frac{1}{2}mv_1^2$
 - Particle reverses direction
 - $-v_1 = -v_0$
 - Change in particle momentum due to collision: $\Delta p = mv_1 mv_0 = -2mv_0$
 - Particle adds $2mv_0$ momentum to wall
- How many hits in Δt time?
 - Must travel 2L before returning to wall
 - Covers this distance in $T = \frac{2L}{|v_0|}$
 - Hits $\frac{\Delta t}{T} = \frac{\Delta t |v_0|}{2L}$ times
 - Total momentum exchange: $\Delta p = \left(\frac{\Delta t |v_0|}{2L}\right)(2mv_0) = \frac{\Delta t m v_0^2}{L}$ times
 - Force: $F = \frac{\Delta p}{\Delta t} = \frac{mv_0^2}{L}$

2.2 Macroscopic

- N particles
- Total force
 - Force per particle: $F = \frac{mv^2}{L}$
 - Total force: $F = \sum_{i} \frac{mv_i^2}{L} = \frac{m}{L} \sum_{i} v_i^2 = \frac{mN\overline{v}^2}{L}$
 - Average velocity (root mean square, L_2 norm): $\overline{v} = \sqrt{\frac{1}{N}\sum_i v_i^2}$
- Kinetic energy
 - $-KE = \sum_{i} \frac{1}{2}mv_{i}^{2} = \frac{mN\overline{v}^{2}}{2} = \frac{L}{2}F$
 - Energetic particles apply more force
- Note that we care about the distribution \overline{v} of velocities

3 Three dimensions

• Velocity
$$\mathbf{v} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$$

- Box dimensions: L_x, L_y, L_z .
- Face areas: $A_x = L_y L_z$, $A_y = L_x L_z$, $A_z = L_x L_y$
- Volume: $V = L_x L_y L_z$
- Collision

- Velocity before:
$$\mathbf{v}_0 = \begin{pmatrix} v_{x0} \\ v_{y0} \\ v_{z0} \end{pmatrix}$$

- Velocity after: $\mathbf{v}_1 = \begin{pmatrix} v_{x1} \\ v_{y1} \\ v_{z1} \end{pmatrix}$

- No energy loss: $\frac{1}{2}m\mathbf{v}_0 \cdot \mathbf{v}_0 = \frac{1}{2}m\mathbf{v}_0 \cdot \mathbf{v}_0$ or $v_{x0}^2 + v_{y0}^2 + v_{z0}^2 = v_{x1}^2 + v_{y1}^2 + v_{z1}^2$
- Assume hits a wall in x direction
- Assume collision applies normal force only

* Velocity after:
$$\mathbf{v}_1 = \begin{pmatrix} v_{x1} \\ v_{y0} \\ v_{z0} \end{pmatrix}$$

* $v_{x0}^2 = v_{x1}^2$
* $v_{x1} = -v_{x0}$

- Each dimension is independent of the others
- Pick a direction (x)

- Force:
$$F_x = \frac{mN\overline{v_x}^2}{L_x}$$

- $\overline{v_x} = \sqrt{\frac{1}{N}\sum_i v_{ix}^2}$
- Pressure: $P_x = \frac{F_x}{A_x} = \frac{mN\overline{v_x}^2}{L_xL_yL_z} = \frac{mN\overline{v_x}^2}{V}$

- Isotropic
 - Pressure is the same on all sides of container
 - $-P_x = P_y = P_z$
 - $-\overline{v_x} = \overline{v_y} = \overline{v_z}$

$$-PV = mN\overline{v_r}^2$$

• Energy

$$-KE = \sum_{i} \frac{1}{2}m\mathbf{v}_{i} \cdot \mathbf{v}_{i} = \frac{m}{2} \sum_{i} \mathbf{v}_{i} \cdot \mathbf{v}_{i} = \frac{m}{2} (\sum_{i} v_{ix}^{2} + v_{iy}^{2} + v_{iz}^{2}) = \frac{mN}{2} (\overline{v_{x}}^{2} + \overline{v_{y}}^{2} + \overline{v_{z}}^{2})$$

– Isotropic: $KE = \frac{3}{2}mN\overline{v_x}^2 = \frac{3}{2}PV$