Math 142-1, Group work 7

Problem 1

Suggest a traffic following model of the form $\dot{v}_{k}(t)=f\left(x_{k}, x_{k-1}, v_{k}, v_{k-1}\right)$ that would lead to the relationship $\hat{u}(\rho)=u_{\max }\left(1-\frac{\rho}{\rho_{\max }}\right)$.

Problem 2

Consider the model $\dot{v}_{k}(t)=-\lambda\left(x_{k}(t)-x_{k-1}(t)+d\right)$.
(a) What do λ and d represent?
(b) Why is $-\lambda$ more reasonable than λ ?
(c) Show that no density-velocity relationship $\hat{u}(\rho)$ is implied by this model. (Hint: Show that $\hat{u}(\rho)$ implies $\dot{v}_{k}(t)=\left(v_{k}(t)-v_{k-1}(t)\right) f\left(x_{k}(t)-x_{k-1}(t)\right)$ for some function $f(x)$.)
(d) Do you think this model reasonably describes the behavior of drivers?
(e) Construct a traffic following model with a density-velocity relationship $\hat{u}(\rho)$ such that drivers try to maintain a fixed following time. (For example, drivers always try to stay two seconds behind the car in front.) Is this always possible?
(f) Is the model $\dot{v}_{k}(t)=\frac{v_{k}(t)-v_{k-1}(t)}{x_{k}(t)-x_{k-1}(t)+d}$ plausible?

Problem 3

Find the general solution to each of the differential equations below.
(a) $x^{\prime \prime \prime}=x$
(b) $t x^{\prime}+a x=0$
(c) $t x^{\prime}+a x=b+c t$
(d) $t^{2} x^{\prime \prime}+4 t x+2 x=0$
(e) $\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}=0$
(f) $\frac{\partial^{2} f}{\partial x \partial y}=0$
(g) $\left(\frac{\partial f}{\partial x}\right)^{2}=\left(\frac{\partial f}{\partial y}\right)^{2}$
(h) $\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} f}{\partial y^{2}}$

