Math 142-1, Group work 1

Problem 1

The Schrödinger equation is

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+U \Psi
$$

where m is its mass and i is the imaginary number. Deduce the units of the other variables (Ψ, \hbar, U). Based on the units of U, what do you think it represents?

Problem 2

Maxwell's equations are

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\frac{\rho}{\varepsilon_{0}} \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} & =\mu_{0}\left(\mathbf{J}+\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)
\end{aligned}
$$

A particle with charge q and velocity \mathbf{v} in this field will experience a Lorentz force

$$
\mathbf{f}=q(\mathbf{E}+(\mathbf{v} \times \mathbf{B}))
$$

Additionally, the total charge Q in some volume of space Ω is

$$
Q=\int_{\Omega} \rho d V
$$

If $q=[C]$ and $Q=[C]$ both have units of charge (the unit C is the Coulomb), deduce the units of the quantities in the table below. You may assume units for \mathbf{f} and \mathbf{v}.

var	meaning
\mathbf{E}	electric field
\mathbf{B}	magnetic field
ρ	charge density
\mathbf{J}	current density
ε_{0}	permittivity of free space
μ_{0}	permeability of free space
Q	total charge
q	particle charge
\mathbf{v}	particle velocity
\mathbf{f}	force on particle

