Problem 1

The Schrödinger equation is

$$i\hbar\frac{\partial\Psi}{\partial t}=-\frac{\hbar^{2}}{2m}\nabla^{2}\Psi+U\Psi$$

where m is its mass and i is the imaginary number. Deduce the units of the other variables (Ψ, \hbar, U) . Based on the units of U, what do you think it represents?

Problem 2

Maxwell's equations are

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$$

A particle with charge q and velocity \mathbf{v} in this field will experience a Lorentz force

$$\mathbf{f} = q(\mathbf{E} + (\mathbf{v} \times \mathbf{B}))$$

Additionally, the total charge Q in some volume of space Ω is

$$Q = \int_{\Omega} \rho \, dV$$

If q = [C] and Q = [C] both have units of charge (the unit C is the Coulomb), deduce the units of the quantities in the table below. You may assume units for **f** and **v**.

var	meaning
\mathbf{E}	electric field
В	magnetic field
ρ	charge density
J	current density
ε_0	permittivity of free space
μ_0	permeability of free space
Q	total charge
q	particle charge
\mathbf{v}	particle velocity
\mathbf{f}	force on particle