
1 Local existence and uniqueness theorem

Let f(x, y) be

• Continuous as a function of two variables

• Lipschitz continuous in y: |f(x, y1)− f(x, y2)| ≤ K|y1 − y2|

in the rectangular region R defined by x ∈ [a, b], y ∈ [c, d]. If x0 ∈ (a, b), y0 ∈ (c, d), then the ODE

y′ = f(x, y) y(x0) = y0 (1)

has exactly one solution y = y(x) on the interval x ∈ [x0 − h, x0 + h] for some h > 0.

2 Proof outline

1. Choose h.

2. The original ODE (1) is equivalent to

y(x) = y0 +

∫

x

x0

f(t, y(t)) dt (2)

3. Define the sequence yn(x) = y0 +

∫

x

x0

f(t, yn−1(t)) dt, where y0(x) = y0.

4. The sequence yn(x) converges to a function y(x).

5. The function y(x) is continuous.

6. The function y(x) satisfies (2).

7. If another function ỹ(x) satisfies (2), then ỹ(x) = y(x).

3 Part 1

The major complication with the proof of the local theorem compared with the global one is that the
guarantees on f(x, y) only apply inside the rectangle R. This forces us to limit our focus to an interval
x ∈ [x0 − h, x0 + h], where we can choose h to have the properties we need to make the proof work out.

First, note that |f(x, y)| is continuous on the closed and bounded region R and thus has a maximum.
We can now say |f(x, y)| ≤ M for some M . We choose h such that:

[x0 − h, x0 + h] ⊆ [a, b] (3)

[y0 −Mh, y0 +Mh] ⊆ [c, d] (4)

Kh < 1 (5)

Note that the first two can be achieved for sufficiently small h, since (x0, y0) is in the interior of R, not on its
boundary. These requirements were derived by looking at what assumptions are needed for the arguments
in the proof to work. Let S = [x0 − h, x0 + h] × [y0 − Mh, y0 + Mh] be the restricted rectangular region,
noting that S ⊆ R.
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4 Part 2

The argument made in the global case is equally valid in the local case, except that I must now be careful
to ensure y(x) ∈ [c, d].

First, I would like to show that, restricted to x ∈ [x0 − h, x0 + h], a solution to (1) lies in S. I will show
this by contradiction, starting with the assumption that |y(x1) − y0| > Mh for some x1 ∈ [x0 − h, x0 + h].
Using continuity of y(x), we are also able to show that we may choose x2 ∈ (x0 − h, x0 + h) so that

• |y(x2)− y0| = Mh

• |y(x)− y0| < Mh for |x− x0| < |x2 − x0| < h

The mean value theorem guarantees the existence of a ξ between x and x0 such that
∣

∣

∣

∣

y(x2)− y(x0)

x2 − x0

∣

∣

∣

∣

= |y′(ξ)| = |f(ξ, y(ξ))| ≤ M.

Note |ξ − x0| < |x2 − x0|, so that |y(ξ) − y0| < Mh. Since (ξ, y(ξ)) ∈ S, the assumptions on f(x, y) apply.
Finally

∣

∣

∣

∣

y(x2)− y(x0)

x2 − x0

∣

∣

∣

∣

>
|y(x2)− y(x0)|

h
=

Mh

h
= M

leads to the necessary contradiction. It follows that x ∈ [x0 − h, x0 + h] implies |y(x) − y0| ≤ Mh, so that
the solution lies in S.

Since the solution is limited to S, the arguments used to prove the case (1) implies (2) in the global case
remain valid here.

The following logic can now be used to show that the other case (2) implies (1) is covered.

1. We construct a solution y to the integral equation, which we will show later is in S.

2. This y satisfies the assumptions used to show that it satisfies the ODE.

3. Assume there is another solution ỹ to the ODE. We show above that this lies in S.

4. This must also satisfy the integral equation.

5. Since both y and ỹ satisfy the integral equation and are in S, we can show using the argument below
that ỹ = y.

Note that this sequence of logic suffices to prove the local existence-uniqueness theorem.
Note that I have not ruled out the existence of a solution to the integral equation, distinct from constructed

solution y and not in S, which is also not a solution to the ODE. Although this seems unsatisfying, I don’t
need to worry about this, since it does not affect the validity of the theorem I am trying to prove.

5 Part 3: Picard iteration

Define the sequence

yn(x) = y0 +

∫

x

x0

f(t, yn−1(t)) dt, y0(x) = y0. (6)

This is called Picard iteration. For this sequence to be useful, we must show that it lies in S. If x ∈
[x0 − h, x0 + h] then

|yn(x)− y0| =

∣

∣

∣

∣

∫

x

x0

f(t, yn−1(t)) dt

∣

∣

∣

∣

≤ Mh (7)

Note that this must be used inductively, since it relies on yn−1(t) ∈ [c, d]. The statement is trivial for n = 0,
which allows the bound above to be applied inductively. All of the Picard iterates are in rectangle S.
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6 Part 4

I need to show that yn(x) → y(x) as n → ∞. The proof from the global case can be used here. The approach
that the book takes follows the more historical approach. Although the book does not mention this, this proof
amounts to (a) showing that Picard iteration is a contraction, and then (b) proving the Banach fixed-point
theorem. The proof is somewhat simpler than this, however, since more context is available.

6.1 Bounding consecutive approximations

Note that |y0(x)−y1(x)| is continuous on the closed and bounded interval [a, b], so it must take on a maximum
value in this interval. Thus, for some M , I can write |y0(x) − y1(x)| ≤ M . As before, the key to bounding
subsequent intervals is to use Lipschitz continuity to relate consecutive differences using (assuming x > x0)

|yn(x)− yn−1(x)| =

∣

∣

∣

∣

∫

x

x0

f(t, yn−1(t)) dt−

∫

x

x0

f(t, yn−2(t)) dt

∣

∣

∣

∣

(8)

=

∣

∣

∣

∣

∫

x

x0

f(t, yn−1(t))− f(t, yn−2(t)) dt

∣

∣

∣

∣

(9)

≤

∫

x

x0

|f(t, yn−1(t))− f(t, yn−2(t))| dt (10)

≤

∫

x

x0

K|yn−1(t)− yn−2(t)| dt (11)

= K

∫

x

x0

|yn−1(t)− yn−2(t)| dt (12)

This leads us to the following sequence of differences

|y1(x)− y0(x)| ≤ M

|y2(x)− y1(x)| ≤ K

∫

x

x0

|y1(t)− y0(t)| dt ≤ K

∫

x

x0

M dt = MKh

|y3(x)− y2(x)| ≤ K

∫

x

x0

|y2(t)− y1(t)| dt ≤ K

∫

x

x0

MKhdt = M(Kh)2

|y4(x)− y3(x)| ≤ K

∫

x

x0

|y3(t)− y2(t)| dt ≤ K

∫

x

x0

M(Kh)2 dt = M(Kh)3

...

|yn(x)− yn−1(x)| ≤ K

∫

x

x0

|yn−1(t)− yn−2(t)| dt ≤ K

∫

x

x0

M(Kh)n−2 dt = M(Kh)n−1

This bound was obtained assuming x > x0, since otherwise many of the integrals are negative. I could repeat
the argument with x < x0 and get the same result.

6.2 Convergence

I can express the terms in the sequence as a telescoping sum

yn(x) = y0 +
n
∑

k=1

(yk(x)− yk−1(x)). (13)

If yn(x) → y(x), then

y(x) = y0 +

∞
∑

k=1

(yk(x)− yk−1(x)). (14)
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Note that this is just the definition of an infinite series. The limit exists if and only if the series converges.
Since

∞
∑

k=1

|yk(x)− yk−1(x)| ≤

∞
∑

k=1

M(Kh)k−1 =
M

1−Kh
(15)

converges provided Kh < 1, yn(x) → y(x). Now we see the reason for the additional requirement Kh < 1
that we imposed when choosing h.

One more piece is needed before we continue. Since |yn(x)−y0| ≤ Mh for all n, we must have |y(x)−y0| ≤
Mh, so that y lies in S.

7 Part 5

This is left as a homework assignment.

8 Part 6

This proof is the same as in the global case.

9 Part 7

Next, lets consider uniqueness. Assume y and ỹ are two solutions to (2). Let Q = max
x

|ỹ(x)− y(x)|.

Q = max
x

|ỹ(x)− y(x)| (16)

= max
x

∣

∣

∣

∣

∫

x

x0

f(t, ỹ(t)) dt−

∫

x

x0

f(t, y(t)) dt

∣

∣

∣

∣

(17)

≤ max
x

∫

x

x0

|f(t, ỹ(t))− f(t, y(t))| dt (18)

≤ Kmax
x

∫

x

x0

|ỹ(t)− y(t)| dt (19)

≤ Kmax
x

∫

x

x0

Qdt (20)

≤ Kmax
x

Qh (21)

≤ KhQ (22)

Noting Kh < 1 and Q ≥ 0, we conclude that Q = 0. Thus, ỹ = y. Since all solutions are equal, the solution
is unique.
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