Existence of Laplace transform

The Laplace transform L[f(z)] exists provided the integral
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exists for sufficiently large p.

1 Preliminary

1.1 Absolute convergence

If the integral
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converges absolutely. Note that it is okay for a,b to be £oo.

converges, then the integral

1.2 Comparison test

If | f(z)] < g(z) for all a < x < b and the integral
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converges, then the integral

also converges absolutely.

1.3 Triangle inequality
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1.4 Exponential order

The function f(x) is said to have exponential order if there exist constants M, ¢, and n such that
|f(z)| < Me™

for all z > n.

2 Criteria for convergence (I)

The Laplace transform L[f(z)] exists if it has exponential order and
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exists for any b > 0. Since we only need to show convergence for sufficiently large p, assume p > ¢ and p > 0.
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The first integral exists by assumption, and the second term is finite for p > ¢, so the integral

/Oo f(z)e P* dx
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converges absolutely and the Laplace transform L[f(x)] exists.

3 Criteria for convergence (II)

The Laplace transform L[f(x)] exists if:
1. f(x) has exponential order and
2. on every closed interval [0, b]

(a) f(z) is bounded,
(b) f(x) is piecewise continuous, and

(¢) f(x) has at most a finite number of discontinuities

/ @) d

will always exist, so we automatically satisfy criterion (I).

Requirements 2(a-c) imply that
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Assume f(x) satisfies criterion (I) This implies F'(p) = L[f(x)] will exist if if p > m for some m. I want to
show that |F(p)| can be made arbitrarily close to 0 for sufficiently large p. Choose an € > 0. Fix a p. We
will discover how large p needs to be as we go; we only care about p — oo, so we may choose p to be as large
as we need.
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Note that as p — 0o, e7P* — 0 for > 0, so that I should be able to make the integral arbitrarily small for
large p. The only potential complication is near x = 0, so we will need to deal with that separately. The
important point here is that the part near 0 does not contribute very much to the integral. Let
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Then, G(p) = lim K,(p). By the definition of a limit, there exists an § > 0 such that
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Using this (with a = ),
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This lets me bound part of the integral.
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Criterion (I) gives us that
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Since I can make |F(p)| arbitrarily close to 0 for large p, I have F(p) — 0 as p — oo.



