
Math 135-2, Homework 7

Name: ID:

Problem 40.1

Find the eigenvalues λm and Eigenfunctions yn(x) for the equation y′′ +λy = 0 in each of the
following cases:
(a) y(0) = 0, y(π/2) = 0
(f) y(a) = 0, y(b) = 0

Problem 40.2

If y = F (x) is an arbitrary function, then y = F (x+ at) represents a wave of fixed shape that
moves to the left along the x-axis with velocity a (Fig. 49). Similarly, if y = G(x) is another
arbitrary function, then y = G(x − at) is a wave moving to the right, and the most general
one-dimensional wave with velocity a is

y(x, t) = F (x + at) + G(x − at) (1)

(a) Show that (2) satisfies the wave equation (8).
(b) It is easy to see that the constant a in equation (8) has the dimensions of velocity. Also,
it is intuitively clear that if a stretched string is disturbed, then waves will move in both
directions away from the source of the disturbance. These considerations suggest introducing
the new variables α = x + at and β = x − at. Show that with these independent variables,
equation (8) becomes

∂2y

∂α∂β
= 0, (2)

and from this derive (2) by integration. Formula (2) is called d’Alembert’s solution of the wave
equation. It was also obtained by Euler, independently of d’Alembert but slightly later.

Problem 40.3

Consider an infinite string stretched taut on the x-axis from −∞ to ∞. Let the string be
drawn aside into a curve y = f(x) and released, and assume that its subsequent motion is
described by the wake equation (8).
(a) Use (2) to show that the string’s displacement is given by d’Alembert’s formula,

y(x, t) =
1

2
[f(x + at) + f(x − at)]. (3)

Hint: remember the initial conditions (11) and (12).
(b) Assume further that the string remains motionless at the points x = 0 and x = π (such
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points are called nodes), so that y(0, t) = y(π, t) = 0, and use (3) to show that f(x) is an odd
function that is periodic with period 2π [that is, f(−x) = −f(x) and f(x + 2π) = f(x)].
(c) Show that since f(x) is odd and periodic with period 2π, it necessarily vanishes at 0 and π.
(d) Show that Bernoulli’s solution (17) can be written in the form of (3). Hint: 2 sinnx cosnat =
sin[n(x + at)] + sin[n(x − at)].

Problem 41.4

In the preceding problem, find w(x, t) if the ends of the rod are kept at 0◦C, w0 = 0◦C, and
the initial temperature distribution is f(x).

Problem 41.7

The two-dimensional heat equation is

a2

(

∂2w

∂x2
+

∂2w

∂y2

)

=
∂w

∂t

Use the method of separation of variables to find a steady-state solution of this equation in
the infinite strip of the xy-plane bounded by the lines x = 0 and x = π, and y = 0 if the
following conditions are satisfied:

w(0, y) = 0 w(π, y) = 0 w(x, 0) = f(x) lim
y→∞

w(x, y) = 0

Problem A

The three-dimensional heat equation is

a2

(

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)

=
∂w

∂t
.

This describes a block of material, in this case [0, π] × [0, π] × [0, π]. The initial condi-
tions are w(x, y, z, 0) = f(x)g(y)h(z). Boundary conditions are w(0, y, z, t) = w(π, y, z, t) =
w(x, 0, z, t) = w(x, π, z, t) = w(x, y, 0, t) = w(x, y, π, t) = w1. Solve for w(x, y, z, t).

Problem B

Let φ1, φ2, φ3, . . . and θ1, θ2, θ3, . . . be two normalized orthogonal sequences, in the sense of

〈φm, φn〉x =

∫ b

a

φm(x)φn(x) dx =

{

1 m = n

0 m 6= n

〈θm, θn〉y =

∫ d

c

θm(y)θn(y) dy =

{

1 m = n

0 m 6= n

Let σi,j(x, y) = φi(x)θj(y) be a sequence of functions in two dimensions (it does not matter
the order in which they are enumerated).
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(a) It is possible to construct an inner product 〈σi,j, σm,n〉xy under which this sequence is
normalized and orthogonal. Construct this inner product and show that the sequence is
normalized and orthogonal with respect to it.
(b) It is desired to express f(x, y) as in terms of this basis. That is,

f(x, y) =

∞
∑

i=1

∞
∑

j=1

ai,jσi,j(x, y).

How should ai,j be selected?
(c) Show how the solution from Problem A can be modified to handle the more general initial
condition w(x, y, z, 0) = r(x, y, z). You may assume the sequence σi,j is complete.
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