Math 135-2, Homework 5

Name: \qquad ID: \qquad

Problem 69.1

Let $\left(x_{0}, y_{0}\right)$ be an arbitrary point in the plane and consider the initial value problem

$$
y^{\prime}=y^{2}, \quad y\left(x_{0}\right)=y_{0}
$$

Explain why Theorem A guarantees that this problem has a unique solution on some interval $\left|x-x_{0}\right| \leq h$. Since $f(x, y)=y^{2}$ and $\frac{\partial f}{\partial y}=2 y$ are continuous on the entire plane, it is tempting to conclude that this solution is valid for all x. By considering the solutions through the points $(0,0)$ and $(0,1)$, show that this conclusion is sometimes true and sometimes false, and that therefore the inference is not legitimate.

Problem 69.7

For what points $\left(x_{0}, y_{0}\right)$ does Theorem A imply that the initial value problem

$$
y^{\prime}=y|y|, \quad y\left(x_{0}\right)=y_{0}
$$

has a unique solution on some interval $\left|x-x_{0}\right| \leq h ?$

Problem 33.1

Find the Fourier series of the function defined by

$$
\left\{\begin{array}{l}
f(x)=\pi, \quad-\pi \leq x \leq \frac{\pi}{2} \\
f(x)=0, \quad \frac{\pi}{2}<x \leq \pi
\end{array}\right.
$$

Problem 33.3

Find the Fourier series of the function defined by

$$
\begin{cases}f(x)=0, & -\pi \leq x<0 \\ f(x)=\sin x, & 0 \leq x \leq \pi\end{cases}
$$

Problem 33.5

Find the Fourier series for the function defined by
(a) $f(x)=\pi,-\pi \leq x \leq \pi$
(d) $f(x)=\sin x,-\pi \leq x \leq \pi$
(c) $f(x)=\cos x,-\pi \leq x \leq \pi$
(d) $f(x)=\pi+\sin x+\cos x,-\pi \leq x \leq \pi$

Problem 35.1

Determine whether each of the following functions is even, odd, or neither:

$$
x^{5} \sin x, \quad x^{2} \sin 2 x, \quad e^{x}, \quad(\sin x)^{3}, \quad \sin x^{2}, \quad \cos \left(x+x^{3}\right), \quad x+x^{2}+x^{3}, \quad \log \frac{1+x}{1-x}
$$

Problem 36.2

Find the Fourier series for the functions defined by
(b) $f(x)=|x|, \quad-2 \leq x \leq 2$.

Problem A

For the proof of the Picard theorem, we proved that any solution \tilde{y} to the original ODE lies in the rectangle S. That is, if $x \in\left[x_{0}-h, x_{0}+h\right]$ then $\tilde{y}(x) \in\left[y_{0}-M h, y_{0}+M h\right]$. We used this to show that solutions to the ODE also must solve the integral equation. Adapt the proof to show that any solution \bar{y} to the integral equation must lie in the same rectangle S. Recall that since \bar{y} has not yet been established to be in S, we may not assume other parts of the proof apply to it (e.g., that it is also a solution to the ODE or that it is equal to the constructed solution y). Once this has been proven, full equivalence of the ODE and integral equations is established.

