Math 135-2, Homework 3

Name: \qquad ID: \qquad

Problem 53.4

Use the methods of both Examples 1 and 2 to solve each of the following differential equations:
(a) $y^{\prime \prime}+5 y^{\prime}+6 y=5 e^{3 t}, y(0)=y^{\prime}(0)=0$.

Problem 53.8

The current $I(t)$ in an electric circuit with inductance L and resistance R is given by the equation (4) in Section 13:

$$
L \frac{d I}{d t}+R I=E(t)
$$

where $E(t)$ is the impressed electromotive force. If $I(0)=0$, use the methods of this section to find $I(t)$ in each of the following cases:
(a) $E(t)=E_{0} u(t)$
(b) $E(t)=E_{0} \delta(t)$
(c) $E(t)=E_{0} \sin \omega t$

Problem 69.2

Show that $f(x, y)=y^{1 / 2}$
(a) does not satisfy a Lipschitz condition on the rectangle $|x| \leq 1$ and $0 \leq y \leq 1$
(b) does satisfy a Lipschitz condition on the rectangle $|x| \leq 1$ and $c \leq y \leq d$ where $0<c<d$.

Problem 69.4

Show that $f(x, y)=x y^{2}$
(a) satisfies a Lipschitz condition on the rectangle $a \leq x \leq b$ and $c \leq y \leq d$.
(b) does not satisfy a Lipschitz condition on any $\operatorname{strip} a \leq x \leq b$ and $-\infty \leq y \leq \infty$.

Problem A

The problem $y y^{\prime}=1, y(0)=0$ seems like it should have no solution. Show that it actually has two solutions. How is this possible? This demonstrates that plugging the initial conditions into an ODE and producing a contradiction does not suffice to show that there is no solution.

Problem B

Consider the ODE $x^{3} y^{\prime}=2 y$.
(a) Find all solutions if $y(0)=0$.
(b) Find all solutions if $y(0)=1$.

Problem C

Find the Lipschitz constant (or show that it does not have one) for each of the following functions on the indicated interval. (The Lipschitz constant is a tight bound for the Lipschitz condition.)
(a) $\cos x \sin x,(-\infty, \infty)$
(b) $|\sin x|,(-\infty, \infty)$

Problem D

Derive the time delay rule

$$
L[u(x-a) f(x-a)]=e^{-a p} F(p)
$$

For which choices a is this rule valid?

