## Math 135-2, Homework 2

Name: $\qquad$ ID: $\qquad$

## Problem 50.2

Find the inverse Laplace transforms of (c) $\frac{p+3}{p^{2}+2 p+5}$

## Problem 50.3

Solve each of the following differential equations by the method of Laplace transforms:
(b) $y^{\prime \prime}-4 y^{\prime}+4 y=0, y(0)=0$ and $y^{\prime}(0)=3$
(d) $y^{\prime \prime}+y^{\prime}=3 x^{2}, y(0)=0$ and $y^{\prime}(0)=1$

## Problem 51.1

Show that

$$
L[x \cos a x]=\frac{p^{2}-a^{2}}{\left(p^{2}+a^{2}\right)^{2}}
$$

and use this result to find

$$
L^{-1}\left[\frac{1}{\left(p^{2}+a^{2}\right)^{2}}\right]
$$

## Problem 51.3

Solve each of the following differential equations:
(a) $x y^{\prime \prime}+(3 x-1) y^{\prime}-(4 x+9) y=0, y(0)=0$.

## Problem 51.7

If $x>0$, show formally that
(b) $f(x)=\int_{0}^{\infty} \frac{\cos x t}{1+t^{2}} d t=\frac{\pi}{2} e^{-x}$

## Problem 52.2

Solve each of the following integral equations:
(b) $y(x)=e^{x}\left[1+\int_{0}^{x} e^{-t} y(t) d t\right]$

## Problem 52.5

Show that the differential equation

$$
y^{\prime \prime}+a^{2} y=f(x), y(0)=y^{\prime}(0)=0
$$

has

$$
y(x)=\frac{1}{a} \int_{0}^{x} f(t) \sin a(x-t) d t
$$

as its solution.

## Problem 53.2

Find the convolution of each of the following pairs of functions:
(a) $1, \sin a t$
(c) $t, e^{a t}$

