Fast reconstruction of implicit surfaces using convolutional
neural networks

CHEN ZHAO, TAMAR SHINAR, and CRAIG SCHROEDER, University of California Riverside,
USA

Fig. 1. Surface reconstruction from a simulation of two fluid sources colliding from opposite directions.
Left: Our method. Right: Original method. The total reconstruction time using our method is 381 seconds,
compared to 1880 seconds for original method, resulting in a 4.93x speedup.

Recently, Zhao et al. [Zhao et al. 2024] proposed a new method for constructing signed distance functions
from fluid simulation particles. This method was able to achieve superior surface smoothness, noise reduction,
and temporal coherence compared with previous methods. One of the main limitations of the method was
its relatively slow construction times, even though it utilized both the CPU and GPU. In this paper, we
consider two modifications to this scheme that make the algorithm easier to optimize without introducing any
perceptible changes in reconstruction quality, as illustrated in Figure 1. With these improvements, a surface
can be reconstructed from a single fluid simulation with 2M particles in 2.21 seconds, compared with 72.3
seconds for the original method, resulting in a single-frame reconstruction speedup of about 33X, making
the surface reconstruction fast enough for use within a simulation framework. When reconstructing surface
for multiple simulation frames together, we achieve a speedup of about 5x compared with the original. The
optimized implementation will be released with the publication.

CCS Concepts: « Computing methodologies — Computer graphics; Concurrent computing method-
ologies; Machine learning; Shape modeling.

Additional Key Words and Phrases: Surface reconstruction, Level sets, Particle-based fluid simulation, Render-
ing fluids, Machine Learning, Neural surface reconstruction

ACM Reference Format:

Chen Zhao, Tamar Shinar, and Craig Schroeder. 2025. Fast reconstruction of implicit surfaces using convo-
lutional neural networks. Proc. ACM Comput. Graph. Interact. Tech. 8, 4, Article 51 (August 2025), 15 pages.
https://doi.org/10.1145/3747856

Authors’ Contact Information: Chen Zhao, czhao078@ucr.edu; Tamar Shinar, shinar@cs.ucr.edu; Craig Schroeder, craigs@
cs.ucr.edu, University of California Riverside, Riverside, California, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2577-6193/2025/8-ART51

https://doi.org/10.1145/3747856

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

HTTPS://ORCID.ORG/0009-0000-1479-8373
HTTPS://ORCID.ORG/0000-0002-1383-9636
HTTPS://ORCID.ORG/0000-0003-0528-7007
https://doi.org/10.1145/3747856
https://orcid.org/0009-0000-1479-8373
https://orcid.org/0000-0002-1383-9636
https://orcid.org/0000-0003-0528-7007
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3747856

51:2 Trovato et al.

1 Introduction

Particle-based fluid simulation techniques are widely used for special effects and games due to
their strengths, which include good resolution of fluid details and natural handling of topological
changes. These methods include the Lagrangian smoothed particle hydrodynamics (SPH) [Thmsen
et al. 2014; Koschier et al. 2022; Miiller et al. 2003] as well as hybrid Lagrangian-Eulerian methods,
such as fluid-implicit-particle (FLIP) [Zhu and Bridson 2005] and the material point method (MPM)
[Stomakhin et al. 2013; Sulsky et al. 1994].

One significant challenge that remains for particle-based fluid simulation methods is the recon-
struction of a high quality geometric surface for rendering. While rendering is often an offline
postprocess, a surface definition is also potentially important for use in-the-loop during simulation,
such as for computation of surface tension forces and accurate free-surface boundary conditions
[Larionov et al. 2017], making fast reconstruction speed crucial as well. Conceptually, a simple
approach to reconstruction is to use blobbies [Blinn 1982] defined by the particles, but this leads
to overly bumpy surfaces, especially in regions where the surface should be flat. Typically, an
implicit function is defined from the particle data, incorporating smoothing on particle positions or
the implicit function to reduce surface bumpiness [Miller et al. 2003; Yu and Turk 2013; Zhu and
Bridson 2005] after which methods based on the marching cubes algorithm [Lorensen and Cline
1998] are used to generate a triangle mesh.

Recently, a data-driven approach was introduced by Zhao et al. [Zhao et al. 2024]. This method
begins by transferring particle data to a grid to create an implicit function akin to the SPH color
field [Miiller et al. 2003]. It then uses this grid data as input to a convolutional neural network
that predicts signed distance field values. The method was trained on Poisson sampled particle
positions of a variety of analytically defined signed distance fields. It constructs smooth, visually
pleasing surface, preserves sharp features, and runs at speeds comparable to leading approaches
such as Houdini [SideFX [n.d.]] and Pahi [Stomakhin et al. 2023].

In this work, we present a novel surface reconstruction method that generates high quality
surface reconstructions comparable to [Zhao et al. 2024] but reconstructs a surface from particles
an order of magnitude faster. We identify the bottlenecks in performance of [Zhao et al. 2024],
which include feature computation and efficiency in network inference, and propose an algorithm
that more efficiently utilizes both CPU and GPU. To facilitate the performance optimization of
feature computation, we propose two fundamental changes to the method of [Zhao et al. 2024].
First, we propose a separable tensor-product kernel with parameters derived by minimizing the
difference with the spherical kernel used in [Zhao et al. 2024]. The new kernel facilitates an efficient
scanline-based parallel rasterization strategy for feature construction. Second, we replace the
costly particle-to-particle density interpolation used during feature construction in [Zhao et al.
2024] with a more efficient particle-to-grid followed by grid-to-particle interpolation strategy. We
further optimize the network inference stage by using TensorRT and data slicing on the GPU.
We demonstrate that our reconstruction algorithm retains the high quality of [Zhao et al. 2024]
while improving reconstruction on a single frame by a factor of about 33. About 41% of this cost is
postprocessing overhead (reading and writing files), which would be avoided when using the new
reconstruction algorithm within a simulation loop. In this case, reconstructing a surface from 2M
particles would take about 1.31 seconds, making it practical for use in simulations.

The original method was difficult to parallelize efficiently and instead relied on batch reconstruc-
tion, where multiple frames are processed in parallel to improve utilization of both the CPU and
GPU. Our algorithm also benefits from batching, since the total time is split approximately equally
between the CPU and GPU, and these two parts must be completed sequentially. Even in batch

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

Fast reconstruction of implicit surfaces using convolutional neural networks 51:3

mode, where most threading benefits are lost, our reconstruction remains about 3 — 4x faster, with
no degradation in visual quality. An overview of our method is shown in Figure 3.

2 Related Work

Particle-based fluid simulation techniques have been widely adopted and developed for visual
effects. Smoothed particle hydrodynamics (SPH) was introduced in graphics by [Miiller et al. 2003],
and a comprehensive survey is given in [Thmsen et al. 2014]. Hybrid methods such as FLIP [Zhu and
Bridson 2005] and MPM [Stomakhin et al. 2013; Sulsky et al. 1994] use particles as a primary material
representation and transfer information to a grid to compute spatial derivatives for integrating the
equations of motion.

Particle-based fluid simulations method have long struggled with the reconstruction of high
quality surfaces for rendering. Miiller et al. [Miiller et al. 2003] used the SPH color field and
yields bumpy surfaces. In the case of constant particle masses, this field corresponds to the input
features m. of [Zhao et al. 2024] and our method. Zhu and Bridson [Zhu and Bridson 2005] were
able to reconstruct an implicit surface with reduced bumpiness by using weighted averages of
nearby particle positions and radii. The adaptive SPH method of [Adams et al. 2007] proposed a
novel surface reconstruction method designed to be less sensitive to their frequently resampled
particle representation; they use particle-to-surface distances carried on particles in addition to
particle locations to improve surface smoothness. A widely used method was developed by [Yu
and Turk 2013], with a recent refinement of the method proposed in [Stomakhin et al. 2023],
that utilizes particle position smoothing following by interpolation with anisotropic ellipsoidal,
rather than spherical, kernels. The kernel shape is based on the local flow field, yielding sharper
features and smoother surfaces, but with some residual artifacts such as reduced volume and
bulging at edges [Zhao et al. 2024]. Surface bumpiness was also reduced by [Akinci et al. 2012]
which proposed surface decimation and subdivision of the surface triangle mesh as a post-process.
Williams [2008] minimized a thin-plate surface energy to generate an explicit surface mesh of
particles, and Bhatacharya et al. [2011] adapted this approach to level set skinning of particle data for
more smooth and temporally coherent animations. Many approaches first identify surface particles
before reconstructing the surface. Sandim et al. [Sandim et al. 2016] detects surface particles based
on visibility testing and then uses Screened Poisson Surface Reconstruction [Kazhdan and Hoppe
2013] to solve for a smooth surface mesh. Marrone et al. [Marrone et al. 2010] first identify surface
particles and then use their locations and normals to construct a level set function.

Recent work has explored neural implicit representations for surface reconstruction. Neural
implicit representations such as DeepSDF [Park et al. 2019] learn a continuous neural signed
distance field for shape representation. Tao et al. [Tao et al. 2024] extend this to fluid surfaces,
learning a compact signed distance field in a low-dimensional latent space to represent and evolve
fluid geometry. Our work focuses on a fast parallel implementation of the recent method [Zhao
et al. 2024], which uses a neural network to achieve high quality reconstruction of the fluid surface
as a post-process to the fluid simulation.

Parallelization of surface reconstruction for SPH and other particle-based fluid methods has
been explored on both CPU and GPU. Akinci et al. [Akinci et al. 2012] presented a parallel surface
reconstruction pipeline for SPH focusing on a narrow-band marching cubes approach designed to
parallelize well on shared-memory architectures. Following [Thmsen et al. 2011], they sort particle
meta data by grid z-order, and then reconstruct the level set in parallel on designated surface
vertices of the grid. This was further improved using a two-level spatial uniform grid structure
in [Wu et al. 2017]. Recent methods such as [Chen et al. 2021] and [Yang and Gao 2020] devised
a fully parallel pipeline for particle-based fluid visualization, processing all steps on the GPU to
avoid CPU-GPU memory transfers. They utilize a spatial hashing strategy to efficiently identify

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

51:4 Trovato et al.

conv0 convl max pool conv2 conv3 flatten linear0 linearl linear2
> > > > > > > > >

83 73 x 64 63 x 128 33 x 128 23 x 256 13 x 512 512 256 128 1

Fig. 2. Network structure for Zhao et al. [Zhao et al. 2024] (reproduced with permission).

surface particles and then apply narrow-band surface reconstruction. Quispe and Paiva [Quispe
and Paiva 2022] computes a level set approximation from a smoothed discrete indicator function
and proposes a fast GPU-based implementation. [Macklin and Miiller 2013] proposed position
based fluids with GPU-based ellipsoidal splatting, with anisotropy based on [Yu and Turk 2013], for
screen space rendering of the surface in real-time based on [van der Laan et al. 2009]. Dominguez
et al. [Dominguez et al. 2013] describes various CPU and GPU optimizations that are implemented
in the open-source system DualSPHysics, including a GPU parallelization strategy where they sort
particles by cell to improve memory access patterns and facilitate efficient neighbor search.

3 Review of Surface Reconstruction Method

We briefly review the method proposed in [Zhao et al. 2024] for completeness. For full details, we
refer the reader to [Zhao et al. 2024]. Zhao et al. [Zhao et al. 2024] proposed a novel network-based
approach for reconstructing signed distance fields from fluid particles. First, the method transfers
the particle data to a grid. A patch M; of grid-based features is then input to a convolutional
neural network to predict the signed distance field value ¢; at a sample grid point i. The network
loss incorporates supervised learning from Poisson sampled analytic shapes and a polynomial
regularization term.

3.1 Feature construction

We found the feature construction to be a primary bottleneck in performance of [Zhao et al. 2024]
and review it next. During feature construction, the particles are rasterized onto a grid with a
radially symmetric smoothing kernel W as

Me = Z piw(llxc _XP”’R)’ :DP = Z W(”XP _xq”:R): (1)

pEN, P qeN,

where x. is the location of grid cell ¢, N is the set of all particles p within radius R of x., and x,,
is the position of the particle p. The density of particle p is given by p,, where N, is the set of
particles within radius R, including the particle p itself. m. is a dimensionless scalar defined at grid
cell centers, which is interpolated from particles to the grid. The smoothing kernel W and particle
density p, have units of inverse volume. Zhao et al. [Zhao et al. 2024] used the Poly6 kernel with
R = 3Ax as the kernel support radius, defined as
315
641 R° (R =17, @

Note that computation of m, transfers data from neighboring particles to cells, while the computa-
tion of p, transfers data from neighboring particles to particles. While it is relatively expensive

W(r,R) =

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

Fast reconstruction of implicit surfaces using convolutional neural networks 51:5

to compute p,, it serves to normalize the data to better describe surface geometry and reduce
sensitivity to fluctuations in particle density. In Section 4.1, we replace this kernel with a tensor
product kernel that is more efficient to compute. In Section 4.2, we use this kernel to accelerate
the particle to grid transfers for calculating the features m.. In Section 4.3, we reuse these feature
transfers to calculate particle densities.

3.2 Network architecture

Another significant performance bottleneck of [Zhao et al. 2024] is network evaluation, which we
address in detail below. The network structure for the method of Zhao et al. [Zhao et al. 2024]
is shown in Fig. 2. The network consists of convolutional layers convo, ..., conv3 with 2 X 2 X 2
kernels and stride 1, a max-pooling layer with a 2 X 2 X 2 kernel and stride 2. ReLU activations
are applied after conv0, max pool, conv2, and conv3. The resulting output is flattened and passed
through an MLP with two hidden layers using tanh activation functions. We found that network
inference time accounts for a significant portion of the total reconstruction time. Therefore, in
Section 4.4, we discuss how to accelerate the inference process using the TensorRT library.

3.3 Loss function

A single forward pass of the network predicts the signed distance function ¢; at a grid node i. The
loss function is evaluated on a 3 X 3 X 3 array of predicted values centered at i, denoted by ®;, and
is given by

L= " [l — @3 + ALy (®)). 3)
i

The first term penalizes the squared error in the predicted ¢ values. The L, penalizes deviations
from a local quadratic polynomial fit of the data. This serves to regularize the result by promoting
smoothness without penalizing curvature and can be efficiently implemented as L, (®;) = ||K®||3
for a constant matrix K.

3.4 Network training data

The training data is generated by Poisson sampling points from a collection of shapes defined
by analytic signed distance functions. Particles sampled closer than .25Ax are also rejected to
improve resolution of the reconstructed signed distance field on the grid. Four basic shapes (sphere,
cone, torus, and cylinder) are generated with random position, orientation, and shape parameters.
Both the interior and exterior of these shapes are sampled to capture a variety of fluid volume
geometries. Additionally, a thickened boundary of each shape is sampled to train the network in
reconstruction of thin fluid sheets. The shapes are sampled with particle separation distances of .5,
1, and 2 particles per cell to train the network to be effective over a variety of fluid particle densities.
The training set is uniformly divided among these sampling strategies. Additionally, the data is
augmented with isolated particles modeled as spheres of size Ax.

3.5 Double-fine implicit surface reconstruction

"""""""""""

MPM simulations are commonly initialized with 8 particles per cell [Jiang et al.
2016]. It can be desirable to reconstruct a finer resolution implicit surface for
higher quality results. However, if the grid resolution is doubled and the physical
kernel domain shrinks commensurately, the algorithm will see only one particle 4444
per cell on average. Zhao et al. [Zhao et al. 2024] showed that this degrades results. ‘ ‘
They instead proposed to reconstruct the implicit surfaces on 8 staggered grids of the original grid
resolution, where each staggered grid consists of a subset of the nodes of the double-fine grid (inset

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

51:6 Trovato et al.

: ¢ e Wy 379 %o @00 LR
17 5.() ® o o-o._0 o-o & ° o
8 12 ‘e 34 39 ° °
R R A T o ® oo 0 e ® . LA
3 11 'y 35 38 K] .
. ° 2.8 o ‘o Og oo oeo @ ° A NS ar
. 16-22 3337 o 8—8—6 o0 0 = =
9 ® o 270 o ® o o o o o ® o
. Woore 39 0 ¢ OgO O o-o o P’)
. 15 ® ‘e ° ° 'S
16 o o o o o8 o
o o XY ° .
Q0 5® ® 19 25 % D, Denen oo g D
hd L o | D. o ° 0o o o
a) Particle sort ssem) e scanlines c) Particle to gri arid to particle
P 1 b A bl li Particle id d) Grid icl
2r
—
® o o |
M

o °
o ®

° ® 2 o o - . . .
o

AN ||

L] - - -

L]

O °

(e) Particle to grid (f) Input features) Network inference (h) Output ¢

Fig. 3. Overview of our reconstruction algorithm. (a) We begin by sorting particles so that they occur in
the same order as the double-fine grid cell they live in. (b) Next, we associate particles and grid nodes
with scanlines. (c) To compute particle density p,, we first compute density on the grid nodes and then (d)
interpolate the result back to particles. (e) Using the particle density we compute features on grid nodes. (f)
For each node on the double-fine grid, we collect an 8 x 8 x 8 neighborhood of features, which are used as
input to the (g) network. The output of this network is the level set value, which is stored (h).

figure). In that way, a reconstruction on the double-fine grid is obtained without doubling the grid
resolution used for feature construction and network inference.

4 Approach

The primary bottleneck with the reconstruction of Zhao et al. [Zhao et al. 2024] is the feature
computation. The core of this computation is transferring information from particles to the grid
to assemble the features used as input to the network. This is done by evaluating a kernel for
each particle-grid pair. In practice, this is one of the most computationally intensive steps in the
algorithm, so we begin our optimization with the kernel itself.

4.1 Kernel

The original implementation used the Poly6 kernel in (2) with a support radius of R = 3Ax. This
kernel had the advantage of being a polynomial and thus relatively efficient to compute. This kernel
is especially popular in SPH for particle-particle interactions. The spherical symmetric kernels are
the norm for SPH simulations, since it allows them to be rotation invariant. Our reconstruction
uses features computed on a regular grid, so it is not rotation invariant. On the other hand, for
hybrid particle-grid methods, such as the material point method (MPM), tensor product kernels
are the norm: W(x,y, z) = f(x)f(y) f(z), where the kernel depends on the displacement between
locations rather than the distance. Tensor product kernels are more efficient when transferring
between particles and grids because they take advantage of the regular arrangement of grid nodes;
computing all of the weights for one particle at once allows many of the polynomial computations
to be reused. We follow this and adopt the tensor product kernel

W(xr) = W(x,y,zr) = k(r* = x*)2(r* —y?)2(r* - %)% (4)

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

Fast reconstruction of implicit surfaces using convolutional neural networks 51:7

- - T * T T
T T T T R | i | |
! ! e Sl Bl Sl Il Sl s Il el Sl
- . | | | |
j j I ! . 1 1
,,,,, (N I B . N [
| : : ! i i i i
i i i i | I i
: : F~717- -~ 1"~ fts~ [~ 71~
—————————————————————————————— ! ! ! !
i i
R 1 ; 1 1
I I U I I [I I AR D A
[nn BURNE e ‘
i i i I | | I
i i] T * T O T
—————————————————— =t/ | | | . |
i i e et T ISR Y S
; ; T I i I a I
,,,,, \\ ,,4,,,/,,_, ! : ! . !
| T ! T N T
- - : 1 | 1 1
I -t —® -~ fs% -t
————————————————————————————— | | | |
I . I I

Fig. 4. (Left) Old kernel (red) and new kernel (blue) showing region of space of which particles affect a grid
cell (green). Particles are associated with double-fine grid cells, shown dashed. The new kernel’s support
aligns with the grid. Grid cell centers for the original grid correspond to nodes of the double-fine grid. The
green location receives information from particles within a 10 X 10 neighborhood on the double-fine grid.
(Right) Rasterization occurs between an output scanline (red) of double-fine grid nodes and an input scanline
(blue) of particles.

Unlike the tensor product cubic or quadratic splines typically used for MPM, we instead opted
for tensor product quartic polynomials. This quartic was chosen as the smallest-degree nonzero
polynomial that vanishes and has zero derivative at +r. We chose this kernel because it has a
few useful properties. (1) The support of the kernel aligns with the grid cells; since neighbors are
identified based on the cell they lie in, no unnecessary particles are visited and no separate radius
check is required. (2) Along a scanline only the (r? — z%)? factor changes; the other factors can be
reused. (3) Unlike piecewise polynomial spline-based weights, all grid locations along a scanline
are computed using exactly the same quartic polynomial. This allows kernel computations to be
accelerated using SIMD instructions.

Kernel rescaling. The new kernel has two degrees of freedom: k and r. The normalization factor
k does not matter for our purposes, since this will eventually cancel with the density. We choose
k = r~° so that its maximum is W(0,r) = 1. The radius r is more delicate; simply using r = 3
as in the original method makes the reconstruction visually worse. We note that the difference
between the proposed kernel (for appropriate k) and the Poly6 kernel is minimized in the L, sense
when r = 2.43, so we use r = 2.5 for our tensor product kernel. With these parameters, we do not
observe any difference in quality between the original reconstruction and the new construction.
See Figure 4 for a comparison of the kernels.

4.2 Particle-to-grid transfers

Most of the CPU time in the original method was spent accumulating particle density p,, (particle-
to-particle transfer) and then accumulating the features m, (particle-to-grid transfer). We begin by
optimizing the particle-to-grid transfer. We note that in our implementation arrays are stored in
row-major order, where indices differing in the z coordinate are adjacent in memory. Since we will
do a 2 X 2 X 2 staggered reconstruction, we perform grid transfers on a double-fine grid, computing
the features for all eight reconstructions at once.

Particle sorting. The first step of the particle-to-grid transfer is identifying particle-cell pairs.
Originally, this was done by binning. Although simple, this strategy has a few significant disadvan-
tages. It is difficult to parallelize, since care must be taken to avoid writing to the same or nearby
memory on different threads. The construction of large numbers of tiny arrays also does not utilize

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

51:8 Trovato et al.

Algorithm 1 Accumulate features on grid.

1: As « %, R < 5As > Double-fine grid size, kernel size
2: Sort particles by double-fine grid cell
3: {Lo,L1,...,Lr—1} < (0,0),(0,1),...,(2n,2n) > Divide scanlines among threads
4: for (gx,gy) € L; do > Each thread t visits its output scanlines
5 for py € {gx —5,...,9x +4} do > Visit neighboring scanlines of particles
6 forp, € {9, —5,...,9,+4} do
7 forpe Py ,, do > For each particle in scanline (px, py)
8 (i, j, k) « INDEX(p) > Double-fine grid index for particle p.
9 (x,y,z) < LocATION(p)
2 2
10: a« i 1—(’(_9T§“As)2 1—(%#3)2
11: forre{k-5,...,k+4} do > For each affected output index (SIMD)
12: Mg, gyr < Mg g, r+ a(l - (Z_TCAS)Z)Z > Accumulate kernels for scanline

caching well. Instead, we sort the particles based on the index of the cell that they are in, ordered
in the same way cells data is stored in memory. Parallel sorting is very efficient, and we simply use
the C++ standard library implementation.

Scanlines. Next we need to divide the transfer work between threads. We choose scanlines as
our basic unit of work. Our scanlines consist of all grid cells whose x and y indices are the same;
scanlines are contiguous blocks of memory. Particles within the grid cells of a scanline are associated
with the scanline; these particles are also contiguous in memory due to the sorting. We construct a
simple 2D array of structures to store information per scanline, since this information will be used
frequently: the range of the output array, the range of the particles array, the location in space and
grid index of the first cell of the scanline, and the number of particles that occur in this scanline or
any previous scanline. The particle array ranges are computed by binary search. Everything else
can be computed directly. The cumulative particle count allows us to quickly divide the scanlines
between the threads so that the scanlines for each thread contain approximately the same number
of particles. Each thread is responsible for computing the features for grid cells within its scanlines.

Summation of scanline pairs. The final step in the transfers is visiting the grid-particle pairs,
computing the kernels, and adding the results. Our basic unit of work for this step is scanline pairs
(See Figure 4). For each particle in the first scanline, we add its contributions to grid cells in the
second scanline; see Algorithm 1. In this way, rasterization occurs on a relatively small amount of
memory at a time, with both particles and grid nodes being visited in order along their scanlines.
As noted in Algorithm 1, most of the kernel computations for a particle can be reused across the
scanline due to the tensor product structure of the kernel. Since the number of nodes visited along
a scanline is constant (ten) and the computations are identical along the scanline (since our kernel
is not piecewise), we are able to trivially parallelize the inner loop of the kernel computation using
SIMD. We allocate a ghost layer around the grid so that writes can be safely performed without
array bounds checks. This also helps separates scanlines in memory to avoid thread conflicts.

Full summation. Each thread is assigned a contiguous subset of the scanlines, which are divided
up so that each contains a similar number of particles; this is accomplished using binary search.
Although threads also read particles from nearby scanlines, this helps to balance the work among

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

Fast reconstruction of implicit surfaces using convolutional neural networks 51:9

original rescaled

Fig. 5. This figure shows the qualitative effects of replacing the modifications to the surface reconstruction
algorithm. (Left) original reconstruction, (left-middle) naively replacing the original kernel with the tensor
product kernel, (right-middle) rescaling the kernel to minimize differences between kernels, and (right)
using rescaled kernel and interpolating particle density from grid. Naive replacement of the kernel produces
noticeable artifacts at the edge of the object (see the arrow in the blow-up). As long as the kernel is properly
rescaled, the reconstruction quality is not affected.

threads even when particles are not uniformly distributed through the domain. To do the rasteriza-
tion, each thread computes the features for the scanlines it has been assigned. For each of these
output scanlines, it calls the scanline-scanline rasterization for all particle scanlines within the
support of the kernel. Performing summation in this way is very efficient; we are able to evaluate
kernels for 4G particle-grid pairs on 32 cores on the CPU in about 75ms.

4.3 Density computation

The feature computation makes use of particles densities p,, which are computed from particle-
particle pairs in the original algorithm. Particle-particle neighborhoods are generally more expensive
to find and visit than particle-grid neighborhoods. We instead compute densities on grid nodes
and then interpolate them to particles using trilinear interpolation. This operation is conveniently
identical to the feature computation when p,, = 1. We are thus able to reuse our feature computation
by initializing p;, = 1, performing the rasterization, interpolating from grid to particles to get the
real p,, and then rasterizing a second time. We did not observe any visual degradation in the
resulting surface when making this change.

4.4 Network Inference optimization

After optimizing the feature computation on the CPU, the major performance bottleneck shifts to
the network inference portion of the algorithm. In this section, we propose some optimizations to
the implementation of the network inference process.

4.4.1 Slicing on GPU. In the network inference process of the original paper, the input features are
extracted by doing tensor slicing on the feature grid on CPU. Then, batches of input features are

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

51:10 Trovato et al.

0.005 \ \
—— original
0.004 | — naive]
—— rescaled
rescaled+intp

Error

0.003 /
0.002 - .

0.001 =~ .

0.000 | | | | | | |
0 20 40 60 80 100 120 140

Frame

Fig. 6. Quantitative analysis on 3D vortex deforming bumpy sphere between (a) original reconstruction, (b)
naively replacing the original kernel with the tensor product kernel, (c) rescaling the kernel to minimize
differences between kernels, and (d) using the rescaled kernel and interpolating particle density from the grid.

sent to GPU for the network inference, and the predicted signed distance values are sent back to
CPU and written to the signed distance array. The process was repeated until the signed distance
value for all grid nodes were obtained. This repeated transfer between CPU and GPU requires
multiple PCI transaction initialization which slows down network inference process. To fully utilize
the GPU parallelization resources and reduce PCI latency cost, we increase the input feature batch
size from 256 to 1024 and implement a CUDA kernel to parallelize the tensor slicing process on
GPU, so that both tensor slicing and network inference will be executed on GPU. By doing this, we
only need send the kernel feature array to GPU once and retrieve the signed distance field array
after all inference are completed, eliminating the redundant transferring process.

4.4.2 TensorRT. NVIDIA TensorRT [Corporation [n. d.]] is a high-performance SDK designed to
accelerate deep learning inference. It works alongside popular training frameworks like TensorFlow,
PyTorch, and MXNet, focusing on optimizing and executing pre-trained neural networks efficiently
on NVIDIA GPUs. TensorRT accelerates inference through various techniques, including precision
reduction, layer fusion, and kernel auto-tuning. To optimize the network inference process, we
convert the trained network model to the TensorRT engine to accelerate the network inference.
We use reduced FP16 precision instead of FP32 as it is faster and does not affect on the surface
reconstruction quality. Additionally, since the current network structure has multiple convolution
layers followed by ReLU activation layers, the model is further optimized with TensorRT’s layer
fusion feature.

5 Results
5.1 Ablation study

In this section, we compare the reconstruction method on a warped sphere using four feature
computation approaches: (1) original reconstruction, (2) naively replacing the original kernel with
the tensor product kernel, (3) rescaling the kernel to minimize differences between kernels, and (4)
using the rescaled kernel and interpolating the particle density from grid. Version (2) leads to visual
artifacts, as shown in Figure 5. In this case, the edge of the reconstructed surface has become less
smooth compared with the original. Rescaling the kernel removes the artifacts, and changing the

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

Fast reconstruction of implicit surfaces using convolutional neural networks 51:11

Sim Ours | Original | Speedup
Dam break 134 657 4.90x
Double dam break | 113 541 4.79x
Two source 381 1880 4.93x
One source 125 604 4.82x
Sphere drop 113 746 6.6x
Bunny 43 172 4.03x
Ring drop 39 146 3.76x
Average 135 648 5.02x

Fig. 7. Reconstruction times (seconds) for each of the fluid simulation reconstructions.

particle-particle density computation into a particle-grid computation followed by interpolation
does not significantly alter the visual appearance.

Reconstruction error. To quantitatively analyze the accuracy of the four reconstruction settings,
we follow the approach in [Zhao et al. 2024] and perform the Enright test [Enright et al. 2002]. We
seed initial warped sphere with particles and advect these particles using third-order Runge-Kutta.
At each time step we reconstruct the surface from the seeded particles. To track the actual interface,
we also seed surface particles at the beginning and advect them through the velocity field. The
error is computed as E = % 2 H%% where the gradient is obtained via finite differences. For a
fair comparison, we shift surface particles to the isocontour that minimizes error in the initial state.
The results are shown in Figure 6. We observe similar quantitative errors in the four approaches,
suggesting that the changes to the algorithm have not significantly impacted the quantitative
surface reconstruction accuracy of the method.

5.2 Timing results

In this section, we investigate the performance of the proposed algorithm more thoroughly. We
present all timing experiments on a machine with an AMD Ryzen Threadripper PRO 5975WX CPU
with 32 cores and 512GB memory and an NVIDIA GeForce RTX 4090 GPU.

Single-frame timing experiments. In Figure 8, we present the time decomposition for each recon-
struction process on a single frame with 2M particles using our method and the original approach.
The original reconstruction requires 72.3 seconds. Reconstructing our algorithm using only a single
thread reduces this to 5.11 seconds, resulting in a speedup of about 14X. Enabling threading reduces
this further to 2.21 seconds, bringing the speedup to about 33x. Of this 2.21 seconds, about 0.90
seconds is spent reading inputs, writing outputs, and loading the network from disk. If surface
reconstruction were used within a simulation, such as for computing boundary conditions or
surface tension, these costs would be avoided, reducing the time to 1.31 seconds. This is fast enough
to be run every time step of a simulation.

The meager speedup from 5.11 to 2.21 using 32 cores requires some explanation. Of this time, the
0.90 seconds spent on IO is not parallel, and the 1.01 seconds spent doing network inference occurs
on the GPU and not the CPU. Removing these from the timings brings the threading-eligible times
to 3.2 seconds and 0.30 seconds, resulting in a speedup of 10.7x due to the threading.

Batch-mode timing experiments. We repeated all of the surface reconstructions for the large
simulation examples from original paper; side-by-side comparisons are shown in Figure 9 for three
of the sims for visual comparison. Side-by-side comparisons for all of the large simulations are
shown in the accompanying video. The corresponding timing information is shown in Figure 7.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

51:12 Trovato et al.

Process Ours (32 cores) | Ours (1 core) | Original
Total time 2.21 5.11 72.3
Read input from disk 0.11 0.11 0.09
Scanline initialization 0.03 0.21 -
Density computation 0.06 1.19 19.2
Feature computation 0.05 1.08 35.8
Pruning 0.06 0.59 0.58
GPU - model inference 1.01 1.05 16.0
Write to disk 0.68 0.63 0.64
Load model 0.11 0.12 0.10
Others 0.10 0.13 0.13

Fig. 8. Reconstruction times (seconds) for each reconstruction step on a single frame

For these timing comparisons, surfaces for all of the frames are constructed in batch mode, where
multiple surfaces can be constructed in parallel. Batch processing is critical for the original method
to achieve acceptable performance, since it does not otherwise parallelize well. The proposed
method also benefits from it, since GPU and CPU computations can overlap, and IO can overlap
with other computations on the CPU. The results show that for all the simulation examples, our
proposed algorithm achieves an average of 5x speedup when compared with the original method
in batch mode.

6 Conclusion and Limitations

In this paper, we presented a modified version of the network-based surface reconstruction algorithm
of [Zhao et al. 2024], which uses a scanline-based transfer algorithm, an efficient tensor-product
kernel, and a grid-based density computation strategy. This results in a speedup of about 33%
for single surface reconstruction, bringing the cost of high-quality surface reconstruction from
fluid simulation particles low enough to be useful within a fluid simulator. For full-simulation
surface reconstruction, we achieve a 5x speedup over the original method, making the new method
significantly faster than state of the art algorithms for high-quality surface reconstruction from
fluid particles.

The proposed algorithm and its implementation divide the work between CPU and GPU, resulting
in significant overhead transferring information between them. Further performance improvements
may be possible by performing the entire algorithm on the GPU. We occasionally observed mild
flickering in animations due to single-frame surface shape errors. While this effect appears in both
the original and accelerated methods and does not significantly impact visual quality, reducing
such temporal artifacts could be a valuable direction for future work. Although the reconstruction
performance is fast enough for use within an MPM-style or SPH-style simulation framework,
we have not explored the suitability of the reconstructed surface for this purpose. Curvature
computations are particularly sensitive to errors in level sets, and simulations are much less tolerant
of large but infrequent errors than rendering, though this may be mitigated somewhat using error
reduction techniques such as [Larios-Cardenas and Gibou 2022]. We leave this for future work.

Acknowledgments
The simulations in this paper were rendered using SideFX Houdini. This work was supported by

University of California award M23PL6076.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

Fast reconstruction of implicit surfaces using convolutional neural networks 51:13

References

Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J Guibas. 2007. Adaptively sampled particle fluids. In ACM SIGGRAPH
2007 papers. 48—es.

Gizem Akinci, Nadir Akinci, Markus Ihmsen, and Matthias Teschner. 2012. An efficient surface reconstruction pipeline for
particle-based fluids. (2012).

G. Akinci, M. Thmsen, N. Akinci, and M. Teschner. 2012. Parallel Surface Reconstruction for Particle-Based Fluids. 31, 6
(2012), 1797-1809. doi:10.1111/j.1467-8659.2012.02096.x

Haimasree Bhatacharya, Yue Gao, and Adam Bargteil. 2011. A level-set method for skinning animated particle data. In
Proceedings of the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation. 17-24.

James F Blinn. 1982. A generalization of algebraic surface drawing. ACM transactions on graphics (TOG) 1, 3 (1982), 235-256.

Qiaorui Chen, Shuai Zhang, and Yao Zheng. 2021. Parallel realistic visualization of particle-based fluid. Computer Animation
and Virtual Worlds 32, 3-4 (2021), €2019.

NVIDIA Corporation. [n.d.]. TensorRT. https://developernvidia.com/tensorrt Accessed: [Insert Date of Access].

Jose M Dominguez, Alejandro JC Crespo, and Moncho Gomez-Gesteira. 2013. Optimization strategies for CPU and GPU
implementations of a smoothed particle hydrodynamics method. Computer Physics Communications 184, 3 (2013),
617-627.

Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. 2002. A hybrid particle level set method for improved
interface capturing. Journal of Computational physics 183, 1 (2002), 83-116.

Markus Thmsen, Nadir Akinci, Markus Becker, and Matthias Teschner. 2011. A parallel SPH implementation on multi-core
CPUs. In Computer Graphics Forum, Vol. 30. Wiley Online Library, 99-112.

Markus Thmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. 2014. SPH fluids in computer
graphics. (2014).

Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle. 2016. The material point method for
simulating continuum materials. In ACM siggraph 2016 courses. 1-52.

Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruction. ACM Transactions on Graphics (ToG)
32,3 (2013), 1-13.

Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2022. A survey on SPH methods in computer graphics.
In Computer graphics forum, Vol. 41. Wiley Online Library, 737-760.

Egor Larionov, Christopher Batty, and Robert Bridson. 2017. Variational stokes: A unified pressure-viscosity solver for
accurate viscous liquids. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1-11.

Luis Angel Larios-Cardenas and Frederic Gibou. 2022. A hybrid inference system for improved curvature estimation in the
level-set method using machine learning. J. Comput. Phys. 463 (2022), 111291.

William E Lorensen and Harvey E Cline. 1998. Marching cubes: A high resolution 3D surface construction algorithm. In
Seminal graphics: pioneering efforts that shaped the field. 347-353.

Miles Macklin and Matthias Miiller. 2013. Position based fluids. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1-12.

Salvatore Marrone, Andrea Colagrossi, David Le Touzé, and Giorgio Graziani. 2010. Fast free-surface detection and level-set
function definition in SPH solvers. J. Comput. Phys. 229, 10 (2010), 3652-3663.

Matthias Miiller, David Charypar, and Markus Gross. 2003. Particle-based fluid simulation for interactive applications. In
Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. Citeseer, 154-159.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. 2019. Deepsdf: Learning
Continuous Signed Distance Functions for Shape Representation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2019). 165-174.

Filomen Incahuanaco Quispe and Afonso Paiva. 2022. Counting Particles: A Simple and Fast Surface Reconstruction Method
for Particle-Based Fluids. In 2022 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) (2022), Vol. 1.
IEEE, 145-149.

Marcos Sandim, Douglas Cedrim, Luis Gustavo Nonato, Paulo Pagliosa, and Afonso Paiva. 2016. Boundary Detection in
Particle-based Fluids. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 215-224.

SideFX. [n.d.]. Houdini. SideFX. https://www.sidefx.com/products/houdini/ Computer software.

Alexey Stomakhin, Steve Lesser, Joel Wretborn, Sean Flynn, Johnathan Nixon, Nicholas Illingworth, Adrien Rollet, Kevin
Blom, and Douglas Mchale. 2023. Pahi: A Unified Water Pipeline and Toolset. In Proceedings of the Digital Production
Symposium (2023). 1-13.

A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. In ACM
Transactions on Graphics (SSGGRAPH 2013). 102:1-10.

D. Sulsky, Z. Chen, and H. Schreyer. 1994. A particle method for history-dependent materials. Comp Meth in App Mech Eng
118, 1 (1994), 179-196.

Yuanyuan Tao, Ivan Puhachov, Derek Nowrouzezahrai, and Paul Kry. 2024. Neural Implicit Reduced Fluid Simulation. In
SIGGRAPH Asia 2024 Conference Papers. 1-11.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

https://doi.org/10.1111/j.1467-8659.2012.02096.x
https://developer.nvidia.com/tensorrt
https://www.sidefx.com/products/houdini/

51:14 Trovato et al.

Wiladimir] van der Laan, Simon Green, and Miguel Sainz. 2009. Screen space fluid rendering with curvature flow. In
Proceedings of the 2009 symposium on Interactive 3D graphics and games. 91-98.

Brent Warren Williams. 2008. Fluid surface reconstruction from particles. Ph. D. Dissertation. University of British Columbia.

Wei Wu, Hongping Li, Tianyun Su, Haixing Liu, and Zhihan Lv. 2017. GPU-accelerated SPH Fluids Surface Reconstruction
Using Two-Level Spatial Uniform Grids. 33, 11 (2017), 1429-1442. doi:10.1007/s00371-016-1289-x

Wencong Yang and Chengying Gao. 2020. A completely parallel surface reconstruction method for particle-based fluids.
The Visual Computer 36 (2020), 2313-2325.

Jihun Yu and Greg Turk. 2013. Reconstructing Surfaces of Particle-Based Fluids Using Anisotropic Kernels. 32, 1 (2013),
1-12.

Chen Zhao, Tamar Shinar, and Craig Schroeder. 2024. Reconstruction of implicit surfaces from fluid particles using
convolutional neural networks. In Computer Graphics Forum, Vol. 43. Wiley Online Library, e15181.

Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans Graph 24, 3 (2005), 965-972.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

https://doi.org/10.1007/s00371-016-1289-x

Fast reconstruction of implicit surfaces using convolutional neural networks 51:15

Fig. 9. Side-by-side comparison of renders, with our method above and original method below.
Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 4, Article 51. Publication date: August 2025.

	Abstract
	1 Introduction
	2 Related Work
	3 Review of Surface Reconstruction Method
	3.1 Feature construction
	3.2 Network architecture
	3.3 Loss function
	3.4 Network training data
	3.5 Double-fine implicit surface reconstruction

	4 Approach
	4.1 Kernel
	4.2 Particle-to-grid transfers
	4.3 Density computation
	4.4 Network Inference optimization

	5 Results
	5.1 Ablation study
	5.2 Timing results

	6 Conclusion and Limitations
	Acknowledgments
	References

