
Effective time step restrictions for explicit MPM simulation

Contents

1 Simple time step restrictions 1
1.1 Velocity . 1
1.2 Particle displacement . 2
1.3 Deformation gradient . 2

2 Sound speed 3
2.1 Wave speed for an elastic solid in 1D . 3
2.2 2D and 3D . 4
2.3 Transforming to first Piola-Kirchhoff stress . 7
2.4 Isotropy . 8

3 Single particle stability 12
3.1 Fluids and pressures . 12

4 Reflection boundary conditions 15

5 Sources 19

1 Simple time step restrictions

In this section, we derive the time step restrictions computed by the functions Velocity dt, Position dt,
and Deformation Gradient dt (lines 2, 6, and 7 in Algorithm 1, respectively).

1.1 Velocity

The velocity transferred from particle p to grid node i is given by vnip = vnp +Bn
pD−1

p (xni −xnp), where Bp = 0
for non-APIC transfers. Let d = 2, 3 be the dimension, and let o = 2, 3 be the spline order (quadratic or
cubic), so that D−1

p = 6−o
∆x2 I [8]. An upper bound for ‖vnip‖ over i is given by

max
i
‖vnip‖ = max

i
‖vnp + Bn

pD−1
p (xni − xnp)‖

≤ max
p

(
‖vp‖+

6− o
∆x2

‖Bn
p‖F max

i
‖xni − xnp‖

)
≤ max

p

(
‖vp‖+

(6− o)(o+ 1)
√
d

2∆x
‖Bn

p‖F

)

= max
p

(
‖vp‖+

6
√
d

∆x
‖Bp‖F

)

1

Letting s = maxp

(
‖vp‖+ 6

√
d

∆x ‖Bp‖F
)

, the velocity time step restriction is then given by ∆x
∆t ≥ s, or

∆t = νv
∆x

s
, 0 < νv ≤ 1.

We choose νv = 1 for all examples.

1.2 Particle displacement

We limit the time step so that the displacement of each particle is less than a grid cell. For each grid node
i, explicit integration of forces on the grid gives

ṽn+1
i = vni +

∆t

mn
i

fi.

The velocity and position of particle p is then updated as

vn+1
p =

∑
i

wnipṽ
n+1
i

xn+1
p = xnp + ∆tvn+1

p ,

so that its displacement over the time step is given by

xn+1
p − xnp = ∆tvn+1

p = ∆t
∑
i

wnipṽ
n+1
i = ∆t

∑
i

wnip

(
vni +

∆t

mn
i

fi

)
.

Thus, if we scale the time step to be s∆t, where 0 < s ≤ 1, the particle displacement is

xn+1
p − xnp = s∆t

∑
i

wnip

(
vni +

s∆t

mn
i

fi

)
= s∆t

∑
i

wnipv
n
i + s2∆t

∑
i

wnip
∆t

mn
i

fi

= s∆t
∑
i

wnipv
n
i + s2∆t

∑
i

wnip(ṽ
n+1
i − vnp).

We choose s such that ∀p, ‖xn+1
p − xnp‖∞ ≤ νx∆x, where 0 < νx ≤ 1. Note that this limits the actual

displacement of each particle to be less than a grid cell; the velocity-based time step restriction merely
made a prediction to get an initial time step size. Computing s amounts to solving a quadratic equation
for each component. As optimization, we keep a running best s as we go (initially s = 1) and first test to
see whether the previous s satisfies the current constraint. This test saves us most of the square roots that
would otherwise be required.

1.3 Deformation gradient

We impose a time step restriction to limit the change in the deformation gradient over the time step. The
velocity gradient is transferred from the grid to particle p as

∇vp =
∑
i

ṽn+1
i (∇wnip)T ,

and the deformation gradient on the particle is updated as

Fn+1
p = (I + ∆t∇vp)F

n
p .

Scaling the time step to be s∆t, where 0 < s ≤ 1, gives the deformation gradient update

Fn+1
p = (I + s∆t∇vp,a + s2∆t2∇vp,b)F

n
p ,

2

where

∇vp,a =
∑
i

vni (∇wnip)T ,

∇vp,b =
∑
i

(ṽn+1
i − vni)(∇wnip)T .

Here, we choose s so that ‖s∆t∇vp,a + s2∆t2∇vp,b‖max ≤ δ, which again requires solving a quadratic
equation componentwise. As with the position update, testing the previous s avoids most of the square
roots. Note that the role of δ here is to limit the fraction of change in the deformation gradient. We use
δ = 0.2 for our examples.

2 Sound speed

The speed of waves in media play a critical role in many disciplines. The sound speed plays a fundamental
role in compressible flows, especially in the study of explosions and shocks. Indeed, calculating the speed of
sound in compressible flow is a fairly routine exercise. Outside fluid dynamics, we are only aware of results
for isotropic linear elasticity at the rest configuration [3, 6]. Although limited in scope, these solutions
provide a useful estimate for the speed of pressure waves (P-waves) and shear waves (S-waves) and are used
for understanding earthquakes. Curiously, we are unaware of any more general treatment of the topic. Very
similar treatments exist for Riemann solvers [2], where the wave speeds along fixed directions are required.

Only the fastest wave speed is needed for properly computing a CFL condition for explicit integrators.
Thus, we are not interested in computing all of the wave speeds for a given place in a material (though we
show at least in principle how to do so).

In this section, we will adapt ideas from the study of compressible flows to study the wave speeds for
fully nonlinear hyperelastic constitutive models in configurations far from the rest state. This leads to an
eigenvalue-like problem, which we do not know how to solve practically. We then show that, for isotropic
(but still nonlinear) constitutive models, we can compute many of the solutions very efficiently. We also
describe briefly the solutions to the mathematical problem. In practice, the fastest wave speed is virtually
always one of the solutions we are able to compute efficiently. The resulting method provides a very efficient
CFL estimate for SVD-based isotropic hyperelastic constitutive models. We show that our solution agrees
with the known theoretical results at the rest configuration.

2.1 Wave speed for an elastic solid in 1D

For simplicity, we first solve the problem in 1D. We do this mostly for expositional reasons, as the notation
is much simpler in 1D and the solution generally easier to follow. The 1D problem also looks more similar
to the compressible flow case.

We begin be writing the equations of motion in Eulerian form. We have the usual equations for conser-
vation of mass and momentum (but with general stress σ instead of pressure). We also have an Eulerian
form of the MPM update rule for the deformation gradient F .

ρt + (ρu)x = 0

(ρu)t + (ρu2 − σ)x = 0

Ft + uFx − uxF = 0

We note that this formulation is quite different from the formulation followed in [2], which uses ρF instead
of F as a primary variable, uses conservation of energy, and omits conservation of mass. Writing this in

3

terms of primary variables ρ, φ = ρu, and F gives

ρt + φx = 0

φt + (ρ−1φ2 − σ(F))x = 0

Ft + (ρ−1φ)Fx − (ρ−1φ)xF = 0

Expanding the derivatives to be on primary variables gives

ρt + φx = 0

φt − ρ−2φ2ρx + 2ρ−1φφx − σF (F)Fx = 0

Ft + ρ−1φFx + ρ−2φρxF − ρ−1φxF = 0

where σF (F) is the derivative of stress with respect to the deformation gradient. In matrix form this is

Ut +GUx = 0,

where

U =

ρφ
F

 , G =

 0 1 0
−ρ−2φ2 2ρ−1φ −σF (F)
ρ−2φF −ρ−1F ρ−1φ


The scalar advection equation wt + cwx = 0 describes a quantity w that moves with velocity c. Similarly, if
the matrix G is diagonalizable, the linearized system can be decoupled into three scalar advection equations
as follows. Let G be diagonalizable, so that G = PΛP−1 for some diagonal matrix Λ. Substituting this
factorization into the system above and multiplying by P−1 on the left, we get

P−1Ut + ΛP−1Ux = 0.

By linearizing about the current state, G and its factorization are treated as constant, and the system can
be written as

(P−1U)t + Λ(P−1U)x = 0.

Since Λ is diagonal, the system has decoupled into three scalar equations for the three characteristic variables
P−1U . Each characteristic variable moves with a velocity equal to the corresponding diagonal entry of Λ.
Curiously, for the matrix G given above, G = PΛP−1 with factors P and Λ that take the very simple form

P =

1 1 1
u u+ c u− c
0 −Fρ −Fρ

 , Λ =

u u+ c
u− c

 , c =

√
σFF

ρ
.

Thus, we have found our sound speed c. In general, we are after the wave speeds and so would use |u| + c
to compute our CFL.

2.2 2D and 3D

With a general idea of how the derivation will proceed and what we are looking for, it is time to turn our
attention to 2D and 3D. Let d denote the number of spatial dimensions. We adopt index tensor notation with
summation convention and comma notation for partial derivatives, with a special adaptation for matrices.
We use the notation ui,r to denote ∂ui

∂xr
and σir,(km) to denote ∂σir

∂Fkm
. The parentheses distinguish the notation

for the Hessian from the partial derivative with respect to the matrix F . The equations of motion are:

ρt + (ρur),r = 0

(ρui)t + (ρuiur − σir),r = 0

(Ft)ij + Fij,rur − ui,rFrj = 0

4

Writing this in terms of the primary variables ρ, φi = ρui, and Fij gives

ρt + φr,r = 0

(φi)t + (ρ−1φiφr − σir),r = 0

(Fij)t + (ρ−1φr)Fij,r − (ρ−1φi),rFrj = 0

Expanding the derivatives to be on primary variables gives

ρt + φr,r = 0

(φi)t − ρ−2φiφrρ,r + ρ−1φi,rφr + ρ−1φiφr,r − σir,(km)Fkm,r = 0

(Fij)t + ρ−1φrFij,r − ρ−1φi,rFrj + ρ−2φiFrjρ,r = 0,

where σir,r = σir,(km)Fkm,r was used to obtain the second equation. Writing the equations in “matrix form”,
we get  ρt

(φi)t
(Fij)t

+

 0 δkr 0
−ρ−2φiφr ρ−1δikφr + ρ−1φiδkr −σir,(km)

ρ−2φiFrj −ρ−1δikFrj ρ−1φrδikδjm

 ρ,r
φk,r
Fkm,r

 = 0. (1)

Denoting the matrix in Eq. (1) as Gr, we next consider Gr along a direction nr, defining N = Grnr. Along
this direction, the matrix becomes

N =

 0 δkrnr 0
−ρ−2φiφrnr ρ−1δikφrnr + ρ−1φiδkrnr −σir,(km)nr
ρ−2φiFrjnr −ρ−1δikFrjnr ρ−1φrδikδjmnr

 .

Here we have used a bit of notation abuse, treating both ij and km as single indices taking on the values
1, . . . , d2, which allows us to write N as a (d2 + d+ 1)-dimensional system. Substituting φ = ρu, we get

N =

 0 nk 0
−uiurnr δikurnr + uink −σir,(km)nr
ρ−1uiFrjnr −ρ−1δikFrjnr urδikδjmnr

 .

We make a general (but educated) guess at the form of an eigenvector based on the form of eigenvectors in
the 1D case to get 0 nk 0

−uiurnr δikurnr + uink −σir,(km)nr
ρ−1uiFrjnr −ρ−1δikFrjnr urδikδjmnr

 1
uk + vk
Mkm

− (nrur + c)

 1
ui + vi
Mij

 = 0. (2)

Since c, vi, and Mij are arbitrary, this is a general form for the eigenvalue, except for the assumption that
the first component is nonzero, which we will consider later. This gives us three equations. Simplifying the
first equation provides the definition for c,

c = nrvr. (3)

The second and third equations relate Mkm and vi. Simplifying the second equation, we get

0 = −uiurnr + δikurnr(uk + vk) + uink(uk + vk)− σir,(km)nrMkm − nrur(ui + vi)− c(ui + vi)

= uinrvr − σir,(km)nrMkm − c(ui + vi)

= −σir,(km)nrMkm − cvi,

where the last equality was obtained using Eq. (3). The second equation therefore gives

cvi = −σir,(km)nrMkm. (4)

5

Simplifying the third equation gives

0 = ρ−1uiFrjnr − ρ−1δikFrjnr(uk + vk) + urδikδjmnrMkm − nrurMij − cMij

= −ρ−1Frjnrvi + urnrMij − nrurMij − cMij ,

so that

cMij = −ρ−1Frjnrvi. (5)

Combining the results of Equations (4) and (5) gives

c2vi = −σir,(km)nrcMkm

= ρ−1σir,(km)nrFsmnsvk

0 = (σir,(km)nrFsmns − ρc2δik)vk.

This gives us another eigenvalue problem,

(Aik − ρc2δik)vk = 0, (6)

where

Aik = σir,(km)nrFsmns.

There are two cases to consider in solving Eq. (6). In the first case, vk = 0, and Eqs. (3) and (4) imply
c = 0 and nrσir,(km)Mkm = 0, respectively. The latter holds for any d2-dimensional vector Mkm which is in
the nullspace of the (d× d2)-dimensional matrix nrσir,(km), where d is number of spatial dimensions. Since
c = 0, the associated local characteristic variables move at the bulk material velocity.

The second case is that vk is an eigenvector of Aij . In this case, let κ̂ = ρc2 be the associated eigenvalue,

so that c = ±
√

κ̂
ρ . Since vk is only known up to scale at this point, let vk = αwk with wk a unit vector.

Substituting this expression for vk into Eq. (3), we obtain

c = αnrwr,

which gives

α =
c

nrwr
(7)

Note that this assumes that nrwr 6= 0. Finally, Mij can determined from Eqs. (5) and (7) to be

Mij = − 1

ρnsws
Frjnrwi. (8)

Thus we see that every distinct eigenvector direction wk for the system (6) such that nkwk 6= 0 leads to a
unique eigenvector for the system (2).

The case nrwr = 0 must now be considered. By Eq. (3), this implies c = 0. Plugging this into Eq. (5),
and using the fact that vi 6= 0, we get

Frjnr = 0.

Thus, we see that in the case nrwr = 0, our deformation gradient must be singular. As this is nonphysical,
we will not pursue this case further.

We now consider the case where the first component of the eigenvector of (2) is zero, giving the eigenvalue
problem  0 nk 0

−uiurnr δikurnr + uink −σir,(km)nr
ρ−1uiFrjnr −ρ−1δikFrjnr urδikδjmnr

 0
uk + vk
Mkm

− (nrur + c)

 0
ui + vi
Mij

 = 0.

6

These equations simplify into

nk(uk + vk) = 0,

σir,(km)nrMkm = −c(ui + vi),

cMij = −ρ−1Frjnr(ui + vi).

Comparing these equations with the ones before, we see that this leads to the eigenvalue problem

(Aik − ρc2δik)(uk + vk) = 0,

which will result in the same values of c as in Eq. (6).

2.3 Transforming to first Piola-Kirchhoff stress

The key to obtaining the characteristic speeds then reduces to one of finding the eigenvalues of Aik in Eq. (6)
for any choice of unit direction ni . To derive a practical algorithm for bounding these eigenvalues, we first
convert to the first Piola-Kirchhoff stress tensor P . The Cauchy stress is related to the first Piola-Kirchhoff
stress as

σir =
1

J
PinFrn.

Differentiating the Cauchy stress, we get

σir,(km) = − 1

J2
PinFrnJ,(km) +

1

J
Pin,(km)Frn +

1

J
PinFrn,(km)

= − 1

J2
PinFrnJ(F−1)mk +

1

J
Pin,(km)Frn +

1

J
Pinδrkδnm

= − 1

J
PinFrn(F−1)mk +

1

J
Pin,(km)Frn +

1

J
Pimδrk.

Multiplying by the deformation gradient,

σir,(km)Fsm = − 1

J
PinFrn(F−1)mkFsm +

1

J
Pin,(km)FrnFsm +

1

J
PimδrkFsm

= − 1

J
PinFrnδks +

1

J
Pin,(km)FrnFsm +

1

J
PimδrkFsm.

Using these results, Aik can be expressed in terms of P as

Aik = σir,(km)Fsmnrns = − 1

J
PinFrnδksnrns +

1

J
Pin,(km)FrnFsmnrns +

1

J
PimδrkFsmnrns

= − 1

J
PinFrnnrnk +

1

J
Pin,(km)FrnFsmnrns +

1

J
PimFsmnkns

= − 1

J
PimFsmnkns +

1

J
Pin,(km)FrnFsmnrns +

1

J
PimFsmnkns

=
1

J
Pin,(km)FrnFsmnrns.

Expressed in this form, it is evident that Aik is symmetric, since Pin,(km) is the Hessian of the energy density.
We are thus assured that the eigenvalues of Aik will be real numbers.

Note that the problem that needs to be solved is not actually a simple d × d eigenvalue problem for A,
since nr also needs to be determined. Instead, the quantity that we need is

κ = max
u,n

‖u‖=‖n‖=1

Aikuiuk = max
u,n

‖u‖=‖n‖=1

1

J
Pin,(km)FrnFsmnrnsuiuk. (9)

7

In general, we do not know how to solve problems of this type efficiently. The associated d2 × d2 eigenvalue
problem for 1

JPin,(km)FrnFsm gives only an upper bound, since the domain of our optimization problem is
more restrictive. For example, in the 3D isotropic case at the rest configuration, the bound obtained by
solving the associated 9 × 9 eigenvalue problem is 6µ + 9λ, which is more than three times larger than the
actual maximum κ = 2µ+ λ obtained from the solution of Eq. (9).

2.4 Isotropy

To make further progress, we assume isotropy. In practice, this covers the significant majority of elasticity
models in use in graphics and MPM. In the isotropic case, the derivative of P has a sparse representation in
diagonal space [7, 12, 11], which we will exploit to find solutions of Eq. (9).

We first transform into a diagonalized representation using the singular value decomposition of the
deformation gradient,

Fij = UikΣknVjn.

Let σi = Σii be the singular values, and ψ̂(σi) be the energy density as a function of the singular values.
The first Piola-Kirchhoff stress tensor diagonalizes in this space as Pij = UikP̂knVjn, where P̂kn is a diagonal

matrix with Pii = ψ̂,i = ∂ψ̂
∂σi

. Differentiating P , we get

Pin,(km) = UirVnsUktVmuMrstu,

where Mrstu is a sparse tensor whose entries are described below [11]. Substituting this expression into our
objective in Eq. (9), we have

Aikuiuk =
1

J
Pin,(km)FrnFsmnrnsuiuk

=
1

J
(UirVnsUktVmuMrstu)(UjoΣopVnp)(UlvΣvwVmw)njnluiuk

=
1

J
UirUjoUktUlvMrstuΣosΣvuuinjuknl

=
1

J
MrstuΣosΣvuprqoptqv,

where pr = Uirui and qo = Ujonj are also unit vectors. Although this is essentially the same form we started
with, we have replaced dense matrices and tensors with diagonal matrices and sparse tensors. In particular,
1
JMrstuΣosΣvu has the same sparsity pattern as Mrstu, though more of its elements are distinct.

Sparsity. The sparsity pattern of Mijkl can be summarized as follows [11]. Summation is not implied, and
entries not explicitly given are zero.

Miikk = ψ̂,ik, Mikik =
aik + bik

2
, i 6= k, Mikki =

aik − bik
2

, i 6= k,

where

aik =
ψ̂,i − ψ̂,k
σi − σk

, bik =
ψ̂,i + ψ̂,k
σi + σk

.

Observe that Miikk = Mkkii, Mikik = Mkiki, Mikki = Mkiik, and generally Mijkl = Mklij . With these
properties, solving the 9× 9 eigenvalue problem reduces to solving three 2× 2 eigenvalue problems and one
3 × 3 eigenvalue problem, which is potentially tractable. However, as noted above, the bound obtained is
not very tight, so we do not pursue this strategy.

8

System of equations. We note that, in this sparse form, some solutions are trivial. Using Lagrange
multipliers, our constrained optimization problem in (9) becomes finding critical points of

L =
1

J
MrstuΣosΣvuprqoptqv − λ(prpr − 1)− µ(qrqr − 1)

over p, q, λ, and µ. Differentiating L with respect to these variables and setting the result to 0, we get

0 =
∂L

∂pi
=

1

J
MistuΣosΣvuqoptqv +

1

J
MrsiuΣosΣvuprqoqv − 2λpi,

0 =
∂L

∂qi
=

1

J
MrstuΣisΣvuprptqv +

1

J
MrstuΣosΣiuprqopt − 2µqi,

along with the unit norm constraints on p and q, so that the critical points satisfy

λpi =
1

J
MistuΣosΣvuqoptqv, (10)

µqi =
1

J
MrstuΣisΣvuprptqv, (11)

prpr = 1, (12)

qrqr = 1. (13)

Multiplying Eq. (10) by pi and using Eq. (12), and combining Eqs. (11) and (13) analogously, we find

λ = µ = κ̂ =
1

J
MrstuΣosΣvuprqoptqv.

We can summarize our system of equations as

Cro =
1

J
MrstuΣosΣvuptqv, λpi = Cioqo, µqi = Cripr, λ = µ = κ̂ = Croprqo, prpr = 1, qrqr = 1.

(14)

Trivial solutions. The system (14) has trivial solutions when pr and qo are axis vectors, which we denote
as pr = δra and qo = δob for any choice a, b. If a = b, then

Cro =
1

J
MrstuΣosΣvuptqv =

1

J
MrstuΣosΣvuδtaδva =

1

J
MrsaaΣosΣaa (no summation on a),

where we have used u = v (Σvu is diagonal). Due to the sparsity pattern of M and the diagonal structure
of Σos, we can see that Cro = 0 for r 6= o. Thus, Cro is diagonal with entries

Ccc =
1

J
MccaaΣccΣaa (no summation on a, c).

Plugging these into our equations (14) shows that they are all satisfied, and κ̂ = 1
JMaaaaΣaaΣaa is our

corresponding candidate. Otherwise, if a 6= b, then

Cro =
1

J
MrstuΣosΣvuptqv =

1

J
MrstuΣosΣvuδtaδvb =

1

J
MrsauΣosΣbu =

1

J
MrsabΣosΣbb (no summation on a or b).

In this case, only Cab and Cba are nonzero, and are given by

Cab =
1

J
MababΣbbΣbb, Cba =

1

J
MbaabΣaaΣbb

The equations (14) are again satisfied, and κ̂ = Cab = 1
JMababΣbbΣbb.

9

Sound speed CFL condition. With these trivial solutions, our sound-speed-based CFL computation for
MPM can be summarized as

κ =
1

J
max
a,b

MababΣbbΣbb, c =

√
κ

ρ
, ∆t =

∆x

c
. (15)

The smallest time step computed for any particle (scaled by a factor less than one, typically 0.9) is one of
the time step restrictions we use to limit our time step sizes. Observe that Jρ = ρ0 is the initial particle
density and does not change with time. Note also that we use the sound speed c directly, rather than the
eigenvalues of N given by nrur + c, as we do not need to account for the advective component nrur, which
is treated in a Lagrangian manner in MPM.

In practice, we’ve found these trivial solutions to be sufficient in computing our sound speed CFL. Our
investigation of the full problem indicates that maximum eigenvalues occur at the trivial solutions in the
vast majority of cases, as we discuss further below.

Mathematical form of full solution in 2D. The diagonal space problem in 2D is analytically solvable
as the solution of a quadratic polynomial. For completeness, the solution can be computed using

a = (M0110 +M1100)σ0σ1, b = M0000σ
2
0 −M0101σ

2
1 , d = (M0000 −M0101)σ2

0 , e = (M0101 −M1111)σ2
1 ,

f = de+ a2, g = be+ a2, h = bd− a2, k = f − e(b− e), m = f + d(b− d),

−fhx4 + 2(fh− fg − gh)x2 + km = 0, y =
gx2 − k
a(d+ e)x

, c = M0000σ
2
0 +

2ayx− bx2 − dy2 − b− e
(x2 + 1)(y2 + 1)

.

Here, x2 is obtained by solving a quadratic equation. We may obtain 0, 2, or 4 solutions x. Each solution
leads to a wave speed c. Since x and −x produce the same wave speed c, there are only two candidates to
check. Even though c can be computed from x2 alone (x is not actually required), the wave speed is not
meaningful unless x2 ≥ 0. We used Gröbner bases to solve the optimization problem analytically and to
show that all of the solutions are obtained either as trivial solutions or by solving the quadratic above.

We implemented this analytic solution along with the trivial solutions during our testing and compared
them with approximate numerical solutions determined by brute force to ensure that we were finding all
possible solutions. We observed that for random inputs, the quadratic solution occurred occasionally. How-
ever, for inputs generated from physical simulation, the quadratic solution occurred only three times out
of approximately a million sound speed computations. Given the added expense of the quadratic solution
and the extreme improbability of encountering it in practice, we removed the quadratic solution from our
code and use only the trivial solutions, which are simple to compute and provide the correct solution nearly
always.

Mathematical form of full solution in 3D. The situation in 3D is significantly more complicated. The
3D problem can be restricted to 2D by fixing a component to zero. (That is, ua = na = 0 for some a.) This
results in the trivial solutions and the quadratic solutions.

Extensive Gröbner basis analysis reveals that, in addition to these 2D solutions, there seems to exist a
fully general type of solution possible in 3D. This solution requires the solution to a degree-18 polynomial.
The mathematical complexity of the system of polynomial equations in 3D has defied all of our attempts at a
full analytic solution, and we have not succeeded in calculating the coefficients of the degree-18 polynomial.
Rather, we are forced to infer its existence by substituting in integers for the inputs and solving the system
of polynomials over finite fields.

In testing with random inputs, we never observed a maximum wave speed that could not be computed
from a trivial solutions or a quadratic solution. As such, the fully general solutions are of little more than
academic interest.

10

Agreement with isotropic linear elasticity. We show that our derivation agrees with existing results
for isotropic linear elasticity. In this case, with Lamé parameters µ, λ, and strain ε, the stress is given by

σ = 2µε+ λtr(ε)I,

= µ(F + FT − 2I) + λ(tr(F)− d)I,

so that

σij = µ(Fij + Fji − 2δij) + λ(Fkk − d)δij ,

σij,(km) = µδikδjm + µδjkδim + λδijδkm.

Substituting this into the matrix Aik, we get

Aik = σij,(km)njFsmns

= µδiknjFsjns + µnkFsins + λniFskns,

or in matrix and vector notation,

A = µ(nTFn)I + µFTnnT + λnnTF.

At the rest configuration, F = I, and A = µI + µnnT + λnnT has eigenvectors n and w, for any vector w
orthogonal to n, so that

An = (2µ+ λ)n,

Aw = µw.

This corresponds to a P-wave speed of
√

2µ+λ
ρ and an S-wave speed of

√
µ
ρ , which agrees with published

values [1]. These results can also obtained from the diagonal space results in Eq. (15) by using the corotated
constitutive model at the rest configuration, where Σaa = 1, J = 1, Maaaa = 2µ+ λ, and Mabab = µ.

Agreement with compressible flow. We next show that our derivation agrees with existing results for
compressible flow. The stress tensor for an inviscid fluid is given by

σ = −pI,

where p = p(J) is pressure. The derivative of stress is

σij,(rs) = −δijpJ(J)J(F−1)sr.

Substituting σij,(rs) into A gives

Air = σij,(rs)njFksnk = −δijpJ(J)J(F−1)srnjFksnk = −δijpJ(J)Jδkrnknj = −pJ(J)Jninr,

or in matrix form A = −pJ(J)JnnT . The maximum eigenvalue is −pJ(J)J . Therefore, the sound speed is

c =
√
−pJ (J)J

ρ . This form of the sound speed may seem unfamiliar. This is because p is normally expressed

as a function of density rather than deformation, so that its derivative with respect to J is

∂

∂J
p(ρ) =

∂

∂J
p(ρ) =

∂

∂J
p
(ρ0

J

)
=
(
− ρ0

J2

)
pρ

(ρ0

J

)
=
(
− ρ
J

)
pρ(ρ).

Substituting this expression into the sound speed c, we get

c =

√
−pJ(J)J

ρ
=

√
∂p

∂ρ
,

which is a familiar form for the sound speed in compressible flow.

11

3 Single particle stability

In an MPM simulation, neighboring particles have a stabilizing influence on particle evolution, and thus the
ejection and isolation of a particle (for example, due to splashing water) may lead to simulation instability.
While this observation is not new [8, 9], here we identify for the first time an instability caused by a feedback
loop between F (or Jp for fluids) and forces. We show that this instability imposes restrictions on both the
choice of basis function and the time step.

3.1 Fluids and pressures

Consider a fluid simulation, where the force is a pressure defined in terms of the deformation gradient through
an energy density ψ(J). Consider a particle p that becomes isolated from interactions with other particles
on the grid. We assume PIC transfers for simplicity. During one time step of evolution, transferring data
from the particle to the grid gives

mn
i = wnipmp,

mn
i vni = wnipmpv

n
p ,

vni = vnp ,

where the last equation results from the isolation of the particle. Explicitly integrating forces on the grid,
we get

fi = −V 0
p J

n
p ψ
′(J)∇wnip,

ṽn+1
i = vni +

∆t

mn
i

fi,

and the particle update then gives

∇ · vp =
∑
i

ṽn+1
i · ∇wnip,

Jn+1
p = (1 + ∆t∇ · vp)Jnp .

Putting these together,

Jn+1
p =

(
1 + ∆t

∑
i

(
vnp −

∆tV 0
p J

n
p ψ
′

wnipmp
∇wnip

)
· ∇wnip

)
Jnp

=

(
1−

∆t2V 0
p J

n
p ψ
′

mp

∑
i

∇wnip · ∇wnip
wnip

)
Jnp ,

where we have used
∑
i∇wnip = 0. This contains (the trace of) the matrix

H =
∑
i

∇wnip(∇wnip)T

wnip
.

This matrix contains two types of entries, which occur on and off the diagonal. We assume wnip = N(xi−xp)
is a tensor product basis, so that in 3D N(xijk) = N(xi)N(yj)N(zk). Note that off-diagonal entries of H

12

are zero. For example,

H12 =
∑
ijk

(N ′(xi)N(yj)N(zk))(N(xi)N
′(yj)N(zk))

N(xi)N(yj)N(zk)

=
∑
ijk

N ′(xi)N
′(yj)N(zk)

=

(∑
i

N ′(xi)

)∑
j

N ′(yj)

(∑
k

N(zk)

)
= (0)(0)(1).

The first diagonal entry is

H11 =
∑
ijk

(N ′(xi)N(yj)N(zk))(N ′(xi)N(yj)N(zk))

N(xi)N(yj)N(zk)

=
∑
ijk

N ′(xi)
2N(yj)N(zk)

N(xi)

=

(∑
i

N ′(xi)
2

N(xi)

)∑
j

N(yj)

(∑
k

N(zk)

)

=
∑
i

N ′(xi)
2

N(xi)
.

The other diagonal entries are similar. Observe that if H11 is unbounded, then tr(H) will also be unbounded,
which means Jn+1

p will be unbounded. The resulting simulation will be unstable and may explode sponta-
neously if any particle becomes isolated. This boundedness is a property of the basis functions employed.
This quantity is not bounded for linear splines. The interpolation must decay to zero quadratically or faster
for stability. Note that the function N(x) depends on the grid size. Let h be the grid size, and define N̂(x̂)
by N(x) = N̂(x/h) = N̂(x̂), where N̂(x̂) is not a function of grid size. Then

H11 =
∑
i

N ′(xi)
2

N(xi)
=

1

h2

∑
i

N̂ ′(x̂i)
2

N̂(x̂i)

Note that H11 should be a multiple of h−2, which will generally depend on the location of a particle within
a cell. We need it to be bounded. For quadratic splines,

4

h2
≤ H11 ≤

6

h2
.

For cubic splines,

3

h2
≤ H11 <

3.14

h2
.

Thus, we can bound the matrix entry by H11 ≤ K
h2 with K = 6 for quadratic splines and K = 3.14 for cubic

splines. Note that the same bound applies to H22 and H33. For our immediate purposes, tr(H) ≤ Kd
h2 where

d = 2, 3 is the dimension. The ratio of change is bounded by

Jn+1
p =

(
1−

∆t2V 0
p KdJ

n
p ψ
′

h2mp

)
Jnp = (1− rJnp ψ′)Jnp ,

13

where

r =
∆t2V 0

p Kd

h2mp
. (16)

We can make r smaller by choosing a smaller time step; finding a suitable r leads to a time step restriction.
We assume the pressure force is restorative, so that Jnp − 1 and ψ′(Jnp) have the same sign. In this way, the
value of Jp increases if it is less than 1 and decreases if it is larger than 1.

Simple bounds. For sufficiently small r, the solution should simply decay to J → 1. We will choose r so
that J does not overshoot 1. Reaching 1 exactly requires

(1− rJnp ψ′)Jnp = 1.

Solving for r gives

r =
Jnp − 1

(Jnp)2ψ′
. (17)

On the other hand, r = 0 leaves Jnp unchanged. Values in between leave Jnp in between these extremes,
which is the desired behavior (decay without overshoot). Solving for ∆t in Eq. (16), we get

∆t = h

√
mpr

V 0
p Kd

= ∆x

√
ρ0
pr

Kd
,

where h = ∆x. Substituting the value of r from Eq. (17) gives

∆t =
∆x

Jnp

√
ρ0
p(J

n
p − 1)

Kψ′d
,

where we have used ρ0
p = mp/V

0
p , and V 0

p is the initial volume of particle p. Note that ∆t remains well-defined
near the rest configuration since by L’Hôpital’s rule,

lim
Jn
p→1

∆t = lim
Jn
p→1

∆x

Jnp

√
ρ0
p(J

n
p − 1)

Kψ′d

= ∆x

√
ρ0
p

Kψ′′d
.

Less restrictive bounds. In practice, this value of ∆t can be improved somewhat. To ease up the
restriction on ∆t, we must allow ourselves to overshoot J = 1, alternating between J < 1 and J > 1. Doing
this safely requires us to have an idea of how our forces will behave at the other side of our overshoot. For
our purposes, we assume that the force’s growth is bounded by

0 ≥ ψ′(J) ≥ λ(J − 1)J−2, 0 < J ≤ 1, (18)

0 ≤ ψ′(J) ≤ λ(J − 1), J ≥ 1, (19)

for some λ > 0. This growth is fast enough to accommodate constitutive models ψ(J) that contain common
terms like (J − 1)2, lnJ , ln2 J , or J−1. The value λ must be computed given knowledge of the constitutive
model. The analysis that follows can be repeated with different bounds or an actual constitutive model if
desired.

14

We select r in order to ensure that

J2 = (1− rJψ′)J (20)

is bounded in a way that prevents growth over time. We can do this be ensuring that | ln(J2)| ≤ | ln(J)|,
which is equivalent to requiring J2 to be between J and J−1. Across many time steps, we will have | ln(J)| ≥
| ln(J2)| ≥ | ln(J3)| ≥ | ln(J4)| ≥ · · · ≥ 0 = | ln(1)|, which prevents divergence.

We select r in two separate cases. First, we consider the case J ≤ 1, where we want to ensure J ≤
J2 ≤ J−1. From (18) and (20) we have the bounds J2 ≥ J and J2 = (1− rJψ′)J ≤ (1− rJλ(J − 1)J−2)J .
Requiring

r ≤ 2

λ(2− J)2
, 0 < J ≤ 1,

ensures (1− rJλ(J − 1)J−2)J ≤ J−1 since

J−1 − (1− rJλ(J − 1)J−2)J ≥ J−1 −
(

1− 2

λ(2− J)2
Jλ(J − 1)J−2

)
J =

(5− (1− J)2)(1− J)2

J(2− J)2
≥ 0

when 0 < J ≤ 1.
For the case J ≥ 1, we want J−1 ≤ J2 ≤ J . From (19) and (20) we have the bounds J2 ≤ J and

J2 = (1− rJψ′)J ≥ (1− rJλ(J − 1))J . The choice

r ≤ J + 1

λJ3
, J ≥ 1

ensures (1− rJλ(J − 1))J ≥ J−1 since

(1− rJλ(J − 1))J − J−1 ≥
(

1− J + 1

λJ3
Jλ(J − 1)

)
J − J−1 = 0.

We can summarize this eased time step restriction as

∆t =
∆x

2− J

√
2ρ0
p

Kλd
, 0 < J ≤ 1,

∆t =
∆x

J

√
ρ0
p(J + 1)

JKλd
, J ≥ 1.

Near J = 1, this improves the time step size by a factor of
√

2 allowing us to take time steps that are 40%
larger; we use this bound in all of our fluid tests. Performing the analysis directly on individual constitutive
models can produce better bounds. Since J ≈ 1 nearly all of the time for fluids, nearly all of the performance
benefits are obtained by getting favorable time step bounds in the limit J → 1.

4 Reflection boundary conditions

We enforce boundary conditions at domain walls through reflection [5]. The motivation behind these bound-
ary conditions is what one sees when looking at a mirror. When one touches a mirror, the mirror exerts a
force back on one’s hand that is equal and opposite. However, looking in the mirror it appears as though
there is a second hand that mirrors the movements of the real hand and pushes back on it with equal and
opposite force. The observation is that the two physical situations behave alike. The force a hand experiences
from the mirror is the same as the force it experiences from a reflected hand. Because of the hybrid nature
of MPM, the interaction between two hands is automatic. This gives us a straightforward and efficient way
to apply boundary conditions at domain walls. We extend this idea to handle both separation and friction.

15

Reflection notation. We will need to be able to denote reflections of various quantities. We denote
reflections of positions, velocities, grid indices, and particles indices as r̂(x), r(v), r(i), and r(p), respectively.
We use a hat for the function that reflects positions to distinguish it from the very different function that
reflects velocities. All reflections are involutions (they are their own inverse). Thus, for example, r(r(p)) = p
and r(r(vnp)) = vnp . We use p for particle indices; here r(p) is the index of a (fictitious) new particle that is
conceptually constructed as a reflected copy of the original particle p. The position of the reflected particle
is just the reflected position xnr(p) = r̂(xp) = Rxp + 2s, where R is a diagonal matrix with Raa = ±1, with
-1 in the reflection direction and 1 otherwise, and sa is nonzero only in the reflection direction. Note that
Rs = −s. Note that s is on the plane of reflection, since r̂(s) = s. Because we are always reflecting about
grid domain boundaries, reflecting the locations of grid nodes (or grid cells, depending on how MPM was
implemented) always produces the location of another grid node (or cell). Thus, we have xnr(i) = r̂(xni).

Reflected particles have the same mass as the original (mr(p) = mp). Reflection preserves weights, since

wnr(i)r(p) = N(xnr(i) − xnr(p)) = N(R(xni − xp)) = N(xni − xnp) = wnip,

which follows from reflection symmetry of the interpolation kernel N(x). Similarly, wnr(i)p = wnir(p).

Boundary conditions. We have a few useful choices for the way in which velocities are reflected, which
we denote vnr(p) = r(vnp) = Avnp + 2b. The involution property implies Ab = −b. The different options
correspond to different types of boundary conditions. The choice A = I,b = 0 behaves as a free surface
boundary condition (in the computational fluid dynamics sense). The choice A = −I enforces the no-slip
boundary condition v = b. The other meaningful choice is A = R, which enforces a slip boundary condition.
The normal velocity is enforced (n · v = n · b), but tangential velocity is unconstrained.

Transfers with reflection. In the absence of boundary conditions, the MPM transfers of mass and
momentum from particles to grid are (assuming PIC transfers for simplicity)

mn
i =

∑
p

wnipmp, mn
i vni =

∑
p

wnipmpv
n
p .

Next, lets consider a modified system where we have both our regular particles p as well as a reflected copy
r(p). The grid mass for our modified system is

m̂n
i =

∑
p

wnipmp +
∑
p

wnir(p)mr(p) =
∑
p

wnipmp +
∑
p

wnr(i)pmp = mn
i +mn

r(i).

That is, we simply add in the mass from the reflected grid node. Note that m̂n
i = m̂n

r(i); the modified grid
mass is symmetric with respect to the reflection that we used to generate it. The momentum for the modified
scheme is

m̂n
i v̂ni =

∑
p

wnipmpv
n
p +

∑
p

wnir(p)mr(p)v
n
r(p)

= mn
i vni +

∑
p

wnir(p)mr(p)(Avnp + 2b)

= mn
i vni + A

∑
p

wnr(i)pmpv
n
p + 2b

∑
p

wnr(i)pmp

= mn
i vni + Amn

r(i)v
n
r(i) + 2bmn

r(i)

= mn
i vni +mn

r(i)r(v
n
r(i)).

Here, we simply add in the momentum from the reflected grid node, but with reflection. The modified mass
m̂n
i and momentum m̂n

i v̂ni can be computed from mn
i and mn

i vni as a simple postprocess. These corrections

16

only need to be applied near the boundary, since mn
r(i) will be nonzero only in a narrow ghost region around

the interface. We never construct actual reflected particles. Noting

m̂n
i v̂ni −Am̂n

r(i)v̂
n
r(i) = (mn

i vni + Amn
r(i)v

n
r(i) + 2bmn

r(i))−A(mn
r(i)v

n
r(i) + Amn

i vni + 2bmn
i)

= 2bmn
r(i) − 2Abmn

i = 2bmn
r(i) + 2bmn

i = 2bm̂n
i

and dividing by m̂n
i = m̂n

r(i), we have v̂ni = Av̂nr(i) + 2b = r(v̂nr(i)). As with mass, the velocity is invariant
under the reflection used to generate it. In this way, we get valid masses and velocities inside the domain
that respect our desired boundary conditions and valid extrapolated values in the ghost region as well.

Forces with reflection. In the absence of boundary conditions, the velocities at grid nodes are updated
by applying forces giving

vn+1
i = vni + ∆t(mn

i)−1fni .

In our modified system, we would receive forces fni from our real particles and reflected forces Afnr(i) from

our (fictitious) reflected particles. The forces for our modified system are f̂ni = fni + Afnr(i), so that

v̂n+1
i = v̂ni + ∆t(m̂n

i)−1f̂ni .

Reflecting the forces and applying them with the modified mass preserves the symmetry of the velocity field:
v̂n+1
i = Av̂n+1

r(i) + 2b = r(v̂n+1
r(i)). Once again, the appropriate reflected force can be computed with a simple

grid-based correction near the boundaries.

Corners. At the corners of the domain, one must enforce boundary conditions for more than one domain
wall. This process is straightforward. Reflections should be performed in the ghost region (even when both
i and r(i) are in the ghost region). The domain walls may be reflected independently; the final result does
not depend on the order.

Momentum conservation. For no-slip boundary conditions, the velocity at the interface is fixed to
v̂ni = v̂n+1

i = b, which follows from the symmetry of the modified velocity field. For the free boundary
condition, A = I, b = 0, and

m̂n
i v̂ni = mn

i vni + Amn
r(i)v

n
r(i) + 2bmn

r(i) = mn
i vni +mn

r(i)v
n
r(i) = m̂n

r(i)v̂
n
r(i) =⇒ v̂ni = v̂nr(i)

The total mass and momentum of the modified system is not the same as the original system, since we have
additional particles. If we instead use the velocity from the modified system but keep our original masses,
we find

mn
i v̂ni +mn

r(i)v̂
n
r(i) = mn

i v̂ni +mn
r(i)v̂

n
i = (mn

i +mn
r(i))v̂

n
i = m̂n

i v̂ni = mn
i vni +mn

r(i)v
n
r(i).

Total momentum is thus conserved by this boundary condition treatment. Since we did not change the grid
mass, it is conserved as well. The slip case simply uses the no-slip case for the normal direction and the
free-surface case for the tangential directions. It thus conserves the tangential momentum components and
enforces the normal velocity component.

Reflection as a velocity correction. The boundary condition we get by introducing fictitious reflected
particles has three undesirable properties: it does not conserve mass, it does not conserve momentum in
the free-surface case, and it will cause problems during the proposed friction treatment. Instead, we use the
reflection analogy only to compute a corrected velocity:

v̂n+1
i =

mn
i vn+1

i +mn
r(i)r(v

n+1
r(i))

mn
i +mn

r(i)

= αni vn+1
i + αnr(i)r(v

n+1
r(i)), αni =

mn
i

mn
i +mn

r(i)

= 1− αnr(i). (21)

17

Note that, near corners, the mass and momentum contributions from all reflected ghost nodes must be
included (4 nodes if near two walls, 8 nodes if near three walls). We also note that it is not necessary to
apply a correction after the particle-to-grid transfer and then a second correction after forces. Instead, we
can delay the correction until after forces have been applied to the velocity field but before grid data is
transferred back to particles.

Note that our modified velocity in Eq. (21) takes the familiar form of a sticking collision between two
particles of masses m1, m2, with velocities before collision of v1, v2, and velocities after collision given by
v′1 = v′2 = m1

m1+m2
v1 + m2

m1+m2
v2. In our case, the different types of boundary conditions are achieved by

the appropriate choice of r(v). Directly at the wall mi = mr(i), so the modified velocity will be an equally
weighted average of vi and r(vr(i)). As we move further from the wall, the relative weight of vi increases
smoothly. This leads to an exact enforcement of the boundary condition at the wall, and a continuous
treatment of the boundary conditions in small band near the wall.

Friction. In the case of slip boundary conditions (A = R), it makes sense to consider friction. Based on
the amount of normal force applied when enforcing the boundary condition, we wish to apply a Coulomb
friction impulse to reduce the magnitude of the tangential velocity component. An obvious way to do this
is to simply apply Coulomb friction to the grid nodes that receive normal forces. This approach does not
work; objects experience a friction force, but this force does not converge to the correct value. In practice,
a sliding object experiences less friction than it should. Instead, we approach this from the perspective of
momentum.

As a result of enforcing the slip boundary condition by reflecting the velocity, the total tangential mo-
mentum was conserved but the normal component of total momentum changed. The difference in the normal
component is

∆pn = (mn
i v̂n+1

i +mn
r(i)v̂

n+1
r(i)) · n− (mn

i vn+1
i +mn

r(i)v
n+1
r(i)) · n

= mn
i (v̂n+1

i − vn+1
i) · n +mn

r(i)(v̂
n+1
r(i) − vn+1

r(i)) · n

= mn
i (αni vn+1

i + αnr(i)r(v
n+1
r(i))− vn+1

i) · n +mn
r(i)(α

n
r(i)v

n+1
r(i) + αni r(v

n+1
i)− vn+1

r(i)) · n

= mn
i α

n
r(i)(r(v

n+1
r(i))− vn+1

i) · n +mn
r(i)α

n
i (r(vn+1

i)− vn+1
r(i)) · n

= mn
i α

n
r(i)(r(v

n+1
r(i))− vn+1

i + r(vn+1
i)− vn+1

r(i)) · n Note: mn
i α

n
r(i) = mn

r(i)α
n
i

= mn
i α

n
r(i)(Avn+1

r(i) + 2b− vn+1
i + Avn+1

i − vn+1
r(i) + 2b) · n

= 2mn
i α

n
r(i)(2b− vn+1

i − vn+1
r(i)) · n (using nTA = −nT).

We assume that n points towards the interior of the MPM domain. Then ∆pn > 0 corresponds to the
wall pushing on the material, and ∆pn < 0 corresponds to the wall pulling the object towards it. For now,
we assume that ∆pn ≥ 0. Decomposing into normal and tangential components and scaling the tangential
component,

v̂n+1
in = nnT v̂n+1

i , v̂n+1
it = (I− nnT)v̂n+1

i , v̂n+1
iµ = v̂n+1

in + sv̂n+1
it , 0 ≤ s ≤ 1.

We note that v̂n+1
it = v̂n+1

r(i)t and v̂n+1
in = 2b − v̂n+1

r(i)n. In the case of full sticking, s = 0, and the change

in tangential momentum due to friction is ∆pt = ‖mn
i v̂n+1

it + mn
r(i)v̂

n+1
r(i)t‖ = m̂n

i ‖v̂
n+1
it ‖. In the case of

sliding friction, for a given value of s > 0, the tangential change in momentum due to friction is (1− s)∆pt.
The Coulomb friction inequality gives (1 − s)∆pt ≤ µ∆pn, so s = max(1 − µ∆pn

∆pt
, 0). With this, v̂n+1

iµ =

v̂n+1
in + sv̂n+1

it is the corrected velocity, with the effects of friction included. The reflected velocity is vn+1
r(i)µ =

r(v̂n+1
iµ) = 2b− v̂n+1

r(i)n + sv̂n+1
it . This reflected value is precisely the same as would be obtained by repeating

the entire derivation replacing i with r(i).

Separation. All that remains is a proper treatment of the separation condition ∆pn < 0. A relatively
obvious choice would be to revert to the free-surface boundary condition in this case, but this leads to a

18

velocity discontinuity in the normal direction. Disabling the boundary condition during separation leads to
velocity discontinuity in the tangential direction. Instead we leave the normal velocity component untouched
but use the reflected tangential components, vn+1

i,sep = nnTvn+1
i + v̂n+1

it . At ∆pn = 0, we have s = 1,

(2b− vn+1
i − vn+1

r(i)) · n = 0, and

v̂n+1
iµ − vn+1

i,sep = (v̂n+1
in + sv̂n+1

it)− (nnTvn+1
i + v̂n+1

it)

= nnT v̂n+1
i − nnTvn+1

i

= nnT (αni vn+1
i + αnr(i)(Avn+1

r(i) + 2b)− vn+1
i)

= αnr(i)nnT (Avn+1
r(i) + 2b− vn+1

i)

= αnr(i)nnT (2b− vn+1
i − vn+1

r(i)) = 0.

This choice leads to velocity continuity and is also fully momentum conserving.

Summary. At the end of the grid update, we apply boundary conditions that do not include friction or
separation using

v̂n+1
i = αni vn+1

i + αnr(i)r(v
n+1
r(i)), v̂n+1

r(i) = r(v̂n+1
i), αni =

mn
i

mn
i +mn

r(i)

= 1− αnr(i).

If slip boundary conditions are being enforced with friction and separation, we compute the separation
condition c = (2b− vn+1

i − vn+1
r(i)) · n. If c ≥ 0, we apply friction to the modified velocity

v̂n+1
iµ = v̂n+1

in + sv̂n+1
it , v̂n+1

in = nnT v̂n+1
i , v̂n+1

it = (I− nnT)v̂n+1
i , s = max

(
1−

2αni α
n
r(i)µc

‖v̂n+1
it ‖

, 0

)
,

with v̂n+1
r(i)µ = r(v̂n+1

iµ). Otherwise, we used the unmodified normal velocities and the modified tangential

velocities,

vn+1
i,sep = nnTvn+1

i + v̂n+1
it , vn+1

r(i),sep = nnTvn+1
r(i) + v̂n+1

it .

5 Sources

Particle seeding at inlets must be done carefully to avoid visible discontinuities between different batches of
seeded particles. We seed particles at the end of each time step, at which point the correct time step size ∆t
is available. We assume that all seeded particles entered the domain by passing through a plane (defined by
a point p and normal n) at some time ts = tn + ∆t−∆tp (where 0 ≤ ∆tp < ∆t) and at some location zp on
the seeding plane ((zp−p) ·n = 0). We assume that all particles pass through the seeding plane at constant
source velocity vs and evolve for the rest of the time step under a constant acceleration field a (typically
gravity). Since its creation, the particle has accelerated to velocity vn+1

p = vs+ ∆tpa and moved to position

xn+1
p = zp + ∆tpvs + 1

2∆t2pa, which provide the initial position and velocity for the seeded particle. For

APIC, we also need either the velocity gradient Cn+1
p = ∂u

∂x or its analogue Bn+1
p = Cn+1

p Dn
p . For this we

need the spatial derivatives of the Eulerian velocity field u(x, t), which is related to the Lagrangian velocity
vp(t) by u(xp(t), t) = vp(t). In order to calculate the velocity that a particle would have at a given location,
we must determine where the particle was seeded and how long it has been evolving.

x = zp + ∆tpvs +
1

2
∆t2pa

x− p = zp − p + ∆tpvs +
1

2
∆t2pa

(x− p) · n = ∆tpvs · n +
1

2
∆t2pa · n

19

This is a quadratic equation that can be solved for ∆tp. We note that we don’t need to solve this equation;
it is enough to implicitly differentiate it.

∂

∂x
((x− p) · n) =

∂

∂x

(
∆tpvs · n +

1

2
∆t2pa · n

)
n = (vs · n + ∆tpa · n)

∂∆tp
∂x

∂∆tp
∂x

=
n

(vs + ∆tpa) · n

Since vp = vs + ∆tpa depends on the query location x only through ∆tp (the seeding location zp does not
matter),

u(x, t) = vs + ∆tpa

∂u

∂x
(x, t) = a

(
∂∆tp
∂x

)T
=

anT

(vs + ∆tpa) · n

Cn+1
p =

∂u

∂x
(xn+1
p , ts + ∆tp) =

anT

vn+1
p · n

.

What remains is to seed particles uniformly and determine ∆tp and zp. We perform particle seeding in a
reference volume, where we transform the seeding plane to the yz plane. The bounding box for the portion
of this transformed plane where seeding must occur is [y0, y1] × [z0, z1]; seeds inside this bounding box but
not the seeding area are rejected after sampling. We use Poisson disk sampling [4, 10] to compute seeds
(x, y, z) ∈ [0,∆tvs · n]× [y0, y1]× [z0, z1], from which ∆tp = x

vs·n . zp is obtained by transforming the point
(0, y, z) back into world space. Note that we have taken advantage of the fact that a does not affect particles
until after they have been seeded and that Poisson disk sample distributions are insensitive to sheer. Note
that seeding should not be performed directly on the box (∆tp, y, z) ∈ [0,∆t]× [y0, y1]× [z0, z1] due to the
mixing of units. We retain a layer of seeds from the previous time step to use as starting seeds for the current
time step; this ensures seamless continuity in the seeding distribution between time steps.

References

[1] S-wave. https://en.wikipedia.org/wiki/S-wave. Accessed: 2020-01-18.

[2] Philip T Barton, Dimitris Drikakis, Evgeniy Romenski, and Vladimir A Titarev. Exact and approximate
solutions of riemann problems in non-linear elasticity. Journal of Computational Physics, 228(18):7046–
7068, 2009.

[3] Craig R Bina and George R Helffrich. Calculation of elastic properties from thermodynamic equation
of state principles. Annual Review of Earth and Planetary Sciences, 20(1):527–552, 1992.

[4] R. Bridson. Fast poisson disk sampling in arbitrary dimensions. In SIGGRAPH sketches, page 22, 2007.

[5] O. Ding, T. Shinar, and C. Schroeder. Affine particle in cell method for mac grids and fluid simulation.
Journal of Computational Physics, 2019.

[6] Yu Fang, Yuanming Hu, Shi-Min Hu, and Chenfanfu Jiang. A temporally adaptive material point
method with regional time stepping. In Computer graphics forum, volume 37, pages 195–204. Wiley
Online Library, 2018.

[7] G. Irving, J. Teran, and R. Fedkiw. Invertible finite elements for robust simulation of large deformation.
In Proc. Symp. Comp. Anim., pages 131–140, 2004.

20

https://en.wikipedia.org/wiki/S-wave

[8] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. The affine particle-in-cell method. ACM
Trans Graph, 34(4):51:1–51:10, 2015.

[9] C. Jiang, C. Schroeder, and J. Teran. An angular momentum conserving affine-particle-in-cell method.
J Comp Phys, 338:137–164, 2017.

[10] G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and T. Teran. Drucker-prager elasto-
plasticity for sand animation. ACM Transactions on Graphics (SIGGRAPH 2016)., 2016.

[11] C. Schroeder. Practical course on computing derivatives in code. In ACM SIGGRAPH 2019 Courses,
SIGGRAPH 19, New York, NY, USA, 2019. Association for Computing Machinery.

[12] A. Stomakhin, R. Howes, C. Schroeder, and J.M. Teran. Energetically consistent invertible elasticity.
In Proc. Symp. Comp. Anim., pages 25–32, 2012.

21

	Simple time step restrictions
	Velocity
	Particle displacement
	Deformation gradient

	Sound speed
	Wave speed for an elastic solid in 1D
	2D and 3D
	Transforming to first Piola-Kirchhoff stress
	Isotropy

	Single particle stability
	Fluids and pressures

	Reflection boundary conditions
	Sources

