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Figure 1: Stability of a perturbed elastic sphere. Using a novel analysis of the nonlinear elastic problem, our method gives a time step
restriction which maintains stability throughout the simulation, yet is only∼ 10% smaller than the empirically determined stability threshold
on this test, eliminating the need for costly trial and error. Colors represent velocity magnitude; black is smallest, increasing through the
rainbow from blue to red, with white as the largest.

Abstract
Time steps for explicit MPM simulation in computer graphics are often selected by trial and error due to the challenges in
automatically selecting stable time step sizes. Our time integration scheme uses time step restrictions that take into account
forces, collisions, and even grid-to-particle transfers calculated near the end of the time step. We propose a novel set of time
step restrictions that allow a time step to be selected that is stable, efficient to compute, and not too far from optimal. We derive
the general solution for the sound speed in nonlinear isotropic hyperelastic materials, which we use to enforce the classical
CFL time step restriction. We identify a single-particle instability in explicit MPM integration and propose a corresponding
time step restriction in the fluid case. We also propose a reflection-based boundary condition for domain walls that supports
separation and accurate Coulomb friction while preventing particles from penetrating the domain walls.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Computer graphics has traditionally had a complex relationship
with explicit methods and implicit methods. Explicit methods are
generally simpler, do not require complex solvers, and tend to be
quite efficient when the materials involved are not too stiff. Implicit
methods became popular in graphics starting with [BW98], which
used backward Euler to take large time steps in stiff cloth simula-
tions. Since then, computer graphics has embraced a combination
of explicit and implicit methods, depending on phenomena, stiff-

ness, algorithm complexity, and amenability to an efficient implicit
formulation. Recently, the material point method (MPM) [SSC∗13]
has gained popularity in computer graphics for simulating a variety
of materials, with both implicit and explicit formulations proposed.

Choosing effective time step sizes for explicit methods is a long-
standing problem [Bra16]. In practice, they are often chosen by trial
and error, with the largest size that produces acceptable results then
selected and used for reporting efficiency. However, the process of
trial and error itself can be costly and produce suboptimal results,
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Figure 2: Both the sound speed CFL and single-particle stability criteria are needed to maintain stability in this splashing fluid simulation.
(Left) The heuristic time step restrictions on velocity, displacement, and deformation gradient alone are insufficient for stability. (Middle, left)
Additionally enforcing the CFL fails to stabilize the simulation. (Middle, right) The simulation is stable using all five stability restrictions.
(Right) Using a multiplier of 1.3 for the single-particle time step restriction, the simulation is at the edge of stability.

making it undesirable for artistic tools. Choosing time steps for im-
plicit methods is generally easier due to improved stability; a few
time steps per frame (sometimes just one) often suffices. In both
explicit and implicit methods, using a fixed time step size is com-
mon. The main goal of this paper is to provide a sound basis for
adaptively selecting time steps for explicit MPM simulations, thus
eliminating the need for trial and error, improving efficiency, and
gaining control over the causes of instability.

We generally observe three causes of instability in explicit MPM
simulations: (1) Failure to abide by the CFL restriction, which
states that the numerical speed of information propagation must
be at least as large as the physical speed of information propaga-
tion. Though the CFL condition is prevalent in explicit compress-
ible flow simulations, accounting for it has been problematic for
solids due to the lack of published wave speeds for common consti-
tutive models. We give a novel derivation and an efficient algorithm
to calculate wave speeds for any general hyperelastic isotropic con-
stitutive model. (2) The hybrid nature of MPM introduces instabil-
ities. We identify one such instability associated with isolated par-
ticles and derive a time step restriction to avoid it. (3) Postprocess-
ing steps such as collisions can introduce large amounts of energy
into a system by changing strain measures such as the deformation
gradient. Along with restrictions on velocity and displacement, we
restrict the amount of change allowed to the deformation gradient.

The time step restrictions that we introduce are very effective
at stabilizing explicit MPM simulations. We have not tuned any of
our time step sizes or CFL multipliers, nor introduced damping or
any other type of intervention. We note that there is often a gap
between time step sizes that produce good results and time step
sizes that lead to simulation failure. Time step sizes within this gap
lead to ill-behaved simulations; we consider these time steps to be
unstable as well.

Additionally, we introduce a novel reflection boundary condition
for MPM based on [DSS19], reformulating their method to con-
serve mass and momentum, and extending it to handle Coulomb
friction and separation.

2. Related Work

The material point method was originally devised as an ex-
plicit method [SCS94, SZS95]. As hybrid particle-grid meth-
ods developed, they were found to suffer from a number of
instabilities [Oku72, Bra88, BL98, BK04, SKB08, Gri14]. These
were partially alleviated through better interpolation functions
[BK04, WG08]. The first implicit methods for MPM were devel-
oped significantly later to avoid instabilities and to take larger time
steps [GW01, GW03, SK04, LS06]. Nevertheless, explicit meth-
ods remain very common within the wider MPM community.

Within computer graphics, MPM was introduced by [SSC∗13],
which proposed an implicit formulation for simulating snow. Fur-
ther MPM work in graphics has focused on simulating new phe-
nomena, including foams [YSB∗15, RGJ∗15], melting and freez-
ing [SSJ∗14], sponges [RGJ∗15], and sand [DBD16, KGP∗16], re-
ducing simulation noise and dissipation through APIC [JSS∗15],
midpoint rule [JST17], and PolyPIC [FGG∗17], and improving
integration schemes [GSS∗15, WLF∗20]. Most MPM methods in
graphics are implicit, with [YSB∗15, KGP∗16, YSC∗18, FHHJ18]
being notable exceptions. Recent work has introduced the use of
a sound speed estimate to predict a stable time step size for asyn-
chronous time integration [FHHJ18]. Their estimate is based on the
exact sound speed for linear elasticity at the rest configuration, and
thus may differ quite significantly from the physical sound speed,
as we show in Section 6. Adaptive time step restrictions were used
to improve performance of SPH simulations in [IAGT10], which
imposed time step restrictions based on maximum particle velocity
and acceleration and the kernel radius. They additionally consid-
ered density errors in adjusting the time step size, but did not di-
rectly account for the sound speed. As a general rule, time step re-
strictions depend on a characteristic simulation length scale, which
is often the grid ∆x for MPM, kernel radius for SPH, and mesh
edge lengths for mesh-based Lagrangian methods. All should ac-
count for the sound speed when simulated explicitly in order to
satisfy the CFL condition.

One of the strengths of MPM is its ability to treat complex ma-
terials like sand, snow, or gel, where plasticity often plays an im-
portant role. Frictional contacts can also be modeled directly using
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plasticity [JGT17, GHF∗18, DS19, HGG∗19]. The use of plastic-
ity models generally complicates implicit formulations. One ap-
proach is to simply lag the plasticity [SSC∗13, GPH∗18], but this
can significantly alter the physical behavior of some models. Al-
ternatively, the plasticity can be included directly within a Newton
solver, which produces asymmetrical systems that are generally dif-
ficult to solve [KGP∗16, DS19], though [TGK∗17] has suggested
a compromise between the options. Alternative formulations can
also avoid the problem [DBD16]. Ultimately, explicit formulations
are generally preferred when the problem stiffness is manageable.

Existing object collision treatments for MPM are mostly based
on [SSC∗13], where collisions between simulated and non-
simulated objects are handled by projecting velocities at nodes that
are inside a level set. This treatment allows particles to penetrate
about a grid cell into objects before completely stopping, but oth-
erwise the treatment is simple and effective. We use it when col-
liding with objects that are not the domain boundary. We note that
other collision treatments also exist, such as an extension for cut-
ting [HFG∗18], a penalty collision treatment for implicit integra-
tion [DS19], and a special treatment for sand [DBD16]. For domain
boundaries, reflection boundary conditions for MPM simulation of
fluids were introduced in [DSS19], and give the basis for our re-
flection boundary conditions. Unlike existing level set treatments
for MPM, the reflection boundary conditions prevent particles from
penetrating domain boundaries.

3. Algorithm Overview

We first give an overview of our proposed time integration scheme,
shown in Algorithm 1. We follow the general scheme of [SSC∗13],
but use explicit symplectic Euler for the grid-based time integration
and APIC for transfers between the particles and grid [JSS∗15].
The steps in Algorithm 1 are as follows:

1. Initial time step selection. In Line 2, we obtain an initial time
step size using the particle velocities and accounting for the ef-

Algorithm 1 Time step.
1: procedure TIME_STEP

2: ∆t← VELOCITY_DT . §4.2
3: (mn

i ,v
n
i )← PARTICLE_TO_GRID(mp,vp,Bp)

4: ṽn+1
i ← vn

i +∆t(mn
i )
−1fi

5: ṽn+1
i ← OBJECT_COLLISIONS(ṽn+1

i )
6: ṽn+1

i ← REFLECTION_BC(mn
i ,ṽn+1

i ) . §5
7: ∆tx← POSITION_DT . §4.3
8: ∆tF ← DEFORMATION_GRADIENT_DT . §4.4
9: ∆tc← SOUND_SPEED_DT . §4.1

10: ∆tp← SINGLE_PARTICLE_DT . §4.5
11: ∆t′←min(∆tx,∆tF ,∆tc,∆tp)
12: if ∆t′ < ∆t then
13: ṽn+1

i ← vn
i +

∆t′
∆t (ṽ

n+1
i −vn

i )
14: ∆t← ∆t′

15: x̃n+1
i = xn

i +∆tṽn+1
i

16: (vn+1
p ,Bn+1

p )← GRID_TO_PARTICLE(ṽn+1
i )

17: UPDATE_PLASTICITY

18: t← t +∆t

fect of APIC transfers, as described in Section 4.2. Although
this estimate is usually too large to maintain stability overall, it
suffices for computing forces and processing collisions.

2. Transfer data from particles to the grid. Here, we describe
Line 3, reviewing some details of MPM [SSC∗13] and APIC
[JSS∗15] for completeness. In APIC, each particle carries a
mass mp, position xp, velocity vp, deformation gradient Fp,
and affine state Bp. First, mass is transferred from particles to
the grid nodes, indexed by i, using mn

i = ∑p wn
ipmp, where the

weights are wip = N(xp− xi) and N(x) is an interpolation ker-
nel. An inertia-like tensor Dp is then computed for each parti-
cle as Dp = ∑i wn

ip(x
n
i − xn

p)(xn
i − xn

p)
T = ∆x2

6−o I, where the last
equality applies for the splines of order o = 2,3 that we use
for interpolation kernels. Velocity is transferred to the grid as
vn

i =
1

mn
i

∑p wn
ipmp(vn

p +Cn
p(xn

i −xn
p)), where Cn

p = Bn
pD−1

p is
the velocity gradient.

3. Force integration on the grid. Elastic forces are computed
on the grid as fi = −V 0

p PFnT
p ∇wn

ip,P = ∂ψ

∂F (F
n
p), where V 0

p is
the initial particle volume, ψ is the energy density function for
the constitutive model, and P is the first Piola-Kirchhoff stress.
Forces are then integrated to update velocities as in Line 4.

4. Collisions with objects and domain boundaries. In Line 5, we
process grid collisions against collision objects as in [SSC∗13].
Line 6 further modifies the grid velocities to account for domain
boundaries using our reflection boundary conditions (Section 5).

5. Selection of a stable time step size. Following application of
forces and collisions, we have sufficient information available
to choose a stable time step size for the current time step. In
Lines 7-11, we compute time step restrictions based on parti-
cle displacements, change to the deformation gradient, elastic
wave speeds, and the single-particle instability, respectively. We
describe these in detail in Section 4.

6. Velocity adjustment. In Line 13, we adjust the velocity to ac-
count for the reduced time step size. We note that this is exact for
the explicitly integrated forces, but may introduce some inaccu-
racy for object and domain boundary collisions, e.g., applying
collision forces a bit sooner.

7. Position update on the grid. In Line 15, the new grid velocities
are integrated to get positions at the grid nodes. In practice, this
step is incorporated into the particle position update below.

8. Transfer data from the grid to particles. Particle veloci-
ties and affine states are updated from the grid as vn+1

p =

∑i wn
ipṽn+1

i and Bn+1
p = ∑i wn

ipṽn+1
i (xn

i − xn
p)

T . The deforma-
tion gradients are updated as Fn+1

p = (I + ∆t∇vp)Fn
p, where

∇vp = ∑i ṽn+1
i (∇wn

ip)
T . Particle positions are then updated as

xn+1
p = ∑i wn

ipx̃n+1
i . As a practical optimization, we directly

compute the equivalent update xn+1
p = xn

p +∆tvn+1
p and avoid

the need to compute x̃n+1
i in Line 15.

9. Plasticity update. Line 17 updates the elastic and plastic com-
ponents of the deformation gradient as in [KGP∗16].

Remark on time step size adjustment. Because our time step re-
strictions account for forces and collisions (Lines 4-6), we do not
know our final time step size until after we have updated grid ve-
locities. At this point, if we determine that a smaller time step ∆t′

was needed, we have a number of potential options, including (a)
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Figure 3: We demonstrate the effect of different combinations of time step restrictions for the colliding spheres example (Fig. 4). Plots show
simulation health, as measured through velocity vp, velocity gradient Cp, deformation gradient F, and minimum time step size ∆t within
each simulation frame. (A) Using only maximum particle velocity for a time step restriction is unstable; the simulation quickly explodes. (B)
Including ‖Cp‖F in the velocity time step restriction suffices to prevent explosion of the APIC simulation; the large values of ‖Cp‖F force a
very small time step size. Note that the green curve is clamped to the top of the plot for most of the simulation. (C) Additionally controlling
the change in Fp works better and enables a larger time step size. The simulation is still not stable, as particle velocity derivatives vary
wildly. (D) Using a proper sound speed CFL (ν = 0.9) produces a stable simulation. Nearly all time steps are sound-speed-limited for this
simulation, so this suffices to ensure stability. (E) Using all of our time step restrictions but with a sound speed CFL number of ν = 1.3 makes
the simulation unstable. In this case, one of the balls ejects a particle, which subsequently maintains constant, large values in its Fp and
Cp, resulting in small time steps. (F) Using all of our time step restrictions is stable. The results agree closely with the sound-speed-only
simulation, since the time step sizes are mostly the same.

divide and conquer (e.g., divide ∆t by 2 and try again), (b) try the
time step again with ∆t′, or (c) patch the time step so that it behaves
as if the smaller time step size was taken from the beginning. Op-
tion (a) would be quite expensive, leading to many more time steps
than necessary. Option (b) is at most twice the cost and can be im-
proved significantly by storing and reusing the forces, but we have
no guarantee that the time step restrictions would be satisfied, since
the new time step would produce different collision forces. There-
fore, we pursue option (c). If we treat collision forces as though
they were part of fi and independent of ∆t, then we can simply
reapply forces with the new time step. In practice, we do not have
fi since we applied collisions directly to velocities, but we can com-
pute our effective forces from the initial and final velocities vn

i and
ṽn+1

i , as we do in Line 13.

4. Time Step Size

In this section, we derive five time step restrictions for stable ex-
plicit MPM simulation. The criteria for the sound speed and for
isolated particles are inherent and thus theoretically required; vio-
lating them necessarily leads to unstable simulations under appro-
priate circumstances. The other three restrictions are heuristic, in
the sense that violating them is not intrinsically linked to an in-
stability. There are, however, theoretical justifications for enforc-
ing them, which we note. Due to space considerations, we give
abridged derivations and results here and refer the reader to the
supplementary document for full details.

4.1. Sound Speed

The most important time step restriction is the classical CFL con-
dition, which mandates that the numerical speed at which infor-

mation travels through a simulation grid must be at least as large
as the physical speed [Tor13]. The sound speed plays a funda-
mental role in compressible flows, where its calculation is a fairly
routine exercise [Tor13]. Outside fluid dynamics, we are only
aware of results for isotropic linear elasticity at the rest configura-
tion [BH92, FHHJ18] and one-dimensional analysis for Riemann
solvers for nonlinear elasticity [BDRT09]. Only the fastest wave
speed is needed for properly computing a CFL condition for ex-
plicit integrators. In this section, we adapt ideas from the study of
compressible flows to give a novel derivation of the wave speeds
for fully nonlinear hyperelastic constitutive models in configura-
tions far from the rest state.

We adopt index tensor notation with summation convention. We
use comma notation for partial derivatives (e.g., ui,r = ∂ui/∂xr),
with parentheses indicating the derivative with respect to an entry
of the deformation gradient (e.g., σir,(km) = ∂σir/∂Fkm).

Equations of motion and D×D eigenvalue problem. Our equa-
tions of motion include conservation of mass and momentum, and
an Eulerian form of the MPM update rule for the deformation gra-
dient F , given as

ρt +(ρur),r = 0,

(ρui)t +(ρuiur−σir),r = 0,

(Ft)i j +Fi j,rur−ui,rFr j = 0,

where ρ is the density, u is the velocity, and σ is the Cauchy stress.
We first write our system of equations in the form Ut +GrU,r = 0,
with U = (ρ,φ,F)T , where φ = ρu. Let d = 2,3 be the number
of spatial dimensions, and denote the number of elements in U as
D = 1+ d + d2. The D×D× d tensor Gr is analogous to a flux
Jacobian, and in analogy to sound speed solutions in compress-
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Figure 4: As an illustration of stability, we simulate two spheres
alternately colliding with each other and the domain walls.

ible flow [Tor13], we seek the eigenvalues of the D×D matrix
N = Grnr, where nr is a unit vector. The largest eigenvalue in mag-
nitude of N for any nr will determine our CFL restriction.

Reduction to a d×d eigenvalue problem. Using an ansatz based
on solution of the one-dimensional case, we find the eigenval-
ues of N have the form nrur + c, where c is the sound speed,
and are able to reduce the D × D eigenvalue problem to the
smaller d × d eigenvalue problem (Aik − ρc2

δik)vk = 0, with
Aik = J−1Pin,(km)FrnFsmnrns. Recalling that we initially fixed a di-
rection nr, we can write our full problem as finding κ such that

κ = max
v,n

‖v‖=‖n‖=1

Aikvivk. (1)

Isotropic solutions. We make further progress on solving Eq. (1)
by assuming isotropy of the constitutive model. In practice, this
covers the significant majority of elasticity models in use in
graphics and MPM. Using the SVD of the deformation gradient,
Fi j = UikΣknV jn, we can transform Pin,(km) = UirVnsUktVmuMrstu
into the sparse tensor Mrstu, whose nonzero entries depend on
the derivatives of ψ with respect to the singular values of F
[ITF04, SHST12, Sch19]. Expressing vi and n j in the basis of the
left singular vectors as pr =Uirvi, qo =U jon j, Eq. (1) becomes

κ = J−1 max
p,q

‖p‖=‖q‖=1

MrstuΣosΣvu prqo ptqv. (2)

Special solutions and sound speed CFL. Eq. (2) has trivial solu-
tions that occur when pr and qo are axis vectors (where vi and ni

are aligned with the left singular vectors of F). By identifying ad-
ditional solutions both analytically and through numerical approx-
imation (see supplementary document), we find that these trivial
solutions predict the maximum sound speed in the vast majority
of cases. In practice, we found the trivial sound speed solutions to
be sufficient for our sound speed CFL. Using these solutions, our
sound-speed-based CFL condition for MPM can be summarized as

κ =
1
J

max
a,b

MababΣbbΣbb, c =
√

κ

ρ
, ∆t = ν

∆x
c
, (3)

where ν≤ 1. In terms of the energy density ψ̂(σ1,σ2,σ3),

κ =
1
J

max

max
a

(
σ

2
a

∂
2
ψ̂

∂σ2
a

)
,max

a6=b

σ
2
b

σa
∂ψ̂

∂σa
−σb

∂ψ̂

∂σb

σ2
a−σ2

b

.

Note that we use the sound speed c directly, rather than the eigen-
values of N given by nrur + c, as we do not need to account for the
advective component nrur, which is treated in a Lagrangian man-
ner in MPM. For SVD-based constitutive models (such as coro-
tated [MZS∗11, SSC∗13], fixed corotated [SHST12] and Drucker-
Prager with Hencky strain [KGP∗16]), Σ and Mrstu are readily
available, so the CFL computation adds only modest overhead.

4.2. Velocity

Here we describe the velocity-based time step restriction computed
by VELOCITY_DT in Algorithm 1, Line 2, which is used to get the
initial size for the time step. The velocity transferred from particle p
to grid node i is given by vn

ip = vn
p+Bn

pD−1
p (xn

i −xn
p), where Bp = 0

for non-APIC transfers. Let d = 2,3 be the dimension, and let
o= 2,3 be the spline order (quadratic or cubic). Using D−1

p = 6−o
∆x2 I

[JSS∗15], a bound for ‖vn
ip‖ over i is given by maxi ‖vn

ip‖ ≤ v,

where v = maxp

(
‖vp‖+ 6

√
d

∆x ‖Bp‖F

)
. The velocity time step re-

striction is then given by ∆t =α
∆x
v , for 0<α≤ 1. We choose α= 1

for all examples.

4.3. Particle Displacement

We limit the time step so that the displacement of each particle is
less than a grid cell. The displacement of a particle over a time step
size ∆t is given by xn+1

p − xn
p = ∆t ∑i wn

ip

(
vn

i +
∆t
mn

i
fi

)
. If we scale

the time step to be s∆t, where 0 < s≤ 1, the particle displacement
is xn+1

p −xn
p = s∆t ∑i wn

ipvn
i +s2

∆t ∑i wn
ip(ṽ

n+1
i −vn

p). We limit par-
ticle displacement by choosing s to enforce ‖xn+1

p −xn
p‖∞ ≤ α∆x.

Computing s involves solving a quadratic equation componentwise,
which can be avoided in most cases by first testing feasibility of the
current estimate s, starting with s = 1. POSITION_DT returns s∆t.

4.4. Deformation Gradient Change

The deformation gradient update over a time step s∆t is Fn+1
p =

(I+A)Fn
p, with

A = s∆t ∑
i

vn
i (∇wn

ip)
T + s2

∆t2
∑

i
(ṽn+1

i −vn
i )(∇wn

ip)
T
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Figure 5: Water pours into a box forming sheets and splashes. The single-particle stability criterion was the most limiting time step restriction
in this simulation.

Here, we enforce ‖A‖max ≤ δ, which is a componentwise quadratic
as before. In 3D, 0 < δ < 1

3 implies det(I+A) > 0, which guar-
antees no inversion (i.e., Jn

p = det(Fn
p) > 0), which is especially

important for constitutive models like Neo-Hookean that contain
terms like ln(J) or J−1. We found δ = 0.2 to be a good compro-
mise; values close to 1

3 should be avoided, and smaller values do
not improve stability significantly. In the fluid case, we maintain
Jp instead of Fn

p, update it with Jn+1
p = (I+ tr(A))Jn

p, and enforce
| tr(A)| ≤ δ. We note that limiting the change in Fp during a time
step prevents the simulation from taking a large time step size dur-
ing a collision giving forces a chance to respond to the collision in
a stable manner. DEFORMATION_GRADIENT_DT returns s∆t.

4.5. Single-particle Stability

In an MPM simulation, neighboring particles have a stabilizing in-
fluence on particle evolution, and thus the ejection and isolation of
a particle (for example, due to splashing water) may lead to simula-
tion instability. While this observation is not new [JSS∗15, JST17],
here we identify for the first time an instability caused by a feed-
back loop between F (or Jp for fluids) and forces.

We analyze the single-particle instability for the case of MPM
weakly compressible fluid simulation, assuming PIC transfers for
simplicity, and show that this instability imposes restrictions on
both the choice of basis function and the time step. We note that
this is the only stability criterion that we propose that is specific to
the underlying spatial discretization.

Feedback between pressure and J. When a particle becomes iso-
lated, the nearby grid data depends only on that particle’s data,
so that the grid velocity is vn

i = vn
p and the pressure force is

fi =−V 0
p Jn

pψ
′(J)∇wn

ip for a single particle p. Integrating forces on
the grid, we get ṽn+1

i = vn
i +∆tfi/mn

i , which is then used to update
J as Jn+1

p = (1+∆t∇·vp)Jn
p, where∇·vp = ∑i ṽn+1

i ·∇wn
ip. Sub-

stituting the expressions for∇·vp, ṽn+1
i , and fi into the update rule

for J, we get

Jn+1
p =

(
1−∆t2m−1

p V 0
p Jn

pψ
′ tr(H)

)
Jn

p, (4)

where H = ∑i∇wn
ip(∇wn

ip)
T /wn

ip. As long as the particle remains
isolated, Eq. (4) acts like a fixed-point iteration on J (ignoring mi-

nor changes to H due to translation), and may diverge if growth is
not controlled. If J becomes very large, the particle may inject this
stored energy into the simulation when it hits a wall or rejoins the
fluid bulk.

Dependence of tr(H) on interpolation basis. The entries of
H depend on the choice of interpolation basis. We assume
wn

ip = N(xi−xp) is a tensor product basis as was done in
[SSC∗13], so that in 3D N(xi jk) = N(xi)N(y j)N(zk). Defining
N̂(x̂) by N(x) = N̂(x/∆x) = N̂(x̂), where N̂(x̂) is not a function

of grid size, we find H11 =
1

∆x2 ∑i
N̂′(x̂i)

2

N̂(x̂i)
; the other diagonal entries

of H are similar. This imposes a restriction on the choice of inter-
polation kernel N̂, since we require tr(H) to be bounded for any
location xi in a grid cell. The linear interpolation kernel fails this
stability criterion, but for quadratic and cubic splines, we have the
bound tr(H)≤ Kd

∆x2 where K = 6 for quadratic splines and K = 3.14
for cubic splines, and d = 2,3 is the dimension.

Bounding the growth of J. With the bound on tr(H) substituted
into Eq. (4), the ratio of change in J is bounded by

Jn+1
p = (1− rJn

pψ
′)Jn

p, r =
∆t2V 0

p Kd
∆x2mp

.

We can express ∆t in terms of r as

∆t = ∆x
√

mpr
V 0

p Kd
= ∆x

√
ρ0

pr
Kd

. (5)

Therefore, a bound on r will give a corresponding bound on ∆t.

We propose two ways to stabilize a time step with respect to the
single-particle instability. The simpler and more restrictive way is
to prevent Jp from overshooting 1. Note that r = 0 gives Jn+1

p = Jn
p,

whereas to achieve Jn+1
p = 1, we need r =

Jn
p−1

(Jn
p)

2ψ′ . Substituting this

expression into Eq. (5) gives us the time step

∆t =
∆x
Jn

p

√
ρ0

p(Jn
p−1)

Kψ′d
. (6)

Note that there are no real problems when Jn
p ≈ 1 since by

L’Hôpital’s rule, limJn
p→1 ∆t = ∆x

√
ρ0

p
Kψ′′d .
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Figure 6: A ball bounces off a ground with different boundary condition types. (Top, left) With sticking collisions, the ball sticks where it
collides. (Top, right) With slip collisions, it remains stuck to the ground but slides freely along it. (Bottom, left) Enabling separation, the ball
bounces off the ground. (Bottom, right) With the addition of friction, it rotates as well.

Less restrictive bound. The time step restriction in Eq. (6) can
be relaxed by up to a factor of

√
2 near Jp ≈ 1 if we allow Jp to

overshoot 1 and instead prevent it from diverging. This requires
global information about our constitutive model. For our purposes,
we assume that the force’s growth is bounded by

0≥ ψ
′(J)≥ λ(J−1)J−2, 0 < J ≤ 1, (7)

0≤ ψ
′(J)≤ λ(J−1), J ≥ 1, (8)

for some λ > 0, which must be computed given knowledge of
the constitutive model. This growth is fast enough to accommo-
date constitutive models ψ(J) that contain common terms like
(J−1)2, lnJ, ln2 J, or J−1. We select r in order to ensure that J2 =
(1−rJψ

′)J is between J and J−1. Across many time steps, we will
have | ln(J)| ≥ | ln(J2)| ≥ | ln(J3)| ≥ | ln(J4)| ≥ · · · ≥ 0 = | ln(1)|,
which prevents divergence. We find that the bound on J2 can be sat-
isfied if r≤ 2

λ(2−J)2 for 0< J≤ 1, and r≤ J+1
λJ3 for J≥ 1. Substitut-

ing these expressions into Eq. (5), we can summarize this relaxed
time step restriction as

∆t =
∆x

2− J

√
2ρ0

p

Kλd
, 0 < J ≤ 1,

∆t =
∆x
J

√
ρ0

p(J +1)
JKλd

, J ≥ 1.

Alternative time step restrictions may be derived in the same way
for different bounds or directly from individual constitutive models
for even more favorable time step sizes. We use this time step re-
striction for our fluid simulations since both of our fluid constitutive
models satisfy the growth bounds (7)-(8).

Isolated particles are very common in fluids as a result of splash-
ing but less frequently encountered with solids; we leave that case
for future work. Our treatment of the single-particle instability is
dependent on the transfer interpolation functions, the temporal time
integration scheme, and the specific properties of the constitutive

model. All of the other time step restrictions are independent of the
interpolation functions.

5. Reflection Boundary Conditions for MPM

We propose a novel method for applying collisions or boundary
conditions to an MPM simulation at domain walls based on the
reflection boundary conditions of [DSS19]. The motivation for
[DSS19] is as follows: when touching a mirror, the mirror itself
applies the same forces to your hand that a physical reflection of
your hand would. Thus, boundary conditions can be enforced by
running the simulation as though a reflected copy of each particle
existed on the other side of the domain walls.

Reflection boundary conditions were used in [DSS19] to enforce
fluid boundary conditions at domain walls, including no-slip, free
surface, and free slip conditions. Our method builds on [DSS19]
with three improvements: (1) whereas [DSS19] modified mass and
momentum, we modify velocity directly; this conserves mass and
(where appropriate) momentum, (2) [DSS19] applied mass and mo-
mentum modification at various stages in their algorithm, whereas
we require only a single velocity correction step at the end of the
grid evolution, and (3) [DSS19] did not support friction or separa-
tion; we extend our formulation to these cases. Unlike [SSC∗13],
where particles can seep into objects by a grid cell or so, our method
stops particles at domain walls. We give an overview of the moti-
vation and method here and refer the reader to the supplementary
document for a full derivation and proofs of important properties.

Reflection notation and boundary types. We use r(·) to refer to
reflected quantities: r(i) is the index of the grid node (or cell) ob-
tained by reflecting i across the domain wall, and r(v) = Av+ 2b
is a reflected velocity with A a diagonal matrix and b a vector. The
choice of A and b determine the type of boundary condition being
enforced: A = I,b = 0 is a free surface boundary condition (in the
computational fluid dynamics sense), A = −I enforces the no-slip
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boundary condition v = b, and A = I− 2nnT , b = vnn enforces a
slip boundary condition (n · v = vn). Note that n = ±ea, where ea
are the axis vectors, since our domain walls are axis-aligned.

Modified mass, momentum, and forces. For motivation and
completeness, we briefly review the reflection boundary conditions
presented in [DSS19]. In that work, the boundary conditions are
enforced by solving a modified grid system, constructed by trans-
ferring data from both the regular particles p as well as a virtual,
reflected copy r(p) (which is never actually constructed). Below, a
hat indicates a modified quantity computed from both real and re-
flected particles, while no hat indicates a quantity computed from
the real particles only. The modified grid mass is given by

m̂n
i = ∑

p
wn

ipmp +∑
p

wn
ir(p)mr(p) = mn

i +mn
r(i). (9)

That is, the mass from the reflected grid node is simply added to
the mass of the grid node. Similarly, the modified grid momentum
can be shown to be

m̂n
i v̂n

i = mn
i vn

i +mn
r(i)r(v

n
r(i)). (10)

Finally, in [DSS19], the addition of the reflected particles also re-
sults in modified forces f̂i = fi +Afr(i).

While enforcing the domain boundary conditions, the above
modified system does not conserve mass or momentum (along
directions where no velocity is enforced and momentum should
therefore be conserved, e.g., all directions in the free surface case).
Our proposed reflection boundary condition alleviates these issues
and facilitates our treatment of friction and separation.

Modified velocities. We observe that using the original grid
masses, and modifying only the grid velocities in a manner con-
sistent with Eqs. (9)-(10), we obtain both conservation of mass
(trivially), and conservation of momentum in the free surface case
(A = I,b = 0), since

mn
i v̂n

i +mn
r(i)v̂

n
r(i) = mn

i v̂n
i +mn

r(i)v̂
n
i = m̂n

i v̂n
i = mn

i vn
i +mn

r(i)v
n
r(i).

Similarly, for slip boundary conditions, this choice conserves mo-
mentum in directions where a specified boundary velocity is not
being enforced.

Therefore, our reflection boundary conditions take the form of
a velocity correction applied at the end of the grid update (Algo-

Figure 7: Our reflection boundary conditions produce accurate
frictional forces. A purple block slides along the ground with fric-
tion and comes to a stop, in agreement with the analytic solution
(blue block, red lines).

Figure 8: Sand pours into a pile. Our reflection boundary condi-
tions handle the frictional collisions with the ground.

rithm 1, Line 6). Using Eqs. (9)-(10), this is given by

v̂n+1
i = α

n
i vn+1

i +α
n
r(i)r(v

n+1
r(i) ), v̂n+1

r(i) = r(v̂n+1
i ), (11)

α
n
i =

mn
i

mn
i +mn

r(i)
, α

n
r(i) =

mn
r(i)

mn
i +mn

r(i)
. (12)

This correction is only applied near the domain walls where mn
i 6= 0

and mn
r(i) 6= 0, limiting it to a thin band around the domain bound-

aries whose thickness depends on the MPM transfer stencil width.

Frictional contact and separation. We extend the reflection
boundary condition in the slip case to handle Coulomb friction and
separation. Our frictional contact treatment uses the modified ve-
locities in Eqs. (11)-(12). As a result of enforcing the slip bound-
ary condition by reflecting the velocity, the total tangential momen-
tum was conserved but the normal component of total momentum
changed. The difference in the normal component is found to be

∆pn = (mn
i v̂n+1

i +mn
r(i)v̂

n+1
r(i) ) ·n− (mn

i vn+1
i +mn

r(i)v
n+1
r(i) ) ·n

= 2mn
i α

n
r(i)(2b−vn+1

i −vn+1
r(i) ) ·n.

Therefore, we define the separation decision variable c = (2b−
vn+1

i − vn+1
r(i) ) · n. The sign of c indicates whether the momen-

tum exchange in the normal direction due to the reflection bound-
ary condition was a push (c ≥ 0, friction) or pull (c < 0, separa-
tion). If c ≥ 0, we apply friction to the modified velocity by de-
composing it into normal and tangential parts, v̂n+1

in = nnT v̂n+1
i ,

v̂n+1
it = (I−nnT )v̂n+1

i , and then scaling the tangential part accord-

Figure 9: Sand falls into a pile, with low friction (left) and high
friction (right) simulated with our reflection boundary conditions.
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Figure 10: The sound speed estimate used in [FHHJ18] (red) differs significantly from our exact sound speed calculation (green). The
deformation gradient is described by its singular values σ1,σ2,σ3. Each plot shows the sound speed c along a different path in configuration
space, parameterized as a function of σ1. (A-D) The estimate of [FHHJ18] is exact only at the rest configuration (σ1 = σ2 = σ3 = 1, marked
with •). (B) The sound speed is clearly not a function of J alone. The estimate of [FHHJ18] depends only on J = σ1σ2σ3, erroneously
predicting the rest configuration sound speed whenever J = 1, even very far from rest. (C,D) Their model predicts sound speeds both above
and below the actual sound speed, and the difference can be quite large.

ing to the Coulomb friction law,

v̂n+1
iµ = v̂n+1

in +βv̂n+1
it , β = max

(
1−µ

∆pn

m̂n
i ‖v̂

n+1
it ‖

,0

)
.

The final velocities are v̂n+1
iµ and v̂n+1

r(i)µ = r(v̂n+1
iµ ).

If c < 0, then we must compute separating velocities vn+1
i,sep,

vn+1
r(i),sep instead. To do this, we combine the original normal ve-

locities and the modified tangential velocities

vn+1
i,sep = nnT vn+1

i + v̂n+1
it , vn+1

r(i),sep = nnT vn+1
r(i) + v̂n+1

it .

This choice conserves momentum, is continuous with the frictional
solution at the transition (c = 0), and allows free separation in the
normal direction by not modifying those velocity components. De-
tailed derivations for these formulas and proofs of their properties
are provided in the accompanying technical document.

6. Results and Discussion

Statistics for our simulations are shown in Table 1. The 3D results
were rendered using SideFX/Houdini.

Effectiveness of sound speed CFL restriction. In Fig. 1, we per-
turb a sphere to make it vibrate. We run it first with the sound
speed CFL very near the limit to produce a stable simulation. We
then use the minimum time step size taken during this simula-
tion (ignoring the smaller time steps that sometimes occur at the
end of frames to match up with the frame boundary) as a bench-
mark (∆tmin ≈ 0.0024). Next, we run with fixed time step sizes
of increasing size until we find the maximum stable fixed time
step (∆t = 0.0026, +8%), the smallest unstable time step size
(∆t = 0.0027, +13%), and the smallest time step sizes that ex-
plodes (∆t = 0.0029, +21%). Our sound speed CFL predicts time
steps that are very close to the line of stability on this test. Note that
the sound speed CFL is not sufficient for stability (e.g., when the
single-particle stability time step is smaller). Our observation has
generally been that when the sound speed is the limiting factor, it
tends to be quite close (10−25%) to the line of stability.

Comparison with previous sound speed estimates for MPM.
We compare our exact sound speed calculation with the approxi-
mation given in [FHHJ18] for the St. Venant-Kirchhoff constitutive
model (ν = 0.3, E = 103) with Hencky strain, as shown in Fig. 10.
Their estimate assumes linear elasticity at the rest configuration;
at other configurations it may underestimate (leading to instabil-
ity; Fig. 11) or overestimate (leading to unnecessarily small time
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Figure 11: Although the approximate sound speed given in [FHHJ18] is close to the actual sound speed near the rest configuration, it
frequently underestimates the actual sound speed, which can lead to instabilities. In this simulation, we compress a sphere between two
moving plates using maximum velocity and sound speed to limit time step sizes. Running with their sound speed estimate (right sphere in
each image) and a high CFL number (ν = 0.99), we can observe that their estimate is too small, resulting in instability. The simulation is
stable when run with the our sound speed and the same CFL number (left sphere in each image).
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step sizes) the sound speed. Away from rest, there are many dif-
ferent physical wave speeds corresponding to different directions
and wave types, and kinks in the sound speed curves are observed
where the maximum wave speed switches between different phys-
ical waves. Fig. 10 shows that the physical sound speed is not
smooth near the rest configuration (A,B), and changes in the dom-
inant wave speed are not caused solely by changes in the dominant
singular value (C). Finally, the estimate of [FHHJ18] implicitly as-
sumes that pressure is purely a function of J = det(F). This does
not apply to popular hyperelasticity models such as Neo-Hookean,
whose pressure does not depend only on J, or the corotated model,
which has no J dependence at all.

Single-particle instability. In Fig. 2, we show a simple 2D fluid
dam break. This simulation becomes unstable when the CFL re-
striction is not honored or when a particle becomes isolated and the
the single-particle stability criterion is not met. The heuristic sta-
bility criteria on velocity, particle displacement, and deformation
gradient change alone are insufficient for stability. In Fig. 5, we
pour water into a box. The isolated particle stability criterion keeps
the simulation stable even when particles become isolated as the
water splashes.

Combinations of different time step restrictions. Figure 4 shows
a simple simulation with two colliding spheres. In Fig. 3, we show
the consequences of running the simulation with different combi-
nations of time step restrictions.

Reflection boundary conditions. To demonstrate the effective-
ness of the proposed reflection boundary conditions, we run a num-
ber of collision tests. Figure 6 shows a ball bouncing off a ground
with different types of reflection boundary conditions, demonstrat-
ing a variety of behaviors that can be achieved. Figure 7 shows that
our friction reflection boundary condition produces accurate fric-
tion forces that match the analytic solution. Figure 9 shows a col-
umn of sand falling into a pile with different friction coefficients.
In Fig. 8, we pour sand from a spout into a pile. Friction with the

Table 1: Simulation statistics. ψ: fixed corotated (FC), Neo-
Hookean (NH), Drucker-Prager (DP), λ

2 (J−1)2 (FL), λ

2 ln2 J (FG,
video only). The columns ∆t% and bc% show the percentage of sim-
ulation time spent computing time step restrictions and reflection
boundary conditions, respectively.

sim sec/frame ψ ∆t% bc% res particles

1 < 1.3 FC 0-13 2-3 323 24k
2 < 1 FL,FG 25-26 < 1 642 2k
4,3 < 1 NH 0-10 2-4 643 4k
6 1.2−1.5 FC 6-7 6-7 323 2k
9 300,316 DP 16,17 < 1 1283 914k
7 28 FC 11 < 1 256×642 545k
5 37 FL 17 1 643 608k
8 57 DP 18 2 5122×192 131k
12 99 DP 18 0 256×1282 155k
13 360 FC 9 < 1 240×962 1480k

Figure 12: Sand flows through an hourglass showing compatibility
of our algorithm and time step restrictions with complex collisions.

ground keeps the sand pile stable. Our robust treatment of parti-
cle sources for APIC is detailed in the supplementary document.
Our algorithm and time step restrictions also work well with other
collisions treatments, such as for the hourglass in Fig. 12. In Fig-
ure 13 we drop 36 objects into a box, demonstrating robust simula-
tion even with many collisions.

7. Conclusions and Limitations

The time step restrictions proposed have a number of limitations. In
this paper, we assume that forces are due to a hyperelastic isotropic
constitutive model, possibly with plasticity. Our algorithm for com-
puting sound speed omits pathological cases, since we found that
they occur far too rarely in practice to justify the cost of comput-
ing them. Our CFL assumes no damping forces such as viscosity
or Rayleigh damping, which would alter the speed of information
travel and change the time step restriction. Extending the deriva-
tion to include such models would be useful. Although gravity does
not cause stability problems, other non-constitutive forces such as
penalty springs may, and suitable adjustments to the time step re-
strictions would be required to keep them stable. Damping models
that cannot produce instabilities on their own (scaling down veloc-
ity, averaging velocities of nearby grid nodes or particles, blending
APIC with RPIC, etc.) may allow larger time steps to be taken than
we predict.

We have not analyzed the consequences of using FLIP or
FLIP/PIC blends. All of our tests were performed on APIC, though
we verified that the single-particle instability also occurs read-
ily under PIC transfers. We have no particular reason to believe
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Figure 13: Many stiff, deformable objects fall into box, undergoing complex collisions with each other, the stationary bar, and the box.

that the stability restrictions for sound speed, velocity, particle dis-
placement, or deformation gradient should be different for FLIP,
PIC, FLIP/PIC blends, APIC/RPIC blends, MLS, PolyPIC, other
choices of basis functions, or other transfer strategies. The single-
particle stability analysis for PIC works well for APIC and we ex-
pect that it would work well for other PIC-like transfer schemes
that interpolate their particle state from the grid, though we note a
rather strong dependence on the basis function (quadratic vs. cubic
spline in our analysis), suggesting that a new constant should be
calculated if a different interpolation basis is used. We suspect that
the single-particle stability analysis for FLIP may look quite differ-
ent due to its tendency to accumulate energy in transfer null modes
even for implicit methods.

We derived the single-particle instability case for PIC transfers;
we leave a full APIC treatment for future work. We have not formu-
lated an efficient time step restriction for the single-particle insta-
bility for non-pressure constitutive models. We have constructed
single-particle simulations with general constitutive models that
display the instability, confirming its existence. However, we have
never observed the instability in a multi-particle simulation, even
when particles become isolated. This is quite unlike the fluid case,
where the instability is seen frequently. There are many simple
heuristic solutions (for example, linearizing the constitutive model,
bisection search on the energy density, using the pressure version
on the dilational stress component, etc.), but they are either too ex-
pensive or do not provide the level of guarantee that we would like.
As such, we prefer to propose no solution at present and leave this
for future work.

Our time step restrictions do not provide a guarantee of stabil-
ity, and we have examples of simulations that will fail with these
criteria (such as the single-particle solids simulation). In practice,
however, it is actually quite difficult for a simulation to explode
with our time step restrictions enabled. Very few of the simulations
we deliberately made unstable by violating time step restrictions
actually exploded; the Fn

p criterion slows the rate of divergence un-
til another restriction (such as Cn

p) drives down the time step size
sufficiently to stabilize the simulation. Nevertheless, such simula-
tions are unusable. It is interesting to note that the availability of the
Cn

p time step restriction actually makes APIC more stable than the
equivalent PIC simulation in some cases. In future work, we would

like to further study the stability of our scheme using techniques
such as Von Neumann stability analysis.

Determining the stable time step adds nontrivial computational
overhead in our implementation (up to 18% for large simulations),
where we have implemented them as separate memory passes for
convenience. Of these, the deformation gradient and position time
step restrictions account for the significant majority of the cost,
since the pass involves grid-to-particle transfers. This overhead is
offset in three ways. (1) For larger simulations, the average time
step tends to be about 1.5 times the minimum time step. This more
than offsets the additional computational cost for most (but not all)
of the large simulations. (2) In practice, the time step size that will
be selected by trial and error is not equal to the actual minimum
required (we tend to reduce the time step by factors of two until
we get acceptable results). (3) Finding the stable time step size by
trial and error requires the simulation to be run a few times, which
is usually not reported for in timing comparisons. For example, for
Figure 1, we ran the simulations in a binary search procedure to
find the best time step size, which required running the simulation
about ten times.

In this paper, we have not considered implicit methods. As gen-
eral guidance, an implicit method is a better choice if accuracy is
not very important, forces are stiff, and plasticity is not being used.
More accuracy would require the implicit time steps to be small
anyway. Non-stiff forces would allow the explicit solver to take
large time step sizes. Handling plasticity accurately in standard im-
plicit methods leads to asymmetrical systems that are expensive to
solve. The criteria in this paper make explicit methods more com-
petitive with implicit ones in two ways: they alleviate the need to
select a time step size by trial and error (something implicit meth-
ods generally do not require), and they allow larger time step sizes
since every time step can be run near the stability limit.
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