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Penalty Force for Coupling Materials with
Coulomb Friction

Ounan Ding and Craig Schroeder

Abstract—We propose a novel penalty force to enforce contacts with accurate Coulomb friction. The force is compatible with
fully-implicit time integration and the use of optimization-based integration. The contact force is quite general. In addition to processing
collisions between deformable objects, the force can be used to couple rigid bodies to deformable objects or the material point method.
The force naturally leads to stable stacking without drift over time, even when solvers are not run to convergence. The force leads to an
asymmetrical system, and we provide a practical solution for handling these.
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1 INTRODUCTION

COLLISIONS between objects are a very important vi-
sual phenomenon, and the problem of resolving them

has been explored extensively within computer graphics.
Methods for resolving collisions can be classified broadly
into three categories: Constraint-based approaches, penalty
methods, and impulse-based methods.

Constraint-based approaches formulate contacts as al-
gebraic constraints. These methods come in a wide variety,
based on how the constraints are formulated, how friction
is treated, the type of numerical problem that results, and
how that problem is solved. The simplest formulations
ignore friction during contact resolution, treating collisions
as simple constraints [1], [2] and applying friction as a post-
process. These methods are attractive because they yield
problems that can be solved efficiently. Coevoet et al. [3]
used a frictionless formulation with linearized finite element
forces to achieve real time simulations of soft robots. Includ-
ing friction in the formulation complicates the formulation
significantly, resulting in linear or nonlinear complementar-
ity problems (LCP or NCP) [4], [5], [6], [7]. This approach is
particularly popular for rigid bodies, which are well-suited
to this formulation due to the long-range effects of contacts
and collisions in systems and the difficulty of resolving them
simultaneously, but formulations with deformable objects
are also possible [8]. Methods based on LCP or NCP formu-
lations tend to scale poorly with the number of constraints
n, scaling asO(n2) or worse [9]. The difficulty arises because
the problem of resolving contact constraints is combinatorial
in nature. Indeed, the general problem of computing contact
forces to satisfy normal and frictional constraints is NP-hard
[4]. The problem may also have no solution, necessitating
the use of impulses to guarantee a solution. When collisions
are decoupled from internal forces for deformable objects,
implicit forces can be computed independently per object
and in parallel, which can help offset the scaling with
respect to the number of constraints [10].

Penalty formulations instead treat contacts as elastic
forces, which are integrated alongside other forces. Due
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to their simplicity, penalty formulations are quite old [1],
[11], [12], [13]. These methods are attractive because the
computational cost of applying penalty forces scales linearly
with the number of constraints, making them a popular
choice for haptics [14]. A major limitation is the need to
tune penalty stiffnesses, which represent a trade-off between
performance and accuracy. Penalty methods normally allow
some degree of collision to exist, though a stiff barrier
potential is sometimes used to prevent this at additional
computational cost. In this paper, we will use a penalty
formulation because of its flexibility and because it allows
us to naturally couple contact forces with elastic forces.

Impulse-based formulations represent a third approach
to resolving contact. These methods work by resolving con-
tacts one by one, iterating until some convergence criterion
is achieved. This strategy is able to include friction and co-
efficient of restitution in a simple way. Due to its simplicity,
this approach has been widely used, such as for cloth [15],
[16] or rigid bodies [17]. Due to the iterative nature, these
methods tend to be biased to some degree on the order in
which collisions are processed, though many strategies exist
to limit or avoid this. Impulse-based contacts are generally
processed separately from elastic forces.

1.1 Penalty methods

Penalty forces compute contact forces as functions of some
measure of penetration depth or close approach. [18] pro-
pose a penalty force model for contact between a robot and
a ground based on linear damper springs. [19] proposed a
penalty formulation based on a nonlinear damper spring,
which they construct to avoid force discontinuities when
contacts are created or lost. [20] adapt this nonlinear damp-
ing spring to the general contact problem between polygo-
nal objects. They propose a penalty force model for contacts
that uses damper springs connected to attachment points
to enforce frictional contact. Their attachment points move
when dynamic friction is applied, a strategy we also employ.
Their penalty force is designed with the advantages and
limitations of explicit time integration in mind. The char-
acteristics of explicit time integration dictate many of the
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Fig. 1. Rigid bodies are dropped into a bowl, and sand is poured on top.

core design decisions, including a careful treatment to avoid
applying too much dynamic friction, which could nonphys-
ically flip the tangential sliding direction. The method of
[21] adapts the penalty force model of [20] to the problem of
robustly simulating problems involving large, time-varying
contact areas. They use semi-implicit integration, including
contact forces in their implicit integration but applying
frictional forces explicitly.

Implicit friction The explicit friction formulations used
by these methods are quite simple. It would seem tempting
to include these models in the nonlinear force computations,
as indeed [21] suggests as a possibility. In practice, this is
a more difficult proposition than it may seem. In the case
of [21], their implicit formulation solves a linearization of
the problem (one step of Newton), followed by explicit
(and very nonlinear) friction. The non-smooth nature of the
static-dynamic transition is incompatible with the linearized
nature of such a solver; the choice of static vs dynamic
would need to be made before finding out whether the
friction cone would actually be violated, which could result
in non-physical strong sticking, tangential velocity reversal,
or energy gain. This problem could be overcome by using
multiple Newton iterations, which would give the solver
a chance to correctly decide between static and dynamic
friction. This solution in turn leads to Newton convergence
problems (friction is non-smooth), line searches (or other
stabilization techniques), and the need to gracefully handle
configurations far from the current one (these occur occa-
sionally when the trial Newton step is poor, during line
searches, etc.). Solving these impediments to implicit friction
is a major contribution of this paper.

An alternative strategy is to formulate the penalty force
using an estimate of the volume of contact [9], [14]. This
formulation emerged as an alternative to methods that com-
puted penalty forces only for the deepest penetrating point,
since this leads to significant artifacts such a chattering.
This problem is largely avoided by applying forces to many
or all penetrating particles, though a degree of resolution-
dependence remains. Due to the complications involved
with harmonizing attachment points and contact volume,
we pursue a depth-based formulation and apply forces to
all penetrating particles.

The computation of depth for deformable objects is
nontrivial and has received significant attention [22]. Of
particular relevance is [23], which used continuous collision
detection to compute colliding point-face and edge-edge
pairs. Their algorithm is explicit and includes Coulomb fric-
tion. Once computed, forces are computed along a chosen
normal direction between pairs and persist until the contact
is resolved.

1.2 Coupling
Part of our motivation for pursuing a penalty force formula-
tion is its ability to couple different types of solid materials.
In this paper, we consider coupling of rigid bodies to de-
formable bodies or to the material point method (MPM).

Many methods have been considered for coupling rigid
bodies to deformable bodies [24], [25], [26], [27] to varying
degrees. For example, [28], [29] allow rigid bodies and
deformable bodies to exchanges forces and be embedded
but do not consider contacts between them. The method
of [30] treats collisions using a combination of impulse-
based methods but also includes some contact forces in
their implicit solves. More recent method [29], [31] achieve
interactive or real-time rates through model simplifications.

Coupling between rigid bodies and MPM has received
much less attention. MPM was original developed by Sulsky
[32], [33] as an extension of hybrid PIC/FLIP fluid schemes
to viscoelastic materials. Since its introduction to graphics
by [34] as a way to simulate snow, MPM has become an in-
creasingly popular simulation choice for complex materials,
including sand [35], [36]. The method of [36] was the first to
couple MPM with rigid bodies. Their method couples MPM-
based sand to rigid bodies by unifying the internal frictional
contact forces from sand with frictional contact forces with
rigid bodies. (Sand was coupled to rigid bodies originally
in [37], but they did not simulate sand with MPM.) Because
the coupling of [36] relies on the sand constitutive model, it
is not a general coupling method and cannot be applied to
other MPM-based materials.

1.3 Tight coupling
In addition to coupling between materials, we are interested
in tight coupling between elastic and contact forces. For

Fig. 2. In this simulation, we throw a cube over a sand box. The cube tumbles through the sand and comes to rest.



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Fig. 3. (Left and middle) Analytic friction tests showing MPM/level set (orange), MPM/rigid body (magenta), rigid/rigid (blue), and rigid/deformable
(green) contacts sliding to the left while obeying the analytic solution (silver). (Right) A stack of mixed objects remains standing indefinitely (rigid:
magenta, blue, green; deformable: red, orange).

some phenomena, such as stacking objects in a pile (See
Fig. 6, where a rigid body is stacked on three deformable
(Lagrangian or MPM) objects), the coupling between elastic
forces, normal contact forces, and friction plays a critical
role in the resulting dynamics and long-term stack stability.
If the bottom objects move out, then the top object will
move down; this downward motion is progress towards
collapse which is physically irreversible due to conservation
of energy. A method that treated friction as a post-process
would allow the pile to fall slightly (the correct behavior in
the absence of friction) converting the gravitational potential
into kinetic energy, which is then dissipated as friction dur-
ing the post-process. An iterative method (impulse-based,
partitioned) can leave small residual errors, which will
accumulate over time until collapse. Even many analytic
methods for systems with only rigid bodies struggle with
long-term pile stability [38]. A similar problem occurs with
wedging (see Fig. 8).

1.4 Our contribution
We propose a novel penalty force with the following prop-
erties.

• The force accurately enforces Coulomb friction, in-
cluding both static and dynamic friction as well
as transitions between them. Where this cannot be
done, the force falls back gracefully.

• The force is compatible with use with fully-implicit
time integration, including the special require-
ments of line-search-based methods (unlike existing
penalty methods).

• The force can be used to couple rigid bodies to
deformable objects or to the material point method.

• The force naturally produces stable stacking with
zero drift over time, even if implicit integration is
solved only approximately (unlike impulse-based
methods or most existing constraint-based methods).

• We demonstrate a practical implicit stabilized
Newton-based solver capable of solving the system
of equations that results from backward Euler. The
equations are especially challenging due to the inclu-
sion of friction and are non-smooth with asymmetri-
cal derivatives. The solver is also capable of stabiliz-
ing elastoplastic simulations, such as those that arise
from the Drucker-Prager constitutive model for sand.

2 PENALTY FORCE

We propose a penalty friction force to model collisions and
contacts between particles and objects. The flexibility of the

proposed force comes from the variety of representations
that can be treated as particles or objects.

Particles. The particles can be almost anything La-
grangian. In our examples, we use (1) degrees of freedom
from a deformable object simulation, (2) particles from a
material point method (MPM) simulation, and (3) vertices
from the surface mesh of a rigid body. Note that in cases
(2) and (3), the particles are distinct from the actual degrees
of freedom on which the integration of forces will occur
(grid nodes for MPM, velocity and angular velocity for rigid
bodies). It is sufficient for the velocities (and positions) of
these particles to be computed from the degrees of freedom.
Following the principle of virtual work, we use the trans-
pose of this mapping to apply forces.

Objects. Suitable choices for the objects are a bit more
restrictive, since the formulation of the penalty force must
be tailored to properties of the object. We formulate versions
of the penalty force for level sets and triangular surface
meshes. Using these, we demonstrate collisions against
fixed objects and boundaries, rigid bodies, and deformable
objects. We use these options to demonstrate a range of ca-
pabilities, including deformable object self-collisions, rigid-
rigid collisions and contacts, rigid-deformable coupling,
rigid-MPM coupling, and handling of collisions with fixed
objects for all simulation types.

Spring force. We formulate our force as a spring force
connecting the particle (at location Z) with an attachment
point on the object (at location X). The attachment point
is able to slide along the surface of the object to a potentially
new location Y, a process we will refer to as relaxation.
For the force itself we simply use a zero-length spring,
where the force applied to the particle Z is f = k(Y − Z).
If the object is dynamic, an equal and opposite force is
applied at the relaxed attachment location Y. The constant
k is the stiffness of the penalty force, which we choose as
a compromise between the depth of penetration and the
amount of stiffness in the resulting system.

Enforcing friction. The attachment point may be
thought of as the place that the particle should be, and the
spring applies a force on the particle to pull it there. The
attachment point behaves as a massless point that collides
with the object by exchanging normal and tangential forces
subject to Coulomb friction. This massless point is not
solved for as a degree of freedom; rather, its position is
computed by relaxing from its original location X to a new
location Y which satisfies the Coulomb friction cone. This
relaxation step is a nonlinear projection operation (at least
approximately), which we will denote as Y = P(X,Z).
Eliminating Y, we get the penalty force f = k(P(X,Z)−Z),



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Fig. 4. Our frictional contact force handles rolling friction automatically. The blue/green sphere rolls due to friction, while the red/orange sphere has
a very low friction coefficient and slides. Note that the orange sphere falls down the incline faster, as would be expected.

where X is fixed and k is a constant. Note that the projection
operator P will depend on the degrees of freedom of the
object, which may itself be dynamic. At the end of the time
step, we update the attachment point (Xn → Xn+1) using
Xn+1 = Y = P(Xn,Zn+1). What remains is to formulate
this projection, which takes different forms for different
types of objects. We provide pseudocode in a separate
technical document for the force and relaxation routines,
as well as their derivatives. To simplify notation, we will
omit superscripts on X, Y, and Z. The original attachment
location X is fixed, the particle position Z is being computed
by a newton solve, and the relaxed attachment location Y is
computed when needed from X and Z.

Representation of attachments. In the case of moving
objects, the attachment point must be fixed to the object in a
meaningful way. For rigid bodies, we store the attachment
point in the object space of the rigid body. For deformable
objects, we represent the attachment by its barycentric coor-
dinates in the triangle that the particle is colliding with. In
this way, attachment points naturally move with the object;
when static friction is being applied, the representations of
attachment points are untouched.

Mechanism of stable stacking. The means by which sta-
ble stacking is achieved is worth emphasizing. In constraint-
based or impulse-based formulations, small movements of
colliding points across a surface (due to, among other things,
convergence error) may lead to long-term drift of the col-
liding point over the surface. This may in turn cause piles
or stacks to collapse. Methods that use penalty forces with
attachment points behave quite differently. The colliding
particles are still able to move around (in both normal
and tangential directions), but these particles are tethered
to an attachment point. As long as the attachment point
is prevented from moving relative to the object (which

we accomplish by storing the attachment in the reference
space of the object), no long-term progress towards collapse
is possible. The particle can only move around in a small
region near its attachment point.

2.1 Relaxation - properties
Let Y = P(X,Z) be the relaxed (projected) attachment
point and f = k(Y − Z) the resulting force. If n = n(Y)
is the local normal direction of the object at the projected
attachment location, then our point should satisfy the fol-
lowing properties.

• Y is on the surface on the object.
• The projection is idempotent: Y = P(Y,Z).
• The friction cone is satisfied: ‖f − (f · n)n‖ ≤ µf · n.
• The attachment point should not be relaxed further

along the surface than necessary to satisfy the friction
cone.

Note that the last requirement is a slightly weakened form
of the usual complementary condition, which is necessary to
accommodate a non-smooth object surface. Since the force
is linear in positions, the friction constraint is equivalent to
the more convenient geometrical constraint

‖(Y − Z)− ((Y − Z) · n)n‖ ≤ µ(Y − Z) · n. (1)

The choice n = n(Y) was not the only option available
for computing a normal direction; Fig. 5 motivates the
appropriateness of this choice.

2.1.1 Relaxation with a plane
We begin with the simple case where the object is a plane
(See Fig. 5). If (1) is satisfied with Y = X, then the
attachment experiences static friction and does not move.
Otherwise, the attachment X should be moved along the
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(X = Y)
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? Z
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X Y

◦

Fig. 5. A particle Z as pulled to the surface by an attachment point X. In dynamic friction, the attachment point X is outside the friction cone (dotted)
and relaxes along the surface to the friction cone Y, resulting in a penalty force that satisfies Coulomb friction. In static friction, the attachment
point X is already inside the friction cone and does not move (X = Y). In the non-planar case (?), there is not a single constant normal direction.
Intuitively, the attachment at Y should lie on the friction cone for the planar surface as well as the green and red curved surfaces. That is, friction is
a local property that depends on the surface at only one location. Viewed in 3D (◦), the attachment X is relaxed towards the closest point on the
plane W until it reaches the cone at Y, since the projection of a force from X to Z onto the surface points in this direction.
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Fig. 6. Our method maintains stable stacks in configurations that rely on force balance between elastic forces, contact, and friction. Stable stacking
is shown with rigid/deformable (left) and MPM/rigid (left middle). If friction is reduced, the stack collapses as expected (right two).

surface by the penalty force f until (1) is satisfied. Let
W = Z − φ(Z)n be the closest point on the plane to Z,
where φ is the level set function for the planar object. This
force pulls X along the surface towards W to the point
Y = W+ s(X−W), where s is the largest scalar 0 ≤ s ≤ 1
satisfying (1). Solving this equation yields

s = µ
‖Z−W‖
‖X−W‖ . (2)

2.1.2 Relaxation with level set
If we are colliding a particle with a level set, and that level
set represents a plane, then we have a simple algorithm to
compute Y directly. More generally, the level set will not
be flat. Relaxing the attachment based on the local force
would amount to solving an ODE, which is unnecessarily
complicated. Instead, we relax the attachment point towards
the closest point W = Z − φ(Z)n(Z) on the surface of the
object as we did in the plane case. Unlike the plane case, a
point K = W + s(X −W) along the segment connecting
two points X and W on the surface need not be on the
surface. We project this point to the surface to compute the
desired relaxed point Y = K− φ(K)n(K).

The attachment point Y(s) is a nonlinear function of a
single scalar 0 ≤ s ≤ 1. Let

g(s) = ((Y − Z) · n(K))2 − µ̄‖Y − Z‖2 µ̄ =
1

µ2 + 1
.

Then g(s) ≥ 0 is equivalent to (1). If g(1) ≥ 0 then
Y(1) = K = X satisfies (1); the attachment experiences
static friction and does not move. Otherwise, g(1) < 0.
Observe that Y(0) = W and n(W) = n(Z) so that
g(0) = (1 − µ̄)φ(Z)2 ≥ 0. If g(s) is continuous, a suitable s
must exist, and a method such as bisection may be used

case 1
(triangle) done?

case 2
(triangle) done?

re-enter
triangle?

case 3
(edge)done?

case 4
(vertex)

feasible
triangle?

feasible
edge?

exit exit

no no

yes

no

nono

yes

yes

yes

no

yes

yes

Fig. 7. This figure shows the case transitions for the mesh-based relax-
ation algorithm. The algorithm begins at the green node and ends when
reaching a red node.

to compute it. In practice, g(s) need not be continuous
(e.g., at sonic points of the level set), and bisection may
terminate at a discontinuity. In this case, the friction cone is
only weakly satisfied. While differentiating this procedure
is manageable, doing so robustly is quite difficult.

Instead, we observe that we are typically only moving
points a small distance during a time step. Locally, the
level set should look like a plane. Motivated by this, we
simply compute s using (2) rather than by bisection. This
approximation gives up the projection property and means
that Coulomb friction is only approximately satisfied, but it
seems to be a good comprise in practice.

Initial attachment location. When a collision first occurs,
an attachment location X must be chosen. Ideally, one
would chose X to be the location on the surface of the level
set where the particle crossed it. To avoid complications for
rigid bodies, we simply use X = Z − φ(Z)n(Z); this con-
trasts with the CCD case, where a good initial attachment
location is readily available. While this is less accurate than
using the point of entry, this only introduces an error in
the time step in which the collision is first encountered.
In subsequent time steps, the attachment location X will
not move relative to the object (static friction) or will relax
across the surface (dynamic friction) according to Coulomb
friction.

Note that no friction will be applied when the particle is
at the location where the collision was first detected (or more
generally whenever the particle happens to be below the
attachment point). The lack of force under these conditions
does not mean the particle is not being tethered to this
attachment location. The particle will feel strong frictional
forces if it ever attempts to leave the vicinity of the attach-
ment point. This is not particularly surprising; a stationary
box on a level surface also experiences zero frictional force.
The box will only experience non-zero frictional forces if one
tries to move it.

Limitations of the level set formulation. The primary
limitation of the level set formulation is the discontinuities
caused by sonic points. The formulation works well when
the surface has low curvature. This keeps sonic points away
from the surface and also makes the approximate computa-
tion of s more accurate.

2.1.3 Relaxation with surface mesh

When colliding against a level set, we can immediately
determine whether a collision is occurring and project to
the closest point on the surface. When we are colliding
with a triangulated surface mesh, these operations are more
expensive.
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A B C D E F G

Fig. 8. Our forces pass wedge tests, where objects are prevented from falling by virtue of being wedged between two parallel plates with friction. The
first three figures shows a wedged deformable/rigid configuration (A); if friction is reduced, the objects slide (B). The wedged objects may also be
dislodged by other collisions (C). We also demonstrate wedging with MPM/rigid (D and E) and rigid/rigid (F and G), first in a wedged configuration
and then sliding when friction is reduced. The blue blocks and magenta spheres are rigid.

Detection. We use continuous collision detection (CCD)
to detect when a particle has penetrated a triangulated sur-
face. This conveniently gives us the barycentric coordinates
for the point of entry as well, which we use to set the
initial attachment X. CCD can normally only be employed
to detect new collisions, and CCD algorithms expend great
effort to ensure that a collision-free state is maintained. This
is because CCD will not detect a colliding particle if it was
already colliding. In our case, a collision-free state is not
maintained; since our force is a penalty force, forces are only
applied if a small amount of penetration is retained. This
is not a problem for us, since CCD will correctly flag new
collisions without a collision-free state. We do not need CCD
to tell us about existing collisions, since we keep a record
of these interactions anyway (we must store attachment
locations for them). Depending on the implementation, CCD
may also detect when a colliding particle exits the surface;
these can be easily detected by checking the triangle normal
and may be safely ignored.

Intuition for relaxation. As intuition for the relaxation
process we formulate, imagine that the attachment point is
a block sitting on the surface and connected to the collid-
ing point Z with an actual spring. The block experiences
Coulomb friction against the surface mesh. Ignoring inertial
effects, the attachment point should slide along the surface
of the triangle mesh along the direction it is being pulled by
the spring force. This process terminates when the friction
cone is satisfied. At this point, we check to see if Z is pulling
Y into the surface or away from the surface. If the latter, we
flag the attachment as inactive and do not apply forces to it.

Convexity consideration. In the case of non-convex
objects, one has to make a choice about when the sepa-

ration test should be performed, since an attachment may
be pulled away from the object during relaxation, even
though the colliding point is in fact inside the object. One
option would be for the attachment to be able to separate
from the surface during relaxation (and possibly re-collide
with it). Another option is to delay the separation test
until relaxation has completed. In practice, we found the
latter option to be simpler to implement, more efficient, and
more effective. See the technical document for details of the
separation tests.

Finite state machine. We implement the resulting relax-
ation algorithm as a finite state machine (FSM) with four
states: (1) the attachment point is in the interior of a triangle,
(2) the attachment point is on an edge of a triangle, (3)
attachment point is on an edge and moves along it, and (4)
the attachment point is at a vertex and tries to leave it via a
neighboring primitive. At each step, we start with an initial
attachment Y(k) on the current primitive and compute a
new attachment Y(k+1) location. The algorithm starts in
state (1) with Y(0) = X. When the algorithm terminates at
step n, we set Y = Y(n). These states are illustrated in Fig. 9
and Fig. 11 and described in detail below. The transitions are
illustrated in Fig. 7.

Triangle cases. Cases (1) and (2) are nearly identical. In
both cases, a relaxation Y(k) → X̂ is performed along the
plane of the triangle in the same way as for a planar level set.
If the computed attachment point Ŷ lies inside the triangle,
then the algorithm terminates with Y = Y(k+1) = Ŷ.
Otherwise, we draw a segment from Y(k) to Ŷ and intersect
it with the triangle’s boundary. The intersection location is
Y(k+1). If we are in case (1) or the edge intersected is not the
same one we entered on (so that Y(k) 6= Y(k+1)), then we

Z

n

WY(k)

Y(k+1)(1,2)
Z

n

WY(k)
Y(k+1)

(1,2)→ (2)
Z

n

W
Y(k)

(2)→ (3)

Fig. 9. In the triangle cases (1,2), the attachment starts at Y(k), which is in the interior (case (1)) or on the edge (case (2)). The attachment is
relaxed within the plane of the triangle; if the friction cone is reached within the triangle (left), the relaxation terminates. Otherwise, the attachment
relaxes to the location where it leaves the triangle (middle); the algorithm enters case (2) with the neighboring violet triangle. In case (2), the
attachment starts on an edge; if it is drawn outside the triangle, then the algorithm transitions to case (3) to relax along the green edge (right).
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Fig. 10. Two tori (magenta is deformable, blue is rigid) are dropped to the ground, demonstrating the ability to handle non-convex objects, including
self-collisions.

transition to state (2). Otherwise, we are stuck on an edge
and unable to make progress along either adjacent triangle.
We may still be able to make progress along the edge, and
we transition to state (3). See Fig. 9.

Edge case. The edge case (3) is similar to case (1), except
that the surface point W is computed as the closest point
on the line containing the edge. If the computed attachment
point Ŷ lies inside the segment, then the algorithm termi-
nates with Y = Y(k+1) = Ŷ. Otherwise, we transition to
case (4). See Fig. 11.

Vertex case. The vertex case (4) is quite different from
the other cases, since the attachment point does not move.
Rather, the goal of this state is merely to find a way to leave
it. First, we check the triangles adjacent to the vertex. If
the spring force would pull the attachment point into the
triangle, then we transition to this triangle in state (2) with
Y(k+1) = Y(k). Note that it is not necessary to compute
the actual attachment location in this triangle. If no progress
can be made in a triangle, then we must check the adjacent
edges. If the spring force would pull the attachment point
along an edge, then we transition to this edge in state
(3) with Y(k+1) = Y(k). Otherwise, the attachment point
would not be pulled from the vertex, and the algorithm
terminates with Y = Y(k). See Fig. 11.

Termination considerations. Observe that if the attach-
ment moves (Y(k) 6= Y(k+1)) then ‖Y(k+1)−Z‖ < ‖Y(k)−
Z‖. That is, the attachment point is being drawn closer to Z.
As as long as the attachment can be prevented from stalling
in one spot, one can prove that primitives are visited at most
a finite number of times (see the technical document for a
proof). Assuming the triangle mesh is not degenerate, this
can only occur when the attachment point is at a vertex.
This can happen in practice due to round-off error. This can
be easily checked, since the barycentric coordinates of the
embedding are computed during case (2). We make two

modifications to the algorithm to address this possibility:
transition to case (4) if a barycentric weight is larger than
1 − 128ε where ε is the floating point epsilon, and only
transition away from case (4) if the test for progress is
significantly larger than round-off error.

2.2 Collision detection

For level-set-based forces we detect collisions using the level
set. We accelerate the search by rasterizing particles and
level sets to regular sparse grids. For CCD-based forces,
collisions are detected using CCD without a collision-free
state. We use bounding box hierarchies to accelerate the
search. In either case, we maintain hash tables of known
pairs, which we use to avoid repeatedly registering the same
pairs. In the case of CCD-based forces, we perform the hash
table check on bounding box candidates before solving the
cubic, since the hash table lookup is significantly cheaper.
Once registered, each collision pair is retained along with
its current attachment point until the collision becomes
inactive. At the end of each time step, inactive collision
pairs are pruned and attachment points for the remaining
pairs are updated to their newly relaxed locations. Note that
this postprocessing step is merely making permanent the
decisions already made during the Newton solver. Collision
pairs that are pruned at the end of the time step were
inactive at the end of the Newton solve and thus were
applying no force.

3 STABILIZED NEWTON SOLVER

We discretize our equations of motion using backward
Euler, which leads to the nonlinear problem

M
vn+1 − vn

∆t
= f(xn+1) xn+1 = xn + ∆tvn+1,

Z

W

Y(k) Y(k+1)

(3) Z

W

Y(k) Y(k+1)

(3)→ (4) (4)→ (2) (4)→ (3) (4)

Fig. 11. In case (3), an attachment starts on an edge Y(k) and relaxes towards the point W along the edge closest to the particle Z. If the friction
cone is reached along the edge, then the relaxation terminates (left). Otherwise, the attachment relaxes to a vertex and the algorithm resumes in
case (4) by trying to leave the vertex (left middle). Case (4) handles relaxation through a vertex. This case is reached when an attachment (blue)
gets stuck on an edge (red) and relaxes along it to a vertex (green). Case (4) transitions to case (2) if progress can be made (violet) in one of the
neighboring triangles (middle). Otherwise case (4) transitions to case (3) if progress can be made (orange) along one of the neighboring edges
(right middle). If no progress can be made, relaxation terminates (right).
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Fig. 12. A complex MPM material interacts with a rigid sphere.

where M is the lumped mass matrix and f(x) are our
forces (gravity, internal, and collision forces). Using ∆v =
vn+1 − vn as our degrees of freedom, we have g(∆v) =
M∆v − ∆tf(xn + ∆tvn + ∆t∆v) = 0. For simplicity, we
refer to the solution vector as z, where z = ∆v. We refer
to the accompanying technical document for details on the
computation of g and its derivative.

Our contact formulation produces nonlinear systems
that result in asymmetrical linear systems. We found that
stabilizing our Newton solver greatly improved solver re-
liability. Stabilizing the solver had the added benefit of
facilitating debugging, since it allows convergence problems
to be tracked down to a definite source.

When using Newton’s method to solve g(z) = 0, where
H = ∇g, we must repeatedly solve ∆z = −H−1g to
obtain a series of corrections. For our forces, it is easy to
see that H is not symmetric. This implies that g = 0 does
not correspond to minimizing anything, since otherwise H
would be a Hessian of this objective and thus symmetric.
This immediately rules out methods such as [2].

One known alternative is to minimize E = 1
2‖g‖2

instead [39]. If g = 0 has a solution, then clearly this will be
a global minimum for E, at which point E = 0. One could
optimize E directly, but this would involve computing the
Hessian of E, which would in turn require us to compute
second derivatives of forces.

Instead, we note that one can actually minimize E while
continuing to use the line search direction ∆z = −H−1g,
as was done in [40]. This direction is usually very desirable;
it is the direction we would use if we could not stabilize
the solver. To be effective, we need this direction ∆z to be
a downhill direction for our new objective E. Consider that
a step will be taken in some direction u. The directional
derivative of E in this direction is ∇E · u = gTHu. Thus,
a direction u is a downhill direction if gTHu < 0. We can
immediately see that the Newton direction is always such
a direction, since gTH∆z = −gTHH−1g = −gTg < 0
(unless g = 0, in which case we are done). This is not
true of the standard objective, where this guarantee only
holds where H is positive definite. In practice, computing
the Newton direction exactly would be too expensive, and
it need not actually exist (for example if H is singular).
Instead, we test to see if it is downhill directly and choose
a suitable fallback if it is not (see its accompanying tech-
nical document). Finally, we perform Wolfe condition line
searches on E in the usual way. Our termination condition
for Newton’s method is that min(‖g‖, ‖HTg‖) < τ , where τ
is our Newton tolerance. Checking ‖g‖ < τ ensures that we
have an accurate solution to our problem (solve g = 0).
The test ‖HTg‖ < τ ensures that we also have a good
solution to the problem of minimizing E, the problem that

the line search is trying to solve. Pseudocode for our solver
is provided in the accompanying technical document.

While this method is only guaranteed to converge to a
local optimum, in practice we have never observed conver-
gence to anything other than an optimal solution. The sonic
points of level sets cause force discontinuities, which in turn
lead to discontinuities along the line search. This may cause
convergence to fail for thin or sharp objects when using level
sets. For this reason, we favor the CCD-based formulation
for such objects.

4 RESULTS

In our tests deformable objects in tetrahedral volume adopt
fixed co-rotated constitutive model [41], with Young’s mod-
ulus E = 106 and Poisson’s ratio ν = 0.45. Deformable
objects in MPM material adopts the same model but with
Young’s modulus E = 103 and Poisson’s ratio ν = 0.3.
Cloth uses mass-spring model [42], with linear stiffness
1000/(1 +

√
2) and bending stiffness 200/(1 +

√
2). The

sand uses the Drucker-Prager model from [35] with Young’s
modulus E = 35.37 × 106 and Poisson’s ratio ν = 0.3. We
set tolerance of Newton’s Method to be 1 by default, and
use smaller tolerance in some tests to avoid visual artifacts.
Detail configurations are shown in Table 1. The maximum
number of Newton iterations is not limited (we set it to
1000). Based on our measurement the average number of
iterations is 3.1 per time step.

Analytic friction tests. The heart of our MPM-rigid
coupling method method is our penalty force for applying
contact and friction. We show that our friction is accurate by
comparing our force against the classical analytic solution
for a point mass sliding along an inclined plane. In Fig. 3
we slide a block down an inclined plane with a variety of
different object types (MPM, rigid bodies, and deformable
objects), shown next to a proxy for the analytic solution.
This demonstrates that we achieve accurate friction regard-
less of object representation. In Fig. 13, we show quan-
titative agreement with the analytic solution. This figure
also demonstrates an important property of our method,
that normal and frictional forces always obey the Coulomb
friction cone. We have run this comparison with a tighter
Newton tolerance to reduce deviations from the analytic
solution caused by solver accuracy. In all of our inclined
plane tests, the block is given an initial velocity 0.1m/s
along the inclined plane. Depending on the friction used
(see Table 1), the block continues sliding (µ = 0.1) or comes
to rest (µ = 0.125). Our method naturally causes rigid
bodies to roll (see Fig. 4).

Stacking. One of the effects that is difficult to handle
correctly when elastic forces, friction, and contacts are not
performed together is stacking. Our method produces stable
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Fig. 13. In this figure, we compare our simulation of a deformable cube on an inclined plane (the green cube in Fig. 3, but with Newton tolerance
10−3) with the analytic solution. (Left) In this plot, we show computed total normal contact force for the cube over time. At the beginning of the
simulation the forces (•) are variable due to the bouncing of the cube as it falls from its initial stress-free configuration onto the inclined plane. After
the cube has settled, the cube slides (•) until coming to rest (•). Superimposed are the analytic ( ) and computed ( ) velocity magnitudes for the
cube, showing close agreement between computed and analytic solution. Note that the abrupt change in the velocity magnitude slope corresponds
with the switch from dynamic to static friction. (Middle) Here, we plot total normal and total tangential contact forces for the cube. During the settling
phase (•), dynamic friction forces are variable but always on the friction cone ( ). Afterwards, the computed dynamic (•) and static (•) friction forces
closely match the analytic solution (+ and ×) and obey the Coulomb friction cone. (Right) Here, we plot total normal and total tangential contact
forces per simulation vertex. During the settling phase (static •, dynamic •), friction closely tracks but never violates the friction cone ( ). Once
settled, the cube experiences dynamic (•) followed by static (•) friction. As expected, dynamic friction lies on the friction cone, and static friction lies
below it. Note that the different vertices of the cube carry different amounts of the cube’s mass, so the per-vertex contact force magnitudes cluster
around different values. Our penalty contact force never violates the Coulomb friction cone.

stacking (see Fig. 3). Here we stack five blocks (a mixture
of rigid and deformable objects), which stands stably and
never falls (it remained standing for 100,000 frames, by
which time it had come to rest). As long as contacts are in
the sticking state, the attachments will never move. Because
of this, the contacts will never drift, even over long periods
of time. In Fig. 6, we form a pyramid by stacking a rigid ball
on deformable or MPM objects. The stacks are stable and do
not drift over time. This is a difficult test for many methods
to pass. If elastic forces are evolved without friction, the
objects at the base will slide out slightly, and the sphere
will make some progress downward. This progress will not
be corrected when friction is applied to the base objects. If
the sphere is able to make downward progress or the base
objects are able to make outward progress, the pyramid will
eventually collapse. We tested the pyramid stack using the
method of [30] and verified that it does indeed creep to
collapse (see video).

Wedging tests. Another test that is difficult to pass with-
out coupling between elastic forces, contact, and friction is
the wedging test. In this test, two objects are squeezed by
two fixed parallel vertical walls (see Fig. 8), and gravity is
applied. Initially the objects overlap with the walls a little
bit. This small penetration generates penalty forces. With
adequate friction, the objects should be able to jam in place
and never slide down the wall. As with the pyramid stack,
the key to long term stability in this case is preventing the
objects from making downward progress once they have
become jammed. This jamming depends on the interaction
of all three types of forces. We demonstrate jamming at
higher friction and that sliding is recovered if friction is
lowered.

Coupling with complex materials. Like [36], we are able
to couple rigid bodies with sand. In Fig. 2, we throw a
cube over a sand box. In Fig. 14, we roll a sphere down
a sand pile. In Fig. 16, demonstrate that pouring sand on a
sphere causes that sphere to roll, thereby demonstrating the

frictional forces between them. In Fig. 12, demonstrate that
we are able to couple to complex MPM materials other than
sand. In Fig. 1, we demonstrate that we can scale to large
numbers of objects.

General tests. Our method handles dynamic scenes,
non-convex objects, and interactions between different ma-
terials. In Fig. 15, we demonstrate compatibility with cloth.
In Fig. 10, we demonstrate that deformable-deformable and
deformable-rigid contacts also work correctly with non-
convex objects.

To judge the relative cost of our collision handling
in comparison to other parts of the algorithm, we com-
puted a breakdown of the runtime cost for three rep-
resentative examples: MPM “sand on sphere” (Fig. 16),
non-convex rigid/deformable “torus dr” (Fig. 10), and
rigid/deformable/cloth “cloth” (Fig. 15). For the MPM ex-
ample, collision-related steps added only minor cost (4.0%
for CCD, 0.6% for computing collision forces). The signifi-
cant majority of the time was spend computing and apply-
ing internal sand forces (90.3%), with the remaining steps
taking about 5% of the total time. The low cost of collisions
in this example is due to three factors: the large number of
particles involved in the sand, the relatively low number of
particles close enough to collision objects to be involved in
collision processing, and the cost of particle/grid transfers.
For the non-MPM tests, continuous collision detection is a
major part of the total cost (torus: 43.5%, cloth: 54.0%). In
both cases, calculating collision forces, computing and ap-
plying collision force derivatives, and performing relaxation
are minor (less than 2%). Computing and applying internal
forces and other solver-related steps contribute most of the
rest (torus: 55.4%, cloth: 44.0%).

To evaluate the convergence of the relaxation procedure,
we consider the breakdown of states encountered during the
non-convex example Fig. 10. The relaxation nearly always
terminates at the starting state (approximately 99.77% of the
time). Thus for performance purposes, the algorithm com-
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Fig. 14. Sand is dropped into a pile, and then a heavy sphere is dropped on time, penetrating into the sand.

pletes in one step, and the history that must be stored for
derivatives is of constant size (see the technical document
for details). For robustness, however, the remaining 0.23%
cases must still be handled reliably. An single extra step
(case 1 → 2) was taken in nearly all of the remaining cases
(0.21%). The other case transitions that were observed in
this example were (in order from most to least frequent):
1 → 2 → 3, 1 → 2 → 2, 1 → 2 → 2 → 2, and finally
1 → 2 → 3 → 4 → 2 (which occurred three times in this
simulation). No relaxation terminated in more than 5 steps
for this example. This example illustrates that it is possible
for the attachment to relax across multiple triangles in a
single time step (up to four triangles in this example).

The constant k determines the stiffness of the penalty
forces and is an important parameter in any penalty force
model. Reducing k results in deep penetration, which pro-
duces observable artifacts and must be avoided. Increas-
ing k produces linear systems with poorer conditioning,
which makes solvers less accurate and slower to converge.
Reduced accuracy from the linear solver is not a major
concern in our case, since these errors will be corrected
in the next Newton iteration. However, the slower conver-
gence is a major concern, and careful tuning of parameters
(both penalty stiffnesses and other solver parameters) can
improve solver performance significantly. We observed that
acceptable results can be obtained with only very crude
parameter tuning. Indeed, most of our tunable parameters
are simply powers of ten (See Table 1).

We run the test “torus dr” with a range of coefficients
of friction (0.1, 0.2, 0.5, 0.6, 1.0 and 10) and a range of
stiffness (10, 102, 103 and 104). The method is able to
accurately simulate dynamics at any coefficient of friction.
The performance is not sensitive to the coefficient of friction.
The simulations are stable and convergent in all cases,
though convergence problems are observed for the highest
stiffness (k = 104). Performance is strongly dependent on
the stiffness, and a reasonable choice of stiffness is important
for practical applications.

To understand the performance of our method compared
to other penalty-based methods, we test our contact algo-
rithm against that of [20]. Direct and fair comparison is
complicated by the fact that [20] is a fully explicit method
(Runge Kutta and a contact/friction postprocess). We have
implemented the contact and friction forces of [20] using
our implicit integration and CCD-based collision detection
(which conveniently gives us robust normals automatically).
We implemented two variants of their algorithm: (1) explicit
contact and friction (“prmd dd lag”) and (2) implicit nor-

mal contact followed by explicit friction (“prmd dd lagfr”).
The discontinuous nature of the dynamic/static friction
transition prevents us from implementing a fully-implicit
version of their friction force. We compare with our own
with implicit contact and friction (“prmd dd”). We use
a pyramid stack of four deformable objects (like Fig. 6
but with all four objects deformable). From this test, we
observed that neither (1) nor (2) leads to stable stacks; both
eventually collapse (see the supplementary video). This is
not particularly surprising; indeed, our method will also
not get stable stacks if friction is not treated implicitly. In
particular, it is not sufficient for a penalty method to use

TABLE 1
Simulation Parameters and Timings for All of Our Simulations.

Name dt Time
frame (s) CCD? µ k grid #p† Tol

stack 0.01 0.12 Y 0.3 106 432 1
prmd rd 0.01 0.10 Y 0.3 103 507 0.1
prmd rm 0.01 4.28 Y 0.3 102 323 11k 1

prmd rm slip 0.01 1.02 Y 0.05 102 323 11k 1
prmd dd 0.002 0.53 Y 0.2 103 676 0.1

prmd dd lag 0.002 0.56 Y 0.2 103 676 0.1
prmd dd lagfr 0.002 0.58 Y 0.2 103 676 0.1

plane r slide 0.001 0.20 N 0.1 103 1
plane r stick 0.001 0.07 N 0.125 103 1
plane d slide 0.001 0.05 N 0.1 102 8 1
plane d stick 0.001 0.01 N 0.125 102 8 0.1

iplane m slide 0.005 6.30 N 0.1 1 323 1.3k 1
iplane m stick 0.005 1.34 N 0.125 1 323 1.3k 1
plane m slide 0.005 1.44 N 0.1 1 323 1.3k 1
plane m stick 0.005 2.16 N 0.125 1 323 1.3k 1

wdg rm 0.01 0.30 N 0.25 102 323 1.5k 1
wdg rm fall 0.01 0.18 N 0.1 102 323 1.5k 1

wdg dr 0.002 0.62 N 0.05 103 169 0.1
wdg dr fall 0.002 8.41 N 0.002 103 169 0.1

wdg rr 0.01 0.05 N 0.08 10 1
wdg rr fall 0.01 0.03 N 0.03 10 1
wdg dr r 0.01 1.26 N 0.03 103 169 0.1

plane sph roll 0.005 0.05 Y 0.3 10 1
plane sph slip 0.005 0.04 Y 0.01 10 1

torus dr 0.002 2.17 Y 0.6 102 2.6k 0.01
cloth 0.005 6.73 Y 0.3 500 3.8k 1

sandbox cube 0.001 242+ Y 0.3 105 643 0.4m 1
sandbox sph 0.001 7095+ N 0.9 25000 1283 0.9m 0.1
sand on sph 0.001 597 Y 0.9 104 963 64k 1
goo on sph 0.001 147+ Y 0.3 104 963 120k 1

bowl 0.001 632 Y 0.3 105 963 31k 0.01
† Number of particles used in a test.
+ The timing information is measured using 8 threads.
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Fig. 15. Two deformable and two rigid bodies are dropped onto a piece of cloth.

attachments to achieve stable stacking.
We also examined the runtime of the two approaches,

noting that we are running [20] under conditions for which
it was never intended (implicit integration) and with a
collision detection scheme that is likely less efficient than
the non-CCD library that the original method used. Nei-
ther version was optimized. We observe that version (2)
is slightly slower than our version. Since (2) uses implicit
normal contact, CCD is performed in each Newton iteration
as it is with our method. Since the actual force computations
are negligible for both methods, we would expect the two
to run at about the same pace, and indeed the performance
is very close (see Table 1). There is a slight extra cost to (2),
however, and it is caused by degradation in the performance
of the Newton solver. In our simulation, our stack settles
down, which allows the Newton solver to converge some-
what quicker. Lagging contact and/or friction means contact
and elasticity are always fighting, which slows down the
Newton solver. The comparison of (1) with our method is
somewhat more surprising. In this case, contact and friction
are both explicit, and CCD is performed only once per
time step. This reduces the cost of CCD (from 32% for our
method to 5% for (1)). This savings, however, comes at a
cost. The fighting between elastic and contact forces is now
much worse (before elastic forces only fought with friction).
The resulting slower convergence in Newton’s method is
greater than the savings from CCD, and (1) ends up also
running slower than our scheme. We note, however, that the
performance differences are very slight, and which version
is faster will depend strongly on the example setup, collision
detection scheme chosen, level of code optimization, and
a large number of other factors. Our contact algorithm
is not intended as a way to make contact faster; rather,
this comparison merely shows that it is competitive with
existing methods and not too slow to be practical.

5 CONCLUSIONS AND FUTURE WORK

We have demonstrated that we are able to simultaneously
apply general elastic forces and frictional contact between
different types of objects through the use of a novel frictional
contact penalty force. We have demonstrated that this force
allows us to achieve MPM-rigid and deformable-rigid cou-
pling. Our force enables us to enforce frictional boundary
conditions against the particles of an MPM simulation rather
than being limited to processing these contacts on grid
nodes, which prevents particle drift or bunching at collision
objects.

Although the method is quite versatile, it has several
important limitations. Because contact is enforced with a
penalty force, it adds extra stiffness to the system and does

not completely prevent penetration between objects. As is
normally the case for penalty forces, our penalty force does
not model restitution. One promising avenue for extending
our method to include a coefficient of restitution is through
the use of a nonlinear damped spring [19]. Our imple-
mentation assumes isotropic friction; we see no reason that
anisotropic friction could not be implemented by looking
up local friction parameters (at the attachment location) and
then replacing the circular cone with an elliptical cone in the
yield criterion.

When colliding triangle meshes, we only process point-
triangle pairs. In particular, we do not consider edge-edge
pairs. We made this compromise for practical reasons. Using
an edge in place of a particle introduces many complica-
tions. For example, would the edge be connected to an
attachment point or an attachment edge? Is the attachment
at the original barycentric collision location, or can the
spring force slide along the edge? If it slides to the edge,
does it become a point collision again?

The linear systems that result are asymmetrical, and
we must solve them with GMRES. Although the mem-
ory requirements and computational load of GMRES scale
quadratically with the number of iterations, our stabilization
of the Newton solve safely allows us to limit the number of
iterations (we use 20). If our Newton step was not computed
accurately, we can rely on the line search.

Another limitation is that we can only hope to converge
to a local minimum of our objective E. Unlike more stan-
dard optimization formulations, a local minimum for our
objective does not lead to a solution to Newton’s second
law, though we have never observed it to converge to a non-
global minimum. Our line searches are also more sensitive
to the force derivatives than normal, since the derivatives
used by the Wolfe line search involve the force derivatives;
only forces are involved in the standard formulation. The
level set formulation is limited to smooth objects due to the
presence of sonic points; the CCD formulation is smoother
and does not have sonic points. The CCD formulation pre-
sented is not free from kinks and discontinuities, however,
and we have observed Newton’s method to fail to converge
for the CCD formulation. This normally occurs when the
system is nearly converged (so that the objective slope is
low) and when the penalty stiffness is high (so that any
kinks or discontinuities that may be present are amplified).
Since the system is usually near convergence anyway, we
simply continue the simulation with the incompletely con-
verged result. We leave the problem of developing a more
kink-resistant solver formulation for future work.

Our method is not as efficient as less strongly coupled
formulations (such as ones that lag friction) due to the
extra stiffness and asymmetric problem. Timing results and
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Fig. 16. We pour sand over a sphere; friction between the sand and the sphere causes the sphere to be pulled into the sand column

parameters for all of our simulations are given in Table 1.
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