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Figure 1: 125 tori are dropped into a bowl at 5 time steps per frame, resulting in significant deformation and tough collisions.

Abstract
Practical time steps in today’s state-of-the-art simulators typically rely on Newton’s method to solve large systems
of nonlinear equations. In practice, this works well for small time steps but is unreliable at large time steps at
or near the frame rate, particularly for difficult or stiff simulations. We show that recasting backward Euler as
a minimization problem allows Newton’s method to be stabilized by standard optimization techniques with some
novel improvements of our own. The resulting solver is capable of solving even the toughest simulations at the
24Hz frame rate and beyond. We show how simple collisions can be incorporated directly into the solver through
constrained minimization without sacrificing efficiency. We also present novel penalty collision formulations for
self collisions and collisions against scripted bodies designed for the unique demands of this solver.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

The most commonly used time integration schemes in use
today for graphics applications are implicit methods. Among
these, backward Euler [BW98, HFL∗01, VMT01, MTGG11,
LBOK13] or variants on Newmark methods [Kan99,BFA02,
BMF03] are the most common, though even more sophisti-
cated schemes like BDF-2 [HE01, CK05], implicit-explicit
schemes [EEH00, SG09], or even the more exotic exponen-
tial integrators [MSW13] have received consideration. Inte-
grators have been the subject of comparison before (see for
example [HE01,VMT01,PF02]), seeking good compromises
between speed, accuracy, robustness, and dynamic behavior.

These integrators require the solution to one or more non-
linear systems of equations each time step. These systems
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are typically solved by some variation on Newton’s method.
Even the most stable simulators are typically run several
time steps per 24Hz frame of simulation. There is growing
interest in running simulations at larger time steps [SSF13],
so that the selection of ∆t can be made based on other fac-
tors, such as damping or runtime, and not only on whether
the simulator works at all. One of the major factors that
limits time step sizes is the inability of Newton’s method
to converge reliably at large time steps (See Figures 3, 4,
and 7), or if a fixed number of Newton iterations are taken,
the stability of the resulting simulation. We address this by
formulating our nonlinear system of equations as a min-
imization problem, which we demonstrate can be solved
more robustly. The idea that dynamics, energy, and min-
imization are related has been known since antiquity and
is commonly leveraged in variational integrators [STW92,
KMO99, Kan99, LMOW04, KYT∗06b, SG09, GSO10]. The
idea that the nonlinear system that occurs from methods
like backward Euler can be formulated as a minimization
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Figure 2: Convergence of Newton’s method (middle) and
our stabilized optimization formulation (bottom) for a sim-
ple 36-dof simulation in 2D. The initial configuration (top) is
parameterized in terms of a pixel location, with the rest con-
figuration occurring at ( 3

5 ,
1
2 ). Initial velocity is zero, and

one time step is attempted. Time steps are (left to right) 170,
40, 20, 10, and 1 steps per 24Hz frame, with the rightmost
image being ∆t = 1s. Color indicates convergence in 0 it-
erations (black), 15 iterations (blue), 30 or more iterations
(cyan), or failure to converge in 500 iterations (red). Note
that Newton’s method tends to converge rapidly or not at all,
depending strongly on problem difficulty and initial guess.

problem has appeared many times in graphics in various
forms [HFL∗01, KYT∗06b, MTGG11, LBOK13, MSW13].
[KYT∗06b] point out that minimization leads to a method
that is both simpler and faster than the equivalent nonlinear
root-finding problem, and [LBOK13] show that a minimiza-
tion formulation can be used to solve mass-spring systems
more efficiently. [KMO99] use a minimization formulation
as a means of ensuring that a solution to their nonlinear sys-
tem can be found assuming one exists. [GHF∗07] shows
that a minimization formulation can be used to enforce con-
straints robustly and efficiently. [HFL∗01] shows that sup-
plementing Newton’s method with a line search greatly im-
proves robustness. [MTGG11] also shows that supplement-
ing Newton’s method with a line search and a definiteness
correction leads to a robust solution procedure. Following
their example, we show that recasting the solution of the
nonlinear systems that result from implicit time integration
schemes as a nonlinear optimization problem results in sub-
stantial robustness improvements. We also show that addi-
tional improvements can be realized by incorporating addi-
tional techniques like Wolfe condition line searches which
curve around collision bodies, conjugate gradient with early
termination on indefiniteness, and choosing conjugate gradi-
ent tolerances based on the current degree of convergence.

2. Time Integration

The equations of motion for simulating solids are ẋxx = vvv
and MMMv̇vv = fff , where fff = fff (xxx,vvv) are forces. As is com-
mon in graphics we assume MMM is a diagonal lumped-
mass matrix. Since we are interested in robustness and
large time steps, we follow a backward Euler discretiza-
tion. This leads to xxxn+1−xxxn

∆t = vvvn+1 and MMM vvvn+1−vvvn

∆t = fff n+1 =

Figure 3: Cube being stretched: initial configuration (left),
our method at t = 0.4s and t = 3.0s (middle), and standard
Newton’s method at t = 0.4s and t = 3.0s (right). Both sim-
ulations were run with one time step per 24Hz frame. New-
ton’s method requires three time steps per frame to converge
on this simple example.

fff (xxxn+1,vvvn+1). Eliminating vvvn+1 using the first equation
yields MMM xxxn+1−xxxn−∆tvvvn

∆t2 = fff (xxxn+1, xxxn+1−xxxn

∆t ), which is a non-
linear system of equations in the unknown positions xxxn+1.
This system of nonlinear equations is normally solved with
Newton’s method. If we define hhh(xxxn+1) = MMM xxxn+1−xxxn−∆tvvvn

∆t2 −
fff (xxxn+1, xxxn+1−xxxn

∆t ), then our nonlinear problem is one of find-
ing a solution to hhh(xxx) = 000. To do this, one would start with
an initial guess xxx(0), such as the value predicted by forward
Euler. This estimate is then iteratively improved using the

update rule xxx(i+1) = xxx(i)−
(

∂hhh
∂xxx (xxx

(i))
)−1

hhh(xxx(i)). Each step
requires the solution of a linear system, which is usually
symmetric and positive definite and solved with a Krylov
solver such as conjugate gradient or MINRES.

If the function hhh(xxx) is well-behaved and the initial guess
sufficiently close to the solution, Newton’s method will con-
verge very rapidly (quadratically). If the initial guess is not
close enough, Newton’s method may converge slowly or not
at all. For small enough time steps, the forward and back-
ward Euler time steps will be very similar (they differ by
O(∆t2)), so a good initial guess is available. For large time
steps, forward Euler will be unstable, so it will not provide
a good initial guess. Further, as the time step grows larger,
Newton’s method may become more sensitive to the initial
guess (see Figure 2). The result is that Newton’s method
will often fail to converge if the time step is too large. Fig-
ures 3, 4, and 7 show examples of simulations that ought to
be routine but where Newton fails to converge at ∆t = 1/24s.

Sometimes, only one, or a small fixed number, of Newton
steps are taken rather than trying to solve the nonlinear equa-
tion to a tolerance. The idea is that a small number of New-
ton steps is sufficient to get most of the benefit from doing an
implicit method while limiting its cost. Indeed, even a single
Newton step with backward Euler can allow time steps or-
ders of magnitude higher than explicit methods. Linearizing
the problem only goes so far, though, and even these solvers
tend to have time step restrictions for tough problems.

2.1. Minimization problem

The solution to making Newton’s method converge reliably
is to recast the equation solving problem as an optimization
problem, for which robust and efficient methods exist. In
principle, that can always be done, since solving hhh(xxx) = 000
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Figure 4: Cube being stretched and then given a small com-
pressive pulse, shown with our method (top) and standard
Newton’s method (bottom). Both simulations were run with
one time step per 24Hz frame. In this simulation, Newton’s
method is able to converge during the stretch phase, but a
simple pulse of compression, as would normally occur due
to a collision, causes it to fail to converge and never recover.
Newton’s method requires five time steps per frame to con-
verge on this simple example.

is equivalent to minimizing ‖hhh(xxx)‖ assuming a solution ex-
ists. This approach is not very convenient, though, since it
requires a global minimum of ‖hhh(xxx)‖. Further minimiza-
tion using Newton’s method would require the Hessian of
‖hhh(xxx)‖, which involves the second derivatives of our forces.
The standard approach only requires first derivatives. What
we really want is a quantity E that we can minimize whose
second derivatives only require the first derivatives of our
forces. That is, we need to integrate our system of nonlinear
equations hhh(xxx). It turns out that if we require our forces to
come from an energy we can do this. This way of recasting
the problem also requires only a local minimum be found.
Most forces with symmetric force derivatives can be put into
this model. We will show later how damping can also be in-
corporated into this model. Friction can be given an approx-
imate potential which is valid for small ∆t, see [PKMO02].
Since our examples focus on taking larger time steps we in-
corporate friction explicitly after the Newton solve.

Let Φ be the total potential energy of our internal forces
(gravity is a special case, which we will address later). The
potential Φ has a global minimum, which is typically its rest
configuration. Then, we can write hhh(xxx) =MMM xxx−xxxn−∆tvvvn

∆t2 + ∂Φ

∂xxx .
We need to express this as the gradient of some scalar func-
tion E(xxx). Letting x̂xx = xxxn +∆tvvvn, we have E(xxx) = 1

2∆t2 (xxx−
x̂xx)T MMM(xxx− x̂xx) + Φ. Then, hhh = ∂E

∂xxx as desired. Since MMM is
symmetric and positive definite (or at least semidefinite if
scripted objects are permitted), the first term is bounded
from below by zero. Since Φ is also bounded from below,
E is as well. Thus, E has a global minimum. If E(xxxn+1)
is smooth at its minima, then this minimum will satisfy
∂E
∂xxx (xxx

n+1) = 000 or equivalently hhh(xxxn+1) = 000. Note that, al-
though we are now doing minimization rather than root find-
ing, we are still solving the exact same equations. The dis-
cretization and dynamics will be the same, but the solver will
be more robust.

Gravity A graphics simulation would not be very useful
without gravity. Gravity has the potential energy function
−MMMgggT xxx, where ggg is the gravitational acceleration vector,

but this function is not bounded. An object can fall arbi-
trarily far and liberate a limitless supply of energy, though
in practice this fall will be stopped by the ground or some
other object. Adding the gravity force to our nonlinear sys-
tem yields hhh(xxx) = MMM xxx−xxxn−∆tvvvn

∆t2 −MMMggg+ ∂Φ

∂xxx , which can be
obtained from the bounded minimization objective E(xxx) =

1
2∆t2 (xxx− x̂xx− ∆t2ggg)T MMM(xxx− x̂xx− ∆t2ggg) +Φ. A more conve-
nient choice of E, and the one we use in practice, is ob-
tained by simply adding the effects of gravity Φg =−MMMgggT xxx
into Φ. Since all choices E will differ by a constant shift,
this more convenient minimization objective will also be
bounded from below.

3. Minimization

The heart of our simulator is our algorithm for solving
optimization problems, which we derived primarily from
[NW06], though most of the techniques we apply are well-
known. We begin be describing our method as it applies to
unconstrained minimization and then show how to modify it
to handle the constrained case.

3.1. Unconstrained minimization

Our optimization routine begins with an initial guess, xxx(0).
Each iteration consists of the following steps:

1. ? Register active set
2. Compute gradient∇E and Hessian HHH of E at xxx(i)

3. Terminate successfully if ‖∇E‖< τ

4. Compute Newton step ∆xxx =−HHH−1∇E
5. Make sure ∆xxx is a downhill direction
6. Clamp the magnitude of ∆xxx to ` if ‖∆xxx‖> `
7. Choose step size α in direction ∆xxx using a line search
8. Take the step: xxx(i+1) = xxx(i)+α∆xxx
9. ? Project xxx(i+1)

Here, τ is the termination criterion, which controls how ac-
curately the system must by solved. The length clamp `
guards against the possibility of the Newton step being enor-
mous (if ‖∆xxx‖ = 10100, computing Φ(xxx(i)+∆xxx) is unlikely
to work well). Its value should be very large. Our line search
is capable of choosing α > 1, so the algorithm is very insen-
sitive with respect to the choice `. We normally use `= 103.
Steps beginning with ? are only performed for constrained
optimization and will be discussed later. A few of the re-
maining steps require further elaboration here.

Linear solver considerations Computing the Newton step
requires solving a symmetric linear system. The obvious
candidate solver for this is MINRES that can handle in-
definite systems, and indeed this will work. However, there
are many tradeoffs to be made here. In contrast to a nor-
mal Newton solve, an accurate estimate for ∆xxx is not nec-
essary for convergence. Indeed, we would still converge
with high probability if we chose ∆xxx to be a random vec-
tor. The point of using the Newton direction is that conver-
gence will typically be much more rapid, particularly when
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the superconvergence of Newton’s method kicks in. (Choos-
ing ∆xxx=−∇E leads to gradient descent, for example, which
can display notoriously poor convergence rates.) When the
current estimate is far from the solution, the exact New-
ton direction tends to be little better than a very approxi-
mate one. Thus, the idea is to spend little time on comput-
ing ∆xxx when ‖∇E‖ is large and more time when it is small.
We do this by solving the system to a relative tolerance of
min( 1

2 ,σ
√

max(‖∇E‖,τ)). The 1
2 ensures that we always

reduce the residual by at least a constant factor, which guar-
antees convergence. The scale σ adjusts for the fact that∇E
is not unitless (we usually use σ = 1). If our initial guess is
naive, we must make sure we take at least one minimization
iteration, even if∇E is very small. Using τ here ensures that
we do not waste time solving to a tiny tolerance in this case.
Conjugate gradient One further optimization is to use con-
jugate gradient as the solver with a zero initial guess. If
indefiniteness is encountered during the conjugate gradient
solve, return the last iterate computed. If this occurs on the
first step, return the right hand side. If this is done, ∆xxx is
guaranteed to be a downhill direction, though it might not
be sufficiently downhill for our purposes. In practice, indefi-
niteness will only occur if far from converged, in which case
little time is wasted in computing an accurate ∆xxx that is un-
likely to be very useful anyway. Indeed, if the system is de-
tectably indefinite and ∆xxx is computed exactly, it might not
even point downhill. Since we are searching for a minimum
of E (even a local one), the Hessian of E will be symmetric
and positive definite near this solution. (Technically, it need
only be positive semidefinite, but in practice this is of little
consequence.) Thus, when we are close enough to the solu-
tion for an accurate Newton step to be useful, conjugate gra-
dient will suffice to compute it. This is very different from
the normal situation, where a solver like MINRES or an in-
definiteness correction are employed to deal with the pos-
sibility of indefiniteness. In the case of our solver, neither
strategy is necessary, and both make the algorithm slower.
Downhill direction Making sure ∆xxx points downhill is
fairly straightforward. If ∆xxx ·∇E <−κ‖∆xxx‖‖∇E‖, then we
consider ∆xxx to be suitable. Otherwise, if−∆xxx is suitable, use
it instead. If neither ∆xxx nor−∆xxx are suitable, then we use the
gradient descent direction −∇E. Note that if the conjugate
gradient strategy is used for computing the Newton direc-
tion, then −∆xxx will never be chosen as the search direction
at this stage. We have found κ = 10−2 to work well.
Line search For our line search procedure, we use an algo-
rithm for computing α such that the strong Wolfe Conditions
are satisfied. See [NW06] for details. The line search proce-
dure guarantees that E never increases from one iteration to
the next and that, provided certain conditions are met, suf-
ficient progress is always made. One important attribute of
this line search algorithm is that it first checks to see if ∆xxx
itself is a suitable step. In this way, the line search is almost
entirely avoided when Newton is converging properly.
Initial guess A good initial guess is important for efficient
simulation under normal circumstances. Under low-∆t or

low-stress conditions, a good initial guess is obtained by
replacing fff n+1 by fff n resulting in MMM xxxn+1−xxxn−∆tvvvn

∆t2 = fff (xxxn).

Solving for xxxn+1 yields the initial guess xxx(0) = xxxn +∆tvvvn +
∆t2 fff (xxxn). This initial guess is particularly effective under
free fall, since here the initial guess is correct and no Newton
iterations are required. On the other hand, this initial guess
is the result of an explicit method, which will be unstable at
large time steps or high stress. Under these conditions, this
is unlikely to be a good initial guess and may in fact be very
far from the solution. Under these situations, a better ini-
tial guess is obtained from xxx(0) = xxxn +∆tvvvn. In practice, we
compute both initial guesses and choose the one which pro-
duces the smaller value of E. This way, we get competitive
performance under easy circumstances and rugged reliabil-
ity under tough circumstances.

3.2. Constrained minimization

We use constrained minimization for some of our collisions,
which may result in a large active set of constraints, such as
when an ball is bouncing on the ground. As the ball rises,
constraints become deactivated. As the ball hits the ground,
more constraints become activated. The change in the num-
ber of active constraints from iteration to iteration may be
quite significant. This would render a traditional active set
method impractical, since constraints are activated or deac-
tivated one at a time. Instead, we use the gradient-projection
method as our starting point, since it allows the number of
active constraints to change quickly. The downside to this
choice is that its reliance on the ability to efficiently project
to the feasible region limits its applicability to simple colli-
sion objects.

Projections Let P(xxx) be the projection that applies Pbp to xxxp
for all body-particle pairs (b, p) that are labeled as active or
are violated (φb(xxxp)< 0). Note that pairs such that φb(xxxp) =
0 (as would be the case once projected) are considered to be
touching but not violated. The iterates xxx(i) obtained at the
end of each Newton step, as well as the initial guess, are
projected with P.

Register active set Let E′ be the objective that would be
computed in the unconstrained case. The objective func-

Figure 5: Line search showing the gradient descent direc-
tion (green), Newton direction (red), and effective line search
path (blue). The constraint is initially feasible (left), active
(middle), and touching but inactive (right). Constraints are
projected if violated or active, but only inactive constraints
may separate.
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Figure 6: A torus falls on the ground (constraint collisions) and collides with itself (penalty collisions).

tion for constrained optimization is E(xxx) = E′(P(xxx)). Com-
pute the gradient ∇E′. Constraints that are touching and
for which ∇E′ · ∇φb ≥ 0 are labeled as active for the re-
mainder of the Newton step. All others are labeled as inac-
tive. No constraint should be violated at this stage. Note that
E′(xxx(i)) = E(xxx(i)) is true before and after every Newton step,
since constraints are never violated there.
3.2.0.1. Curved paths Note that configurations are always
projected to the feasible region before E is computed. One
may interpret this as performing line searches along curved
paths, as illustrated is Figure 5.

When the unprojected line search curve passes through
the medial axis of an object, it is possible for the search curve
to be disconnected. This causes a discontinuity in the en-
ergy as seen from the line search. If the line search does not
stop at the discontinuity, the discontinuity has no effect. If it
does, the constraint causing the discontinuity will be active
(in which case the discontinuity is projected out) or separat-
ing (in which case we move away from the discontinuity) in
the next Newton step. Thus a disconnected search curve is
not a problem for our method.
3.2.0.2. Derivatives Note also that E must be differenti-
ated twice, and that involves differentiating the projection
function P twice. Since P depends on the first derivatives of
φb, the Hessian HHH of E would seem to require third deriva-
tives. We note, however, that the only occurrence of the third
derivative of φb occurs multiplied by φb. Since HHH is used
only at the beginning of the Newton step when the configu-
ration is feasible, φb(xxxp) = 0 or Pbp is the identity function.
The third derivative term is zero either way, so only the sec-
ond derivatives of φb are required.

3.3. Practical considerations

There are a few matters of practicality that are worth men-
tioning regarding the effective use of this method. The most
important of these is that the method does not tolerate dis-
continuities in E, not even very minute ones, except under
some special circumstances that we mention below. In prac-
tice, what tends to happen is that a line search encounters a
discontinuity in E, where E rises abruptly. The line search
dutifully advances the configuration right up to location of
this discontinuity. If in the next Newton iteration the descent
direction points into the discontinuity, no progress can be
made. The solver is stuck. Discontinuities in ∇E can also
cause problems and are impossible to avoid in general. As
long as these kinks are not valleys of E, they are fine. Thus,
the corotated constitutive model, though not completely un-
usable with this solver, is ill-advised (the fixed variant has no

such valleys [SHST12] and is fine). In practice, we have only
encountered problems when evaluating self-collision mod-
els. The self-collision model we propose works well with
the method.

The second practical consideration is that E can be some-
what noisy. This is particularly true with forces that involve
an SVD, since its computation involves a balance between
speed and accuracy. If the Newton tolerance τ is set too low,
the solver will be forced to optimize an objective E where
the actual change in E is hidden by the noise. Even with
our noisy SVD, we found there is typically at least a three
order of magnitude range between the largest value of τ be-
low which no change in output is visually observed and the
smallest value above which E is not too noisy to optimize
reliably. If we make the E computation robust, E can be op-
timized down to roundoff level.

Another practical consideration is that occasionally very
large changes in the configuration are considered by the line
search. For most forces, this is of little consequence. For
self-collisions, however, this poses a major performance haz-
ard. We note that when this occurs, the other components of
E become very large, too. We first compute all contributions
to E except self-collisions. Since our self-collision potential
has a global minimum of zero, the real E will be at least as
large as the estimate. If this partial E is larger than E(xxx(i)),
we do not compute self-collisions at all. While this presents
a discontinuity in E to the optimizer, it is safe to do so un-

Figure 7: Two spheres fall and collide with one another with
∆t = 1/24s: initial configuration (left), our method (top),
and Newton’s method (bottom). Notice the artifacts caused
by Newton not converging. Newton’s method requires six
time steps per frame to converge on this example.
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der these conditions, since the optimizer will avoid the large
value in E by taking a smaller step along the search line.

4. Forces

Our formulation is fairly insensitive to the underlying forces,
provided it has a continuous potential energy function. We
use five forces in our simulations. The simplest of these is
gravity, which we addressed in Section 2.1. We also employ
a hyperelastic constitutive model (Section 4.1), a Rayleigh
damping model (Section 4.2), and two collision penalty
force models (Sections 5.2 and 5.3).

4.1. Elastic

A suitable hyperelastic constitutive model must have a few
key properties to be suitable for this integrator. The most
important is that it must have a potential energy function
defined everywhere, and this function must be continuous.
The constitutive model must be well-defined for any con-
figuration, including configurations that are degenerate or
inverted. This is true even if objects do not invert dur-
ing the simulation, since the minimization procedure may
still encounter such states. Examples of suitable constitutive
models are those defined by the corotated hyperelasticity
energy [ST08, ZSTB10, MG04, EKS03, CPSS10, MZS∗11]
(but see Section 3.3), and the fixed corotated hyperelas-
ticity variant [SHST12]. Stress-based extrapolated models
[ITF04, TSIF05] are unsuitable due to the lack of a poten-
tial energy function in the extrapolated regime, but energy-
based extrapolation models [SHST12] are fine. We use the
fixed corotated variant [SHST12] for all of our simulations
for its combination of simplicity and robustness.

4.2. Damping

At first, one might conclude that requiring a potential en-
ergy may limit our method’s applicability, since damping
forces cannot be defined by a potential energy function. A
very simple damping model is given by fff = −kMMMvvvn+1.
Eliminating the velocity from the equation yields fff (xxxn+1) =

−kMMM xxxn+1−xxxn

∆t , where k > 0. The scalar function Φ(xxxn+1) =
k

2∆t (xxx
n+1 − xxxn)T MMM(xxxn+1 − xxxn) has the necessary property

that fff =− ∂Φ

∂xxx . Note that this Φ looks very similar to our in-
ertial term in E, and it is similarly bounded from below. That
this Φ is not a real potential energy function is evident from
its dependence on xxxn and ∆t, but it is nevertheless suitable
for use in our integrator. This simple drag force is not very
realistic, though, so we do not use it in our simulations.

A more realistic damping force is Rayleigh damping. Let
ψ be an elastic potential energy function. The stiffness ma-

trix corresponding to this force is − ∂
2
ψ

∂xxx∂xxx , and the Rayleigh

damping force is fff =−k
(

∂
2
ψ

∂xxx∂xxx (xxx
n+1)

)
vvvn+1. This integrates

to Φc =
k
∆t

(
(xxxn+1− xxxn)T ∂ψ

∂xxx −ψ

)
. This candidate Φc has at

least two serious problems. The first is that second deriva-
tives of Φc involve third derivatives of ψ. The second is that

Figure 8: Random test with 65×65×65 particles simulated
with ∆t = 1/24s for three stiffnesses: low stiffness recover-
ing over 100 time steps (top), medium stiffness recovering
over 40 time steps (bottom left), and high stiffness recover-
ing in a single time step (bottom right). The red tetrahedra
are inverted, while the green are uninverted.

∂
2
ψ

∂xxx∂xxx may be indefinite, in which case the damping force
may not be entirely dissipative. Instead, we approximate

Rayleigh damping with a lagged version. Let DDD = ∂
2
ψ

∂xxx∂xxx (xxx
n).

Since DDD does not depend on xxxn+1, the lagged Rayleigh
damping force fff = −kDDDvvvn+1 leads to Φd = k

2∆t (xxx
n+1 −

xxxn)T DDD(xxxn+1− xxxn). This solves the first problem, since the
second derivative of Φd is just k

∆t DDD. Since DDD is not being
differentiated, it is safe to modify it to eliminate indefinite-
ness as described in [TSIF05, SHST12]. This addresses the
second problem. We did not use the damping model found
in [KYT∗06a], which uses ψ(xxxn+1) with xxxn used as the rest
configuration, because it is not defined when xxxn is degener-
ate.

5. Collisions

Collisions are a necessary part of any practical computer
graphics simulator. The simplest approach to handling col-
lisions is to process them as a separate step in the time in-
tegration scheme. This works well for small time steps, but
it causes problems when used with large time steps as seen
in Figure 7. Such arrangement often leads to the collision
step flattening objects to remove penetration and the elastic
solver restoring the flattened geometry by pushing it into the
colliding object. To get around this problem, the backward
Euler solver needs to be aware of collisions. A well-tested
strategy for doing this is to use penalty collisions, and we do
this for two of our three collision processing techniques.

5.1. Object collisions as constraints

Our first collision processing technique takes advantage of
our minimization framework to treat collisions with non-
simulated objects as inequality constraints. Treating colli-
sions or contacts as constraints is not new and in fact forms
the basis for LCP formulations such as [KSJP08, GZO10].
Unlike LCP formulations, however, our formulation does not
attempt to be as complete and as a result can be solved about
as efficiently as a simple penalty formulation.

Our constraint collision formulation works reliably when
the level set is known analytically. This limits its applicabil-
ity to analytic collision objects. While this approach is fea-
sible only under limited circumstances, these circumstances
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Figure 9: Point test with 65× 65× 65 particles simulated
with ∆t = 1/24s for three stiffnesses: low stiffness recover-
ing over 120 time steps (top), medium stiffness recovering in
5 time steps (bottom left), and high stiffness recovering in a
single time step (bottom right).

occur frequently in practice. When this approach is appli-
cable, it is our method of choice, since it produces better
results (e.g., no interpenetration) for similar cost. When this
formulation is not applicable, we use a penalty collision for-
mulation instead.

We begin by representing our collision objects (indexed
with b) by a level set, which we denote φb to avoid con-
fusion with potential energy. By convention, φb(xxx) < 0 for
points xxx in the interior of the collision object b. Our col-
lision constraint is simply that φb(xxx

n+1
p ) ≥ 0 for each sim-

ulation particle p and every constraint collision object b.
With such a formulation, we can project a particle at xxxp
to the closest point xxx′p on the constraint manifold using
xxx′p =Pbp(xxxp) = xxxp−φb(xxxp)∇φb(xxxp). We show how to solve
the resulting minimization problem in Section 3.2.

We apply friction after the Newton solve. The total col-
lision force felt by particles is ∇E′(xxxn+1)−∇E(xxxn+1) =
∇E′(xxxn+1)−∇E′(P(xxxn+1)) (See Section 3.2 for the defini-
tion of E′). Only collision pairs that are active at the end of
the minimization will be applying such forces. We use the
level set’s normal and the collision force to apply Coulomb
friction to colliding particles.

Our constraint collision formulation is not directly ap-
plicable to grid-based level sets, since we assume that
Pbp(Pbp(xxxp)) = Pbp(xxxp) and Pbp(x) is continuous. Continu-
ity of Pbp(x) can be achieved, for example, with C1 cubic
spline level set interpolation. However, it will not generally
be true that Pbp(Pbp(xxxp)) = Pbp(xxxp). Alternatively, the pro-
jection routine can be modified to iterate the projection to
convergence, but then continuity is lost.

5.2. Object penalty collisions

When a collision object is not analytic, as will normally be
the case for characters for instance, we use a penalty for-
mulation instead. As in the constraint formulation, we as-
sume our collision object is represented by a level set φb.
The elastic potential energy Φbp(xxxp) of our penalty force
is Φbp(xxx) = 0 if φb(xxxp) > 0 and Φbp(xxxp) = kφb(xxxp)

3 oth-
erwise. Since Φbp is a potential energy, we must differen-
tiate it twice for our solver. It is important to compute the
derivatives of φb exactly by differentiating the interpolation

routine rather than approximating them using central differ-
ences. While a C1 cubic spline interpolation is probably a
wiser interpolation strategy since it would avoid the energy
kinks that may be caused by a piecewise linear encoding of
the level set, we found linear interpolation to work well, too,
and we use linear interpolation in our examples.

As in the constraint case, we apply friction after the New-
ton solve. The total collision force felt by a particle due
to object penalty collisions is obtained by evaluating the
penalty force at xxxn+1. We compute the component of the
discrete acceleration xxxn+1−xxxn−∆tvvvn

∆t2 perpendicular to the col-
lision force and apply Coulomb friction in the opposite di-
rection to the colliding particle.

5.3. Penalty self-collisions

We detect self-collisions by performing point-tetrahedron in-
clusion tests, which we accelerate with a bounding box hi-
erarchy. If a point is found to be inside a tetrahedron but not
one of the vertices of that tetrahedron, then we flag the par-
ticle as colliding.

Once we know a particle is involved in a self collision, we
need an estimate for how close the particle is to the bound-
ary. If this particle has collided before, we use the primitive
it last collided with as our estimate. Otherwise, we compute
the approximate closest primitive in the rest configuration
using a level set and use the current distance to this surface
element as an estimate.

Given this upper bound estimate of the distance to the
boundary, we perform a bounding box search to conserva-
tively return all surface primitives within that distance. We
check these candidates to find the closest one. Now we have
a point-primitive pair, where the primitive is the surface tri-
angle, edge, or vertex that is closest to the point being pro-
cessed. Let d be the square of the point-primitive distance.
The penalty collision energy for this point is Φ = kd

√
d + ε,

where ε is a small number (10−15 in our case) to prevent
the singularities when differentiating. Note that this penalty
function is approximately cubic in the penetration depth.
This final step is the only part that must be differentiated.

As with the other two collision models, we apply fric-
tion after the Newton solve. In the most general case, a
point n0 collides with a surface triangle with vertices n1, n2,
and n3. As with the object penalty collision model, collision
forces are computed by evaluating Φ(xxxn+1) and its deriva-
tive. The force applied to n0 is denoted fff ; its direction is
taken to be the normal direction nnn. The closest point on the
triangle to n0 has barycentric weights w1, w2, and w3. Let
w0 = −1 for convenience. Let QQQ = III− nnnnnnT . If we apply a
tangential impulse QQQ jjj to these particles, their new veloci-
ties will be v̂ni = vni +wim−1

ni QQQ jjj, and total kinetic energy
will be KE = ∑

3
n=0

1
2 mni v̂

T
ni v̂ni . We want to minimize this

kinetic energy to prevent friction from causing instability.
Since M is positive definite, we see that KE is minimized
when ∇KE = QQQv + m−1QQQ jjj = 0, where v = ∑

3
n=0 wivni
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Figure 10: Sphere dropping hard on the ground with ∆t = 1/24s with constraint collisions (top) and collisions as a post-
process (bottom). Penalty collisions produce a result very similar to constraint collisions, though some penetration with the
ground occurs. Note that the post-processing approach leads to inversion during recovery from the collision.

and m−1 = ∑
3
n=0 wim−1

ni wi. Thus if we let jjj = −mQQQv then
∇KE = 0 , and QQQ jjj = jjj. If ‖ jjj‖ < µ‖ fff‖, then we choose
jjj′ = jjj as our friction impulse. Otherwise, jjj′ = µ‖ fff‖ jjj

‖ jjj‖ . Fi-

nally, the new velocities are v′ni = vni +wim−1
ni jjj′. Note that

all three friction algorithms decrease kinetic energy but do
not modify positions, so none of them can add energy to
the system, and thus stability ramifications are unlikely even
though friction is applied explicitly. This approach to friction
can have artifacts, however, since friction will be limited to
removing kinetic energy from colliding particles. This lim-
its the amount of friction that can be applied at large time
steps. An approach similar to the one in [KSJP08] that uses
successive Quadratic Programming solves could possibly be
applied to eliminate these artifacts. However [ZJ11] found
existing large-scale sparse QP solvers to be insufficiently ro-
bust, and thus we did not use this method.

6. Results

We begin by demonstrating how robust our solver is by con-
sidering the two most difficult constitutive model tests we
are aware of: total randomness and total degeneracy. The at-
tributes that make them tough constitutive model tests also
make them tough solver tests: high stress, terrible initial
guess, tangled configurations, and the need to dissipate mas-
sive amounts of unwanted energy. Figure 8 shows the re-
covery of a 65× 65× 65 cube (824k dofs) from a random-
ized initial configuration for three different stiffnesses with
∆t = 1/24s. Figure 9 repeats the tests with all points starting
at the origin. The recovery times vary from about 3s for the
softest to a single time step for the stiffest. We were surprised
to find that a single step of backward Euler could untangle a
randomized cube, even at high resolution.

Figure 6 is a classical torus drop demonstrating that our
self collisions are effective at stopping collisions at the
torus’s hole. Figure 12 uses constraints for all collision body
collisions and demonstrates that our constraint collisions are
effective with concave and convex constraint manifolds. Fig-
ure 14 demonstrates our method with stiffer deformable bod-

ies with sharp corners. Figure 13 demonstrates our constraint
collisions are effective for objects with sharp corners. Fi-
nally, Figure 1 shows a more practical example which uses
all three types of collisions: self collisions, constraint colli-
sions (with ground) and penalty collisions (against a bowl
defined by a grid-based level set).

7. Conclusions

We have demonstrated that backward Euler solved with
Newton’s method can be made more robust by recasting the

Figure Ours? Steps
frame

Time
frame (s) # dofs Solves

step
1 Y 5 200 984k 2.2

3 mid Y 1 0.51 18.5k 2.8
3 rt N 1/3 8.7/1.1 18.5k 15/0.7

4 top Y 1 0.52 18.5k 2.9
4 bot N 1/5 3.8/1.3 18.5k 6.6/0.6
7 top Y 1 4.25 28.0k 8.1
7 bot N 1/6 33/7.3 28.0k 26/0.8

6 Y 5 1.13 7.9k 2.1
8 top Y 1 68.0+ 824k 12.3
8 lt Y 1 1470+ 824k 236.8
8 rt Y 1 667+ 824k 109.6

9 top Y 1 43.1+ 824k 10.7
9 lt Y 1 831+ 824k 155.9
9 rt Y 1 444+ 824k 88.8

10 top Y 1 0.42 14.0k 3.8
10 bot N 1∗ 1.13 14.0k 9.8

12 Y 1 0.45 7.9k 8.6
13 Y 1 46.1 73.8k 34.7
14 Y 1 17.1 138k 6.9

Figure 11: Time step sizes and average running times for
the examples in the paper. The last column shows the aver-
age number of linear solves per time step. Each of the New-
ton’s method examples fails to converge at the frame rate.
For fairer comparison, timing information for all but the one
marked ∗ is shown at the frame rate and the stable time step
size. The stress tests marked + spend the majority of their
time on the first frame or two due to the difficult initial state.
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Figure 12: A torus is pushed through a hole (constraint col-
lisions).

resulting system of nonlinear equations as a nonlinear opti-
mization problem so that robust optimization techniques can
be employed. The resulting method is extremely robust to
large time step sizes, high stress, and tangled configurations.

Runtimes and other performance-related information for
all of our sims are provided in Figure 11. All simulations
were run single-threaded on a 3.1−3.5GHz Xeon core. Our
solver’s performance is competitive with a standard Newton
solver for those examples where both were run. In general,
we take more Newton steps but spend less time on each, and
the resulting runtime for typical examples is about the same
for the two solvers, though our solver is faster for all of the
difficult examples in this paper. Taking a large time step size
can actually be slower than taking a smaller one, even with
the same solver. For time integrators (like backward Euler)
that have a significant amount of damping at large time steps,
constitutive models are often tuned to take into account the
numerical damping. If the integrator is forced to simulate a
portion of a simulation at a smaller time step, the dynamic
behavior can change noticeably. Solving with constraints is
about the same speed as using penalty collisions.

Note that Figures 1 and 6 were run with smaller time steps
sizes to avoid collision artifacts. This indicates that a self-
collision scheme that is more tolerant of large time steps is
required. The scheme does not have problems with collisions
between different objects at the frame rate as long as they are
not too thin. Continuous collision detection could perhaps be
used. We leave both of these problems for future work.

The current method has a couple disadvantages compared
with current techniques. It requires a potential energy to exist
(which is how most constitutive models are defined anyway)
and is sensitive to discontinuities in this energy. The method
also occasionally fails to make progress due to valley shaped
kinks in our collision processing. In practice, this only oc-
curs when the system is already fairly close to a solution,
since otherwise any energy kinks are overwhelmed by the

Figure 13: An armadillo is squeezed between 32 rigid cubes
(constraint collisions) with ∆t = 1/24s. When this torture
test is run at 1, 2, 4 and 8 steps per frame the average run-
time per frame is 46, 58, 88, and 117 seconds respectively.

strong gradients in the objective. From a practical perspec-
tive, this means this sort of breakdown can be dealt with by
simply ignoring it. This does, however, prevent the method
from being absolutely robust. We leave this weakness to be
addressed in future work.

Our method was derived and implemented on top of a
backward Euler integrator, which is known for being very
stable but quite damped. The nonlinear system of equations
for other A-stable integrators such as trapezoid rule and
BDF-2 can also be readily converted into minimization form
and solved similarly. Being second order schemes, their use
would reduce damping at large time steps, though trapezoid
rule’s oscillatory properties should be taken into account.
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