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Abstract

We present a numerical method for the solution of the Navier-Stokes equations in three dimensions that handles

interfacial discontinuities due to singular forces and discontinuous fluid properties such as viscosity and density.

We show that this also allows for the enforcement of normal stress and velocity boundary conditions on irregular

domains. The method improves on results in [1] (which solved the Stokes equations in two dimensions) by providing

treatment of fluid inertia as well as a new discretization of jump and boundary conditions that accurately resolves

null modes in both two and three dimensions. We discretize the equations using an embedded approach on a uniform

MAC grid to yield discretely divergence-free velocities that are second order accurate. We maintain our interface

using the level set method or, when more appropriate, the particle level set method. We show how to implement

Dirichlet (known velocity), Neumann (known normal stress), and slip velocity boundary conditions as special cases

of our interface representation. The method leads to a discrete, symmetric KKT system for velocities, pressures,

and Lagrange multipliers. We also present a novel simplification to the standard combination of the second order

semi-Lagrangian and BDF schemes for discretizing the inertial terms. Numerical results indicate second order spatial

accuracy for the velocities (L∞ and L2) and first order for the pressure (in L∞, second order in L2). Our temporal

discretization is also second order accurate.
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1. Introduction

The simulation of multiphase incompressible flow in arbitrary domains is necessary for many applications in

computational physics and engineering. Unfortunately, it is particularly difficult to attain orders of accuracy easily

achievable in the case of uniform or periodic domains. Due to irregular interface and domain boundary geometries,

a natural approach to the numerical approximation of the equations is the finite element method (FEM) with unstruc-

tured meshes that conform to the irregular geometry. However, meshing complex interface geometries can prove

difficult and time-consuming when the interface frequently changes. We have recently developed a class of embedded

methods that utilize uniform Cartesian grids and sub-cell representations of interface/boundary geometry to achieve

optimal accuracy without the need for frequent remeshing [1, 2, 3, 4]. Our use of regular grids simplifies the imple-

mentation, permits straightforward numerical linear algebra and naturally allows for higher order accuracy in L∞. We

have used the term virtual node methods to describe these techniques since they utilize additional structured degrees

that are outside the domain of interest. In the present work, we introduce a new virtual node method for approximat-

ing the two-phase Navier-Stokes equations with irregular embedded interfaces and boundaries on a uniform Cartesian

Marker and Cell (MAC) grid, where velocity degrees of freedom are located at face centers and pressure degrees of

freedom are located at cell centers.
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As in [1], we duplicate Cartesian grid cells along the interface Γ to introduce additional virtual nodes that accu-

rately resolve discontinuous quantities. This naturally treats discontinuities in material properties such as viscosity

and density. Interface cells are cut and duplicated using a level set that allows for accurate evaluation of integrals

needed for the numerical stencils. These stencils (for the viscous stress forces as well as the divergence-free and

jump constraints) are constructed from a variational formulation that yields a symmetric linear system. This approach

requires the introduction of a Lagrange multiplier variable to maintain continuity of the fluid velocity across the in-

terface. Unfortunately, the introduction of this variable forced the approach in [1] to require that interface domain

geometry have a constant normal on each MAC grid cell. Although it is a reasonable restriction in two dimensions,

this is not possible in three dimensions and so the method was fundamentally limited to 2D. We present an improved

discretization of this Lagrange multiplier term that works naturally in both two and three dimensions without the

restriction of a constant normal per MAC grid cell. The necessity of this in [1] was due to the requirement that the dis-

cretization resolve null modes in the variational form of the equations exactly. Failure to do this resulted in significant

degradation in performance. We show that our new discretization also captures these modes exactly.

We also consider a simplification to the combination of the second order Backward Difference Formula (BDF) and

second order semi-Lagrangian schemes that are often used in second order Navier-Stokes discretizations to calculate

the intermediate velocity field [5]. This simplification reduces the number of semi-Lagrangian interpolation steps

required from four to two while retaining the temporal and spatial accuracy of the original method. The interface is

evolved using the level set method or, when more appropriate, the particle level set method. Numerical experiments

indicate second order accuracy in L∞ and L2 for the velocity and first order accuracy in L∞, second in L2, for pressure.

Numerical experiments indicate a stability restriction on the minimum time step size (relative to the grid spacing) that

may be taken by our method in the case of a Navier-Stokes discretization. We explore the nature and source of this

restriction further.

2. Existing methods

In our discussion of existing approaches, we will focus only on embedded (or immersed) methods that avoid un-

structured meshing when addressing boundary and interface conditions at irregular geometric boundaries. Embedded

methods place an irregular domain, or a domain with an interface, into a rectangular computational domain with a

Cartesian grid. A good review of such methods is given by Lew et al. in [6]. A classic embedded method is the

Immersed Boundary Method (IBM) developed by Peskin [7, 8, 9, 10, 11, 12] originally to simulate blood flow in the

heart. The IBM uses regularized delta functions to represent singular forces acting on interfaces. This renders the

method first order accurate in general for thin interfaces, implying that the physical characteristics of the flow near

those interfacial boundaries are not accurately captured [13]. For interfaces with a nonzero thickness, modifications

to the IBM can yield second-order accuracy [14]. The original IBM also featured poor volume conservation near the

interface, motivating the development of a volume-conserving version in [15]. However, the IBM has proven very

useful for many applications.

Many methods have been developed to improve on the performance of the IBM. Mittal and collaborators have

shown that a discrete forcing (rather than one first applied to the continuous equations and then discretized) can be used

to get second order accuracy for flows in irregular domains [16, 17, 18, 19]. The Immersed Interface Method (IIM)

[13, 20, 21, 22, 23] is a popular example that attains second order accuracy in L∞ by modifying the numerical stencil

near the interface, and by using jump conditions instead of regularized delta functions to relate the singular forces to

interfacial discontinuities in pressure, velocities and their derivatives. The IIM has been used in simulating interfaces

between fluids with different viscosities [24, 25, 26, 27] and has been extended to higher-order implementations

[28, 29]. The IIM is considerably more difficult to implement than the IBM and most applications are in two space

dimensions as a result. However, researchers have applied the IIM to three-dimensional flows [30]. Recent IIM

approaches use adaptive grid techniques near the interface to maintain high resolution near the important parts of

the boundary while reducing the overall degrees of freedom [31]. In general, the IIM yields nonsymmetric linear

systems, and therefore requires the use of solvers such as GMRES or BiCG-STAB. Some implementations of IIM

[32] yield symmetric positive definite systems, however this is only possible when the viscosity is continuous across

the interface. The Matched Interface and Boundary (MIB) method [29, 33] adjusts the approach of the IIM with

dimension-by-dimension modifications that utilize fictitious points. Enforcement of jump conditions is decoupled
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from the modified finite difference stencil. The work of [34] applies the framework of the MIB to interfacial flow in

two dimensions.

Our approach was initially motivated by The Ghost Fluid Method (GFM). However, because that method does

not in the end introduce any additional degrees of freedom into the discretization, we used the term from another of

Fedkiw’s methods [35] that does similarly introduce virtual degrees of freedom. Notably, the GFM always guarantees

a symmetric discretization. Initially applied to the Poisson equation with interfacial jumps and variable coefficients

[36], the GFM was also used to simulate multiphase incompressible flow in [37]. Unfortunately, the GFM is only

capable of achieving first order results for interface problems. Also, in [37] the GFM treats viscous terms explicitly

because they cannot be decoupled in the case of discontinuous viscosity.

Some of the first embedded methods were fictitious domain methods by Hyman [38] and Saul’ev [39]. The

fictitious domain approach has been used with incompressible materials in a number of works [40, 41, 42, 43, 44, 45,

46, 47, 48]. These approaches embed the irregular geometry in a simpler domain for which fast solvers exist (e.g.

Fast Fourier Transforms). The calculations include fictitious material in the complement of the domain of interest.

A forcing term (often from a Lagrange multiplier) is used to maintain boundary conditions at the irregular geometry.

Although these techniques naturally allow for efficient solution procedures, they depend on a smooth solution across

the embedded domain geometry for optimal accuracy, which is not typically possible.

The extended finite element method (XFEM) and related approaches in the finite element literature also make

use of geometry embedded in regular elements. Although originally developed for crack-based field discontinuities

in elasticity problems, these techniques are also used with embedded problems in irregular domains. Daux et al.

first showed that these techniques can naturally capture embedded Neumann boundary conditions [49, 50]. These

approaches are equivalent to the variational cut cell method of Almgren et al. in [51]. Enforcement of Dirichlet

constraints is more difficult with variational cut cell approaches [52, 6] and typically involves a Lagrange multiplier

or stabilization. Dolbow and Devan recently investigated the convergence of such approaches with incompressible

materials and point out that much analysis in this context remains to be completed [53]. Despite the lack of thorough

analysis, such XFEM approaches appear to be very accurate and have been used in many applications involving

incompressible materials in irregular domains [54, 55, 56, 57, 58].

There are also a handful of highly accurate embedded finite difference (FDM) and finite volume methods (FVM)

utilizing cut uniform grid cells which have been developed in the context of incompressible flow for irregular domains,

although these methods are not applicable to interfacial flows. For example, Marelle et al. [59] use collocated grids

and define sub cell interface and boundary geometry in cut cells via level sets, and achieve second order accuracy in

two and three dimensions. Ng et al. also use level set descriptions of the irregular domain and achieve a symmetric

positive definite discretization with second order accuracy in L∞ for flows in two [60] and three [61] dimensions.

3. Numerical method

We consider the Navier-Stokes equations over an irregular domain Ω = Ω+ ∪Ω− with boundary ∂Ω = ∂Ωd ∪
∂Ωn∪∂Ωs, where Dirichlet velocity constraints are enforced at ∂Ωd , Neumann boundary conditions at ∂Ωn, and slip

conditions at ∂Ωs.The two subdomains Ω+ and Ω− are separated by an interface Γ, which is typically a co-dimension

one closed surface. The corresponding equations are

ρut +ρ(u ·∇)u= ∇ ·σ + f , x ∈ Ω\Γ (1)

∇ ·u= 0, x ∈ Ω\Γ (2)

[u] = ai, x ∈ Γ (3)

[σ ·n] = f̂ , x ∈ Γ (4)

u= b, x ∈ ∂Ωd (5)

σ ·n= ĝ, x ∈ ∂Ωn (6)

n ·u= n · c, x ∈ ∂Ωs (7)

(I−nnT ) ·σ ·n= (I−nnT )ĥ, x ∈ ∂Ωs (8)

where the stress is σ = µ(∇u+∇uT )− pI, ai describes velocity jumps at interfaces, b describes velocities at Dirichlet

boundaries, c represents slip velocities, f̂ describes interface forces, ĝ describes Neumann boundary conditions, and
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Figure 1: (a) MAC layout in two dimensions. The red dots indicate location of pressure and level set variables, the

green and blue triangles represent horizontal (u) and vertical (v) variables respectively. (b) Interface Γ separates the

fluid domain Ω = Ω−∪Ω+∪Γ. In this case all sides of the computational domain have a periodic boundary condition

applied. (c) Another layout which our method can handle in practice. Here an embedded Dirichlet boundary condition

is applied on the left side of the domain Ω and a Neumann boundary condition on the right.

ĥ describes tangential stresses for slip boundary conditions. Although for physical problems the velocity jump is

equal to zero (representing continuity of the velocity), we include a velocity jump which may be nonzero in our

formulation of the interface. This is convenient not only for testing our implementation, but for handling the other

types of boundary conditions. We take the standard convention of defining [u] = u+−u− for interface jumps and n

as the normal pointing outward from Ω−. The interface Γ and boundary pieces ∂Ωd , ∂Ωn, and ∂Ωs are assumed to

be smooth and not intersect one another. This layout is illustrated in Figure 1. We do not consider triple junctions in

this paper.

Our method extends the framework of [1] from two to three spatial dimensions and from the Stokes equations to

the full Navier-Stokes equations. As with [1], our method is second order in L∞ and L2 for the velocities and first

order in L∞ for the pressure (second order in L2) for embedded interfacial discontinuities and irregular boundaries in

two-phase flows, though unlike the previous work, we are also second order in time. Our method produces sparse and

symmetric indefinite KKT-type linear systems. Furthermore, our approach yields discretely divergence-freevelocities.

We do not require knowledge of jumps on the fluid variables and their derivatives but rather only of expressions for

the interfacial forces.

Our numerical method uses an Eulerian representation of the fluid velocity and pressure. A level set φ represents

the domain Ω and interface Γ at each time step. We split the Navier-Stokes equation (1) into two equations by intro-

ducing an intermediate velocity u⋆. We use a weak form of the Navier-Stokes interface problem and simultaneously

solve for the pressure, velocity, and Lagrange multipliers needed to preserve the specified velocity jumps across the

interface. The complete procedure for advancing one time step is:

1. Update level set φn → φn+1

2. Advect time n− 1 and n velocity

3. Compute intermediate fluid velocity u⋆ using BDF

4. Setup symmetric system and right hand side

5. Solve the linear system to obtain p and un+1

We will describe each of these steps in necessary detail, following which we will discuss how to add surface

tension forces, and present requirements for the stability of our method.

4



3.1. Spatial discretization

We use a standardMAC layout for our degrees of freedom, with velocity degrees of freedom at faces and pressures

at cell centers, as shown in Figure 1(a). We maintain our level set at cell centers.

Fluid advection and the implicit update at the end both require valid ghost data in a narrow band around the region

where each fluid phase is defined. We accommodate this by storing a separate velocity array for each fluid phase for

un−1 and un, which over the course of a time step we update to un and un+1. At each MAC face, only one of the

velocity arrays is considered to hold a real velocity degree of freedom, based on the sign of the level set interpolated

to that face. The other array is treated as ghost data and is populated as needed using the extrapolation of [62]. Note

that across interfaces the velocity field, though physically continuous, may have a jump in its derivatives. In our case,

we also included support for velocity discontinuities, since this makes analytic tests far easier to construct and thus

the method itself easier to test and debug.

In practice, we found using the level set directly to distinguish real and ghost velocities to be too unreliable and

on a few occasions lead to the use of invalid velocity data. We avoid these problems by explicitly storing which, if

any, velocity degree of freedom is valid at each MAC face, both for un−1 and un. Since we do this, there is no need to

maintain a level set other than the one at the current time.

3.2. Update level set

We discretize our momentum equation at time tn+1. Setting up the intermediate u⋆ requires that we know which

fluid region is valid at each face, which is determined by φn+1. Thus, we begin our time step by updating our level

set φn → φn+1. We use the level set method for this task in most of our examples. For examples where the level set

method loses volume too quickly, we use the more expensive but more accurate particle level set method [63] instead.

In the case of the level set method, there are two steps: advection and reinitialization. We advect our level set

using third order Runge-Kutta [64] in time and fifth order HJ-WENO [65, 66] in space. This update requires an

estimate for un, un+1, and then un+
1
2 . To obtain these, we merge our per-phase velocity fields into a single velocity

field by selecting the non-virtual degree of freedom at each MAC face (as determined by the sign of φ ). We will call

these merged velocities un−1
m and unm. Our velocity estimates for the level set advection are then unm, 2u

n
m−un−1

m , and
3
2
unm− 1

2
un−1
m . Note that our velocities do not live at the same locations as our level set, so interpolation is required

to co-locate them prior to advection. For reinitialization we use also use third order Runge-Kutta and fifth order

HJ-WENO.

When we use the particle level set method, we perform advection and reinitialization the same way we do for the

level set method. In addition to this, the particle level set method also does particle evolution, for which we use third

order Runge-Kutta and the same velocity estimates as for the level set advection step.

3.3. Discretization of inertial terms

Following [5], we use a variant on semi-Lagrangian for advection and a BDF discretization for the time derivative.

This transforms (1) into

ρ
3un+1− 4und +un−1

d

2∆t
= ∇ ·σ + f , (9)

where und = un(xn) and un−1
d = un−1(xn−1) indicate that the un and un−1 velocities are evaluated at the departure

locations obtained by tracing the position back along the characteristics of the fluid flow from the face located at xn+1.

Note that if we ignore advection, 3un+1−4un+un−1

2∆t is a backward difference formula (BDF) for the time derivative,

which is second order at time tn+1. By contrast, the central difference approximation un+1−un−1

2∆t is second order

accurate at time tn and would be suitable if we chose to discretize our momentum equation at time tn. This would

naturally lead to an explicit update rule, which would not have suitable stability characteristics. Discretizing at time

tn+1 using the BDF rule leads to an implicit method.

By introducing an intermediate velocity u⋆ we split the Navier-Stokes equations into the two separate equations:

ρ
3u⋆− 4und +un−1

d

2∆t
= 0, (10)
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in which we apply the inertial terms to an intermediate velocity, and

α(un+1−u⋆) = ∇ ·σ + f , (11)

where we have introduced α = 3ρ
2∆t for convenience accommodating the first time step. We discuss the first time step

later in this section.

Standard discretization. To obtain second order temporal and spatial accuracy, [5] computes the advected und and

un−1
d using

und = un(xn+1−∆tun+
1
2 (xn+1− 1

2
∆tun(xn+1))), (12)

where un+
1
2 = 3

2
un− 1

2
un−1, and

un−1
d = un−1(xn+1− 2∆tun(xn+1−∆tun(xn+1))). (13)

Here, the position xn+1 refers to a location where a velocity degree of freedom in un+1 will be required, which in the

case of our MAC discretization corresponds to the center of a face.

To see what this update is doing, consider the update for und . In a semi-Lagrangian discretization, an advected

velocity degree of freedom is computed at any desired location by looking upstream from that point to the find the

velocity of the region of fluid that will flow to the desired location during the current time step. A simple imple-

mentation of this uses some estimate of the velocity at the current point, normally un(xn+1). If we assume the fluid

ending up at location xn+1 flowed with this velocity for the entire time step, it must have originated at location

x̂n = xn+1−∆tun(xn+1). Thus, we would compute und = un(x̂n). This update is only a first order accurate approxi-

mation for und , even if quatratic interpolation is used. The reason for this is that un(xn+1) is not an accurate enough

estimate of how the fluid flowed over the course of the time step. A better approximation can be obtained using a

sort of midpoint approximation, where we estimate how the fluid was moving half-way through the time step. To

do this, we need an estimate x̂n+
1
2 of where the fluid was half-way through the time step and what the velocity field

looked like at that time, un+
1
2 . The location we can approximate as before, x̂n+

1
2 = xn+1− 1

2
∆tun(xn+1). A suitable

estimate for un+
1
2 can be obtained by extrapolating to that time from un−1 and un. This gives us a better estimate

ûn+
1
2 = un+

1
2 (x̂n+

1
2 ) for the flow over the time step of the fluid that ends up at xn+1. New we get a new estimate for

the departure point x̂n = xn+1−∆tûn+
1
2 and the corresponding improved estimate und = un(x̂n). This is equivalent

to (12). The formula for (13) is obtained similarly. Note that this scheme follows the same general pattern as the

classical second order Runge Kutta method.

These formulas require three velocity evaluations each. The innermost, un(xn+1), is evaluated at a face, so one

component is obtained by a simple lookup and the remaining components are obtained by linear interpolation. Note

that the grid is not moving, so the velocity samples in un+1, un, and un−1 are all stored at the same face-center

locations in the MAC grid. The middle evaluation requires interpolation, which can be linear interpolation since it

will be multiplied by an extra factor of ∆t. The outermost velocity evaluation also requires interpolation, but this time

quadratic interpolation is required to obtain second order spatial accuracy.

Simplified discretization. Taylor series analysis of the advection and BDF process reveals that the standard approach

to computing und and u
n−1
d is more expensive than necessary. In particular, it suffices to use

und = un(xn+1−∆tun(xn+1)) (14)

un−1
d = un−1(xn+1− 2∆tun−1(xn+1)). (15)

That is, the application of inertial terms simplifies down to doing a step of semi-Lagrangian advection on un and un−1

and then computing u⋆ as a linear combination of the results using (10). Normally, using semi-Lagrangian advection

would only be expected to produce first order temporal accuracy, but using it in combination with BDF in this way

yields second order temporal accuracy. Note that the interaction of semi-Lagrangian advection and BDF does not

improve spatial accuracy, so quadratic interpolation is still required for the semi-Lagrangian advection steps. We use

this simplified discretization in all of our numerical examples.
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First step. Since BDF is a multistep method, we need a way to take the first step. We can afford one time step with

one order lower, so we simply use a backward Euler discretization, which leads to the alternate formula

ρ
u⋆−und

∆t
= 0 (16)

for computing u⋆, where α = ρ
∆t is used in (11) and u

n
d is computed as in (14).

3.4. Discretization of implicit terms

We follow the derivation put forth in [1] to discretize the implicit portion of our splitting. From (11), the continuity

equation, and the boundary conditions associated with the problem, we derive the weak form, which yields our discrete

stencils for the velocity and fluid variables. We continue by detailing aspects of our discretization necessary to account

for possible null modes of the linear system, and to admit Dirichlet, Neumann, and slip boundary conditions. We then

discuss our implementation of computing the integrals necessary to obtain the discrete stencils in our discretization.

In the appendix, we assume for now that we have an interface at Γ but no other non-periodic boundaries. We will

discuss other boundary conditions in Section 3.4.4.

3.4.1. Stiffness matrix

The weak form of (11), as derived in Appendix A, is given by the equations

∫

Ω\Γ
αw ·udV +

∫

Ω\Γ

µ

2
(∇w+∇wT ) : (∇u+∇uT )dV −

∫

Ω\Γ
p∇ ·wdV +

∫

Γ
[w] ·qdA=

∫

Ω\Γ
αw ·u⋆ dV +

∫

Ω\Γ
w · f dV +

∫

Γ
w · f̂

(17)

∫

Ω\Γ
λ ∇ ·udV = 0 (18)

∫

Γ
v · [u]dA=

∫

Γ
v ·ai dA. (19)

Note that we use [w] = w+−w− to denote the jump in w across the interface, and w = 1
2
(w++w−) for the average

of w across the interface. We further use u = un+1 for conciseness. Also, note that the test functions w, λ , and
v complement the unknowns u, p, and q respectively. The pressure p and other Lagrange multiplier q enforce the

continuity equation and the velocity jump condition, respectively.

We begin our discretization procedure by cutting each grid cell of the computational domain into portions belong-

ing to Ω+ and Ω− with the aid of the level set function φn+1. Each cell that is cut will have one or more triangles

(segments in 2D) which are used to calculate integrals over each cell that is cut. We refer to an individual triangle as

a surface element. Different approaches exist for performing cutting from a level set; we explain the method we use

in Section 3.4.5.

Following [1], we place u and p in space according to a standard MAC layout, with p at cell centers and u

components at face centers. We create copies of these degrees of freedom near interfaces so that each phase will have

virtual values available as shown in Figure 2. Although these degrees of freedom can be assigned directly, we create

a copy of each degree of freedom for Ω− and Ω+, so that each fluid region has its own set of variables, and then

discard the variables that are never referenced (those whose interpolating function support does not intersect Ω− or

Ω+ respectively, see Figure 2). The result is the same, but we found the resulting algorithm to be easier to implement.

We follow a finite element discretization, letting

ux(x) = ∑
i

uxiN
x
i (x), uy(x) = ∑

i

u
y
iN

y
i (x), uz(x) = ∑

i

uziN
z
i (x), p(x) = ∑

i

piPi(x), q(x) = ∑
i

qiQi(x), (20)

as in [1], where Nx
i (x), N

y
i (x), and Nz

i (x) define the standard piecewise trilinear basis functions associated with the

velocity nodes for the respective dimension, and Pi(x) is 1 in MAC cell i and 0 otherwise. We have also introduced the

(vector-valued) basis Qi and (scalar) degrees of freedom qi for q(x). The way these are defined is critical to capturing
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Figure 2: A portion of a fluid grid is cut by an interface. The degrees of freedom for the hashed region are shown.

Solid markers indicate real degrees of freedom, and hollow markers indicate virtual degrees of freedom. Note that

only degrees of freedom with interpolating functions whose support intersects the the hashed region participate in the

discretization.

the null mode properly, and we delay the definition of these until Section 3.4.3. We discretize the test variables the

same way as their corresponding degrees of freedom as

wx(x) = ∑
i

wx
iN

x
i (x) wy(x) = ∑

i

w
y
iN

y
i (x) wz(x) =∑

i

wz
iN

z
i (x) λ (x) = ∑

i

λiPi(x) v(x) = ∑
i

viQi(x). (21)

This leaves the discretization of the forcing terms. The body force f is discretized as a vector quantity (f xi , f
y
i , f

z
i ) that

is constant per MAC cell as

f x(x) = ∑
i

f xiPi(x) f y(x) = ∑
i

f
y
iPi(x) f z(x) = ∑

i

f ziPi(x). (22)

The interface force f̂ is discretized with a vectoral force (f̂ xi , f̂
y
i , f̂

z
i ) that is constant over each surface element i. Letting

Ei be 1 on surface element i and 0 elsewhere,

f̂ x(x) = ∑
i

f̂ xiEi(x) f̂ y(x) = ∑
i

f̂
y
iEi(x) f̂ z(x) = ∑

i

f̂ ziEi(x). (23)

The velocity jump is discretized in the same way as f̂ , so that

ax(x) = ∑
i

axiEi(x) ay(x) = ∑
i

a
y
iEi(x) az(x) = ∑

i

aziEi(x). (24)

The discretized equations can now be written in matrix form as













Mx+Axx+Bx Axy Axz −Gx Hx

Ayx My+Ayy+By Ayz −Gy Hy

Azx Azy Mz+Azz+Bz −Gz Hz

−(Gx)T −(Gy)T −(Gz)T 0 0

(Hx)T (Hy)T (Hz)T 0 0

























ux

uy

uz

p

q













=













Mx(u⋆)x+ Jxf x+Kx f̂ x

My(u⋆)y+ Jyf y+Kyf̂ y

Mz(u⋆)z+ Jzf z+Kz f̂ z

0

Lxax+Lyay+Lzaz













, (25)
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where we have defined the matrix blocks (r,s ∈ {x,y,z})

(Mr)i j = α

∫

Ω\Γ
Nr
i N

r
j dV (Ars)i j =

∫

Ω\Γ
µNr

i,sN
s
j,r dV (26)

(Br)i j = ∑
s∈{x,y,z}

∫

Ω\Γ
µNr

i,sN
r
j,s dV (Gr)i j =

∫

Ω\Γ
Nr
i,rPj dV (27)

(Hr)i j =

∫

Γ
ΘiN

r
i Q

r
j dA (Jr)i j =

∫

Ω\Γ
Nr
i Pj dV (28)

(Kr)i j =

∫

Γ
ΦiN

r
i E j dA (Lr)i j =

∫

Γ
Qr
iE j dA. (29)

In the Hr matrices, the value Θi = 1 if degree of freedom i corresponds to the Ω+ phase and Θi = −1 if degree of

freedom i corresponds to the Ω− phase. For an interface, Φi =
1
2
in the Kr matrices; this will change for other types

of boundary conditions that we mention in Section 3.4.4.

3.4.2. Null Modes

The discretization of the Stokes equations in [1] allowed for nullspace modes corresponding to the null modes of

the corresponding continuous weak formulation. In the periodic Stokes case, there is a constant velocity mode per

dimension and a constant pressure mode. In problems with an interface, the pressure mode will also have nonzero

q entries. The primary limitation restricting the discretization in [1] to two dimensions is the inability to capture the

pressure mode discretely in 3D. We present a modification to the discretization of q that resolves this limitation and

captures null modes discretely in either two or three dimensions.

First, we must identify the null modes for our weak formulation of Navier-Stokes with an interface and a periodic

boundary, but no other boundary conditions. (We will discuss the effect of other boundary conditions on null modes

in Section 3.4.4.) A null mode (u, p,q) must satisfy homogenous versions of (17), (18), and (19) for any (w,λ ,v):
∫

Ω\Γ
αw ·udV +

∫

Ω\Γ

µ

2
(∇w+∇wT ) : (∇u+∇uT )dV −

∫

Ω\Γ
p∇ ·wdV +

∫

Γ
[w] ·qdA= 0 (30)

∫

Ω\Γ
λ ∇ ·udV = 0 (31)

∫

Γ
v · [u]dA= 0. (32)

Letting w= u, λ = p, and v= q,
∫

Ω\Γ
αu ·udV +

∫

Ω\Γ

µ

2
(∇u+∇uT ) : (∇u+∇uT )dV −

∫

Ω\Γ
p∇ ·udV +

∫

Γ
[u] ·qdA= 0 (33)

∫

Ω\Γ
p∇ ·udV = 0 (34)

∫

Γ
q · [u]dA= 0. (35)

Combining these yields
∫

Ω\Γ
αu ·udV +

∫

Ω\Γ

µ

2
(∇u+∇uT ) : (∇u+∇uT )dV = 0 (36)

Both terms are clearly nonnegative. Since α > 0, the first term will be positive unless u = 0. Thus, any null mode

necessarily has u = 0. Note that our weak Navier-Stokes formulation has no translational null modes, unlike the

periodic Stokes problem. This reduces the homogeneous system to

0=−

∫

Ω\Γ
∇ ·wpdV +

∫

Γ
[w] ·qdA (37)

=−

∫

Ω\Γ
∇ · (pw)dV +

∫

Ω\Γ
w ·∇pdV +

∫

Γ
[w] ·qdA (38)

=

∫

Ω\Γ
w ·∇pdV +

∫

Γ
[pw] ·ndA+

∫

Γ
[w] ·qdA (39)
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(a) Qn(x) and Qt(x) for one MAC cell. (b) Qt(x) assigned inconsistently.

Figure 3: MAC cell with doubly-fine subcells and interface elements. Qn(x) and Qt(x) are constant per interface

element (and doubly-fine subcell) but not per MAC cell. In 2D, cutting on a doubly-fine grid may produce multiple

segments, which must be oriented consistently.

It remains to determine conditions on p and q for a null mode. If we choose f (x) to be a smooth scalar function that

is positive over some setU ⊂ Ω\Γ and zero elsewhere, then w= f∇p would produce

0=

∫

Ω\Γ
f‖∇p‖2 dV, (40)

from which ∇p = 0 inU , and necessarily, ∇p= 0 in Ω\Γ. Thus, p is piecewise constant, and

0=

∫

Γ
[pw] ·ndA+

∫

Γ
[w] ·qdA (41)

If f is positive over some U ⊂ Ω but zero elsewhere, where U ∩Γ , /0, then w = f∇φ , where φ is the level set,

produces

0=

∫

Γ
[p] f∇φ ·ndA=

∫

Γ
[p] f dA (42)

From this it follows that [p] = 0 inU and thus [p] = 0 over Γ. Finally,

0=

∫

Γ
[w] · (pn+ q)dA (43)

By defining w to be f times an arbitrary piecewise constant vector, we are forced to conclude that q=−pn, where p

is the constant pressure. Thus, the only possible nullspace is u= 0, p= c, and q=−cn, where c is a constant.

3.4.3. Discretizing the interface stress jump

In Section 3.4.1, we introduced our discretization for all quantities except q, whose description we left at (20). We

will take up this topic here.

If we return to the equation for the constant pressure null mode u = 0, p = c, q = −cn, we quickly run into a

problem in 3D. In 2D, we can cut the MAC grid cells in a manner yielding one surface element per cut cell (ignoring

under-resolved cases where there may be a second element). Such a procedure was employed in [1], and for each cut

cell the normal of that element was chosen as n. In 3D, it is generally impossible to maintain one surface element per

cut cell, so for many cells we do not have an obvious candidate n.

If we substitute the null mode into (30), we get

−

∫

Ω\Γ
p∇ ·wdV +

∫

Γ
[w] ·qdA= 0 (44)
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(a) Qn(x), Qt0(x), and Qt1(x) for part of a MAC cell. (b) Qt0(x), and Qt1(x) oriented inconsistently.

Figure 4: These illustrations show the local coordinate directions Qn(x) in red, Qt0(x) in green, and Qt1(x) in blue.

Qn(x), Qt0(x), and Qt1(x) are constant per interface element and should be consistent within a MAC cell (left).

Consistency in the normal direction is automatic, but if care is not taken, the tangential directions will be inconsistent.

Applying the divergence theorem and using p = c yields

∫

Γ
[w] · (cn+ q)dA= 0 (45)

In [1], n was constant per cut MAC cell, so discretizing q as constant per surface element (of which they had one per

cut MAC cell) allowed them to discretely capture the pressure nullspace. If w were defined as piecewise constant per

MAC cell, then discretizing q as constant per cell would lead to q being defined over each MAC cell Ci as

q|Ci
=−c

(

∫

Γ∩Ci

dA

)−1 ∫

Γ∩Ci

ndA (46)

as the discrete nullspace. This is not the case, however, since w is discretized with the non-constant bases Nx(x),
Ny(x), and Nz(x).

Our solution to this problem is to define a normal component qn and two tangential components qt0 and qt1 for

each cut MAC cell. Then, the basis Qn(x) for the normal component qn is the local normal direction Qn(x) = n(x),
which will be different for every surface element in the MAC cell. Now, the nullspace will be captured discretely as

qn =−c and qt0 = qt1 = 0. The tangential bases Qt0(x) and Qt1(x) should be orthogonal tangential directions local to
each element.

Unlike Qn(x), which will automatically be consistent across elements in a MAC cell, the directions Qt0(x) and
Qt1(x), if not chosen carefully, could vary wildly in 3D. (In 2D, the tangential component can also be chosen con-

sistently, though in 2D only one element is required anyway.) To see why such inconsistency may be problem-

atic, consider a MAC cell cut by two coplanar surface elements e0,e1 of equal area. Let Qt0(x) = −Qt0(y) and

Qt1(x) =−Qt1(y), where x ∈ e0 and y ∈ e1. Such a configuration would be incapable of applying a tangential tractive

component in the MAC cell, since the tangential contribution from qt0 and qt1 to one element would cancel out their

contributions to the other element.

To prevent tangential inconsistencies, we define a reference orientation for the MAC cell. The normal direction
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Γ

Ω−

Ω+

∂Ωd

∂Ωd

(a) Interface intersects boundary

Ω0

Ω1

Ω2

Γ

Γ

Γ

(b) Three interfaces meet

Ω

∂Ωn

∂Ωd

∂Ωs∂Ωs

(c) Different boundary conditions meet

Figure 5: Triple junctions are formed when interfaces or boundary conditions of different types meet at a point. The

filled circles represent the location of triple junction in these examples.

for this orientation is the weighted normal,

n′ =
∫

Γ
ndA n=

n′

‖n′‖
, (47)

where A> 0 is the area and n is the unit direction. The first reference tangential direction t0 is chosen as an arbitrary

vector orthogonal to n, and t1 = t0× n, which we write as R =
(

t1 t0 n
)

. To construct the local orientation for

an element e, we begin by mapping the element’s normal ne into tho reference frame as n̂e = R
T
ne. Note that if

the adjacent elements are similar in orientation, then ne ≈ n and n̂e ≈ k, where i, j, and k are the axial unit vectors.

Similarly, we should have t̂0e ≈ j and t̂1e ≈ i. This suggests choosing

t̂
′
0e = (I− n̂en̂

T
e )j t̂0e =

t̂
′
0e

‖t̂
′
0e‖

t̂1e = t̂0e× n̂e t0e = Rt̂1e t1e = Rt̂0e. (48)

We found this local definition of the tangential directions to work well in practice. We can now define the bases for q

locally as

Qn(x) = ne Qt0(x) = t0e Qt1(x) = t1e, (49)

where e is the element at location x. In 2D, the tangential direction is simply chosen by rotating the normal direction

clockwise one-quarter turn. Note that unlike the bases for u or p, the bases for q are vector quantities. For simplicity

of exposition, we index the qi degrees of freedom uniformly, ignoring the distinction between normal and tangential

degrees of freedom. These consistency concerns are illustrated in Figures 3 and 4.

3.4.4. Boundary Conditions

Up to this point, we have described how to discretize the interface Γ splitting the domain Ω, but have not treated

boundary conditions on Ω, excepting periodic boundary conditions which can be handled in the obvious way. An

advantage of our discretization of the embedded interface is the relative ease with which we can modify it to implement

Dirichlet velocity boundary conditions (5), Neumann boundary conditions (6), and slipping boundary conditions (7)

and (8).

We represent our boundary conditions by treating the regions beyond Dirichlet, Neumann, and slip boundaries as

special fluid phases. These boundary condition phases have level sets associated with them representing the location of

the boundary. The boundary condition phases are not real fluid. There are no velocity or pressure degrees of freedom

associated with these phases. This representation allows us to reuse our interface routines with little extra work. The

problem of handling the different boundary conditions becomes a problem of handling an interface between a fluid

12



(a) Interface elements (b) Boundary elements (back) (c) Boundary elements (front)

Figure 6: We use a modified marching cubes table that emits both the usual interface elements (left) as well as a

triangulation of the portion of boundary of the cell in each region (center and right). These extra triangles greatly

simplify our integration process.

region and boundary condition region. Note that if two boundary condition regions are adjacent, there will be an

interface between them, which we can ignore. There will also be a triple junction at the point where the fluid region

meets the two boundary condition regions. Some common triple junction configurations are shown in Figure 5. We

leave the problem of handling triple junctions for future work.

Dirichlet boundary conditions are implemented by treating the region beyond the boundary as having an identically

zero velocity. Nonzero Dirichlet velocity boundary conditions (u= b at x ∈ ∂Ωd) are treated as velocity jumps at the

interface ([u] = b at x ∈ Γd). The stress in the region beyond the boundary condition can be taken to be continuous

with the stress in the fluid, so ([σ · n] = 0 at x ∈ Γd). There will be q degrees of freedom for Dirichlet boundary

conditions just as there are for regular interfaces. Practically speaking this amounts to omitting the velocity degrees

of freedom (as well as the associated rows and columns of the system) corresponding to the Dirichlet fluid phase.

In the Neumann case, we wish to enforce a desired normal stress. We treat the region beyond the boundary as

having identically zero stress. In (29), we divide the interface stress jump evenly to both sides of the interface (Φi =
1
2
).

In the Neumann case, we must put the entire contribution on the side corresponding to the fluid (Φi = 1) since the

other rows will be discarded. The interface stress now corresponds to the region beyond the boundary, so q= σ ·n= 0.

Eliminating q in this way corresponds to not having any particular velocity jump to enforce (a will never be used).

Practically speaking, Neumann boundary conditions are implemented by omitting q degrees of freedom corresponding

to the Neumann boundary condition and omitting the corresponding entries of the system. Note that the Dirichlet and

Neumann treatments above are equivalent to the standard finite element treatments of these boundary conditions.

Our treatment of the slip boundary condition takes advantage of our division of q degrees of freedom into normal

and tangential components. Slip is treated like Dirichlet in the normal direction and Neumann in the tangential

directions. The tangential q degrees of freedom, as well as corresponding matrix entries, are omitted. Note that the

equation corresponding to the normal component of q enforces the velocity jump condition in the normal direction

([u] = c), so omitting degrees of freedom in this way suffices to encode Dirichlet in the normal direction. The

tangential portion requires a slight modification, since (I− nnT )ĥ must be used as the interface stress. As in the

Neumann case, Φi = 1 is used in (29). We demonstrate all three types of boundary conditions in our numerical

examples.

Since our implementations of Dirichlet and slip boundary conditions do not eliminate the normal components of

q degrees of freedom, a Dirichlet or slip boundary condition will not preclude the presence of a null mode. However,

a Neumann boundary condition will prevent the existence of a null mode since its q degrees of freedom are removed.

13



3.4.5. Practical implementation

The primary difficulty in implementing the proposed method is computing the necessary integrals. Our pressure

basis functions are piecewise constant over MAC cells, but our velocity basis functions are piecewise trilinear over

cells whose corners contain the respective velocity degrees of freedom. Since we will be integrating products of these

bases and their derivatives, we perform our integration over the cells of a doubly-fine grid. Over each doubly-fine cell,

these products are all polynomials. The polynomials being integrated may be different, even discontinuous, across

the boundaries between adjacent doubly-fine cells (even across those contained in the same MAC cell). This is a

consequence of the staggering of the variables.

We represent our regions using level sets (both for the interface and boundary conditions) stored at MAC cell

centers. Since we wish to integrate over doubly-fine cells, we interpolate our level set to populate a doubly-fine

node-centered level set. This representation allows us to compute our interface geometry using marching cubes in 3D

(marching squares in 2D) over the doubly-fine grid. The boundary integrals amount to integrating a polynomial over

these triangles. Note that all of the bases, restricted to one interface element, are polynomials.

The volumetric integrals at first seem rather difficult, particularly in light of the rather complicated regions that

occur with marching cubes. If approached in the right way, however, they are quite manageable. We begin by

converting the volume integral into a surface integral using the divergence theorem as in [1]. This reduces the problem

into one of integrating polynomials of one degree higher over the triangles on the boundary of the cut marching cubes

volumes. We augment our marching cubes table (marching squares table for 2D) to emit these triangles (segments in

2D) on the surface of the cube in addition to the triangles on the interface itself. See Figure 6 for an illustration. This

enhancement of marching cubes is straightforward in practice, as most of the work involved is required to implement

marching cubes in the first place. It also greatly simplifies the integration.

The highest degree polynomials we must integrate over cut volumes are of degree six in 3D (degree four in 2D),

which occur for Mx, My, and Mz. These become degree seven polynomials in 3D (degree five in 2D) once the

divergence theorem is applied. The highest degree polynomials we integrate for boundary integrals is three in 3D

(two in 2D). We perform all of these integrations using quadrature rules of high enough order (listed in [3]) to get the

integral exactly.

Although solving the linear system 25 is by far the slowest step of our method, we still perform a few simple

optimizations when computing the integrals. The first is to precompute the stencils for uncut doubly-fine cells (there

will be eight such integrals required, since each octant of a MAC cell may contribute differently to the final stencil).

Additional integrations are only required for integrating in cut cells or computing boundary integrals. Most cells are

not cut and can simply use a copy of one of these precomputed stencils. For the cells that are cut, we will be computing

many integrals over the same geometry, so we begin by integrating the monomials individually using quadrature rules.

With these, integrating the actual basis polynomials reduces to a simple dot product.

We can also take advantage of the way in which the volume integral was converted into a surface integral using

divergence theorem to save even more work. That is we can convert a volume integral over f (x,y,z) into a surface

integral using
∫

Ω
f dV =

∫

∂Ω
gnx dA=

∫

∂Ω
hny dA=

∫

∂Ω
knz dA (50)

where we have integrated the polynomial f (x,y,z) to obtain

g=

∫

f dx h=

∫

f dy k =

∫

f dz. (51)

If we choose the x direction as our preferred direction, then nx = 1 along two faces of the cube, and nx = 0 along the

other four. This means we can discard the boundary elements along four of the faces of the cube.

Finally, we only need to compute volume integrals on one side of an interface, since the integrals for the other can

be obtained by subtracting from the integral over the whole cube, which we have precomputed.

3.5. Solving the system

We solve our system using preconditioned MINRES using the same Jacobi-style preconditioner as in [1]. We

project out our nullspace (when we have one) inside the MINRES solver in addition to projecting the right hand

side for compatibility, since we have found this to improve the convergence behavior of the solver. This simple
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preconditioner we employ significantly improves the conditioning of our systems, but in practice the systems remain

very slow to solve. We leave the problem of finding a more effective preconditioner for future work.

3.6. Surface tension

There are many popular options for introducing surface tension into a fluid discretization that are available to us.

Since our discretization has provisions built in for incorporating an interface force f̂ , we take this approach. We begin

by computing cellwise normals ni and curvature values κi at MAC cell centers according to

ni =
∇φn+1

‖∇φn+1‖
Hi = Hessian(φn+1) κi =

nTi Hini− tr(Hi)

‖∇φn+1‖
, (52)

where all derivatives are computed using central differencing. Using these, we can compute estimates for n̂ and for

the curvature κ̂ wherever necessary, by cubic interpolation of ni and κi. Finally, we approximate our surface tension

as the interface force

f̂ =−β κ̂n̂ (53)

where β is the surface tension coefficient. Note that ni and κi are only required near the interface, and reinitialization

must be performed in a wide enough band for the combined central differencing stencil and cubic interpolation stencil.

3.7. Stability

3.7.1. System stability

The final step of our scheme (u⋆ → un+1) applies viscosity and enforces incompressibility. This operation is linear

(or affine if there are forcing terms such as inhomogeneous boundary conditions or surface tension). This system can

be expressed as
(

M+S G

GT 0

)(

un+1

λ

)

=

(

Mu⋆

0

)

, (54)

where M contains the inertial blocks, S contains the viscous blocks, and G contains the pressure and interface stress

blocks. The vector λ contains the p and q degrees of freedom. Non-homogeneous terms on the right hand side are

omitted. Note that the λ degrees of freedom are not state, in that these values can be discarded at the end of the time

step. The only state variables present in this system are velocities.

The matrix S made up of the viscous blocks is symmetric positive semi-definite, since from our discretization

w′Su is equal to the inner product
∫

Ω
µ
2

∇(w+wT ) ·∇(u+uT ) dV of the piecewise trilinear functions corresponding

to the vectors u,w. We will substitute S= CTC for the purposes of this analysis, and rewrite our matrix equation as

(

M+CTC G

GT 0

)(

un+1

λ

)

=

(

Mu⋆

0

)

. (55)

Following [67] and letting w= Cun+1, we can transform this system to

(

CM−1 0

GTM−1 −I

)(

M+CTC G

GT 0

)(

un+1

λ

)

=

(

CM−1 0

GTM−1 −I

)(

Mu⋆

0

)

(56)

(

C+CM−1CTC CM−1G

GTM−1CTC GTM−1G

)(

un+1

λ

)

=

(

Cu⋆

GTu⋆

)

(57)

(

I+CM−1CT CM−1G

GTM−1CT GTM−1G

)(

w

λ

)

=

(

Cu⋆

GTu⋆

)

(58)

(

(

I 0

0 0

)

+

(

C

GT

)

M−1

(

C

GT

)T
)

(

w

λ

)

=

(

C

GT

)

u⋆ (59)

(P+KM−1KT )z = Ku⋆, (60)

where

P=

(

I 0

0 0

)

K =

(

C

GT

)

z=

(

w

λ

)

. (61)
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Since both P and KM−1KT are symmetric positive semi-definite, P+KM−1KT may have the nullspace component

z if and only if both PP and KM−1KT do individually. zTPz = 0 implies un+1 = 0, which reduces zTKM−1KT z =
λT

GTM−1Gλ . Since M is symmetric positive definite, we must have Gλ = 0. That is, G has a nullspace. We often

do have such a nullspace. Though this complicates the analysis, we note that we can ignore this nullspace since we

will never get a component in it on the right hand side. In this way, we can solve this system for z.

The next step is to recover un+1 from z, which we do using the momentum equation

(M+CTC)un+1+Gλ = Mu⋆ (62)

un+1+M−1CTw+M−1Gλ = u⋆ (63)

un+1+M−1KT z = u⋆ (64)

un+1 = u⋆−M−1KT z. (65)

Finally, the change in kinetic energy due to the update u⋆ → un+1 is

∆KE =
1

2
(un+1)TMun+1−

1

2
u⋆TMu⋆ (66)

=
1

2
(u⋆−M−1KT z)TM(u⋆−M−1KT z)−

1

2
u⋆TMu⋆ (67)

=
1

2
zTKM−1KT z− zTKu⋆ (68)

=
1

2
zTKM−1KT z− zT (P+KM−1KT )z (69)

= −
1

2
zTKM−1KT z− zTPz (70)

≤ 0. (71)

Thus we see that this step does not introduce energy into the system.

3.7.2. Time step restriction

Empirically, our method appears to have a stability restriction on the value of the dimensionless quantity
∆tµ

ρ∆x2

(see Sections 4.4 and 4.9). This limits the minimum choice for ∆t. Since the criterion depends on refinement as ∆t
∆x2

,

convergence is possible as long as ∆t is refined no faster than ∆x2. In particular, ∆t = k∆x and ∆t = k∆x2 are both

suitable refinement strategies.

It is worth discussing the apparent source of this instability in more detail. In the absence of an interface, no

instability is observed. When an interface (or boundary condition) is present and instability is observed, it starts near

the interface. This in particular suggests that the modified velocity advection scheme proposed is stable. Indeed, the

instability is also observed with the original advection scheme or no advection at all. Similarly, instability is observed

with BDF or backward Euler.

An unusual characteristic of this stability restriction is that ∆t must not be chosen too small. To see what may be

causing this, consider a time step in the limit ∆t → 0. In this case, advection has no effect, and the viscosity terms

vanish. Using backward Euler eliminates the complications of BDF. The only part of the time integration remaining

that has an appreciable effect is setting up the right hand side and solving the system, which we showed will not

increase energy. The source of the energy increase is the velocity extrapolation used to fill the ghost cells of u⋆ needed

for the right hand side. If sufficient viscosity is present, this added energy is dissipated as it is introduced, and the

scheme remains stable. Examining the role of ∆t, µ , and ρ in this system, we can rescale the system so that the only

reference to these quantities is through the expression
∆tµ

ρ . This is consistent with the empirical stability criterion

suggested by our numerical examples. Noting that the viscosity blocks are scaled by 1

∆x2
relative to the inertial blocks

leads to the full criterion
∆tµ

ρ∆x2
. This value describes the efficiency with which viscosity is able to damp out energy in

our scheme.

To see why extrapolation is able to lead to instability, consider a set of uniformly spaced sample points u1,u2, . . ..
The value u0 is to be computed by extrapolation. If uk = 1 for k ≥ 2 are set to a constant value but u1 = 1+ ε , so
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Figure 7: Extrapolation amplifies errors. In this case, the ideal solution (black horizontal line) is perturbed by ε at the

interface, which is then amplified by quadratic extrapolation to 3ε and 6ε in the ghost region.

that a small error has been made near the interface, then we will compute u0 = 1+ ε with constant extrapolation,

u0 = 1+ 2ε with linear extrapolation, and u0 = 1+ 3ε with quadratic extrapolation (see Figure 7). Thus, we see that

extrapolation has magnified the error by a factor greater than one. Solving the system pulls some of this energy from

the ghost region inside, where it is magnified further by extrapolation in the next time step. The above example has

a growth factor of 3, though in practice a value near 1.25 is observed for unstable simulations. Instabilities always

exhibit this slow and steady exponential march to infinity. Using lower order extrapolation decreases the growth rate,

but even for constant extrapolation the factor is still slightly larger than one. This supports the idea that extrapolation

is providing the amplification required for instability.

4. Numerical examples

Our method supports a range of boundary conditions and forces. Through a mixture of analytic and more practical

tests, we demonstrate second order accuracy for u in L∞ and L2, second order accuracy for p in L2, and first order

accuracy for p in L∞. We also investigate the stability characteristics of our method.

4.1. Taylor-Green vortex

The Taylor-Green vortex is a popular analytic accuracy test for single-phase Navier-Stokes. We use a (dimen-

sionless) domain [0,π ]× [0,π ] in which we confine fluid to the region sin(x)sin(y)≥ k, where k = 0.2. The fluid has

ρ = 1, µ = 1, and the final time is T = 0.2. The analytic solution is

u= sin(x)cos(y) v=−cos(x)sin(y) p=
1

4
ρ(cos(2x)+ cos(2y))e−4νt , (72)

where ν = µ
ρ . The velocity field is initialized with the analytic velocity. Velocity and pressure errors along with

convergence order estimates are shown in Figure 8.

4.2. Translating Taylor-Green vortex

We test our method on a problem where two fluids are separated by an interface in the periodic domain [0,2π ]×
[0,2π ]. The interface is initially set to be the circle centered at ( 11π

10
,0) with radius 3π

5
. Each fluid has ρ = 1 and

µ = 2, and the analytic solution for both fluids is given by a translating Taylor-Green vortex:

u= sin(x− .2t)cos(y− .5t) v=−cos(x− .2t)sin(y− .5t) p=
1

4
ρ(cos(2x− .2t)+cos(2y− .5t))e−4νt, (73)

where ν = µ
ρ . As before, the velocity field is initialized with the analytic velocity. Velocity and pressure errors, and

estimates of the convergence order, are shown in Figure 9.
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Figure 8: Errors in the Taylor-Green vortex, Example 4.1, for velocity and pressure (shown log base 10) in L∞ and

L2, plotted against resolutions from 16 to 256 by increments of 8 (shown log base 10). The pressure does not start

to display convergence until the resolution is high, so separate regressions are provided for the highest resolutions

128 to 256 to eliminate bias from resolutions below the convergence regime. The estimated orders for velocity when

throwing out the lowest resolutions are 2.01 in L∞ and 2.14 in L2. For pressure, the estimated orders when throwing

out the lowest resolutions are 0.82 in L∞, 1.66 in L2.
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Figure 9: Translating Taylor-Green vortex errors, Example 4.2, for velocity and pressure (shown log base 10) plotted

against resolutions from 16 to 128 by increments of 8 (shown log base 10). Regression lines and the corresponding

orders shown for L∞ and L2, with separate regressions provided for the highest resolutions 64 to 128. The estimated

orders for velocity when throwing out the lowest resolutions are 1.84 in L∞ and 1.89 in L2. For pressure, the estimated

orders when throwing out the lowest resolutions are 1.18 in L∞, 1.77 in L2.
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Figure 10: Analytic test I errors in velocity and pressure (shown log base 10), plotted against resolutions from 16 to

128 by increments of 8 (shown log base 10). Regression lines and the corresponding orders shown for L∞ and L2.

Separate regressions are provided for the highest resolutions 64 to 128 to eliminate bias from earlier resolutions. The

estimated orders for velocity when throwing out the lowest resolutions are 2.34 in L∞ and 2.36 in L2. For pressure,

the estimated orders when throwing out the lowest resolutions are 0.86 in L∞, 1.99 in L2.

4.3. Analytic test I

In this analytic test we evolve two fluids, separated by an interface, in the periodic domain [−π ,π ]× [−π ,π ]. The
interface in this example is the circle x2+y2 = (.8π)2. We set an inner boundary at the circle (x− .2π)2+y2 = (.2π)2,
on which we apply a Neumann boundary condition. The fluid bounded by the inner and outer circles has ρ− = 1,

µ− = 1, and the outer fluid has ρ+ = 2, µ+ = 3. The fluids are initialized with the analytic velocity and evolved to

final time T = .1. The analytic solution is given by

u=

{

.2− x x ∈ Ω−

sin(x)cos(y) otherwise
v=

{

y x ∈ Ω−

−cos(x)sin(y) otherwise
p=

{

0 x ∈ Ω−

1
4
ρ+(cos(2x)+ cos(2y))e−4νt otherwise

.

(74)

where ν = µ
ρ . Velocity and pressure errors along with convergence order estimates are shown in Figure 10.

4.4. Analytic test II

We embed the circle x2+y2=(.8π)2 into the domain [−π ,π ]× [−π ,π ]. A circle (x− .2π)2+y2=(.2π)2 separates
the larger circle into an inner domain Ω− and an outer domain Ω+, and a slip boundary condition is enforced along

the boundary of the outer circle. The inner fluid has ρ− = 1, µ− = 1 and the outer fluid has ρ+ = 2, µ+ = 3. The

velocity field is initialized with the analytic velocity and evolved to the final time T = .1. The analytic solution is

given by

u=

{

.2− x x ∈ Ω−

−y otherwise
v=

{

y x ∈ Ω−

x otherwise
p=

{

0 x ∈ Ω−

.5ρ+(x2+ y2) otherwise
. (75)

Velocity and pressure errors along with convergence order estimates are shown in Figure 11.

4.5. Analytic test II-3D

We examine a three-dimensional analogue of our test from the previous section: The sphere x2+y2+z2 =(.8π)2 is
embedded into the dimensionless domain [−π ,π ]× [−π ,π ]× [−π ,π ]. A shell (x− .2π)2+y2+ z2 = (.2π)2 separates
the larger sphere into an inner domain Ω− and an outer domain Ω+. As before, the slip boundary condition is enforced
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Figure 11: Analytic test II errors in velocity and pressure (shown log base 10), plotted against resolutions from 16

to 128 by increments of 8 (shown log base 10). Regression lines and the corresponding orders shown for L∞ and L2.

Separate regressions are provided for the highest resolutions 64 to 128 to eliminate bias from earlier resolutions. The

estimated orders for velocity when throwing out the lowest resolutions are 1.99 in L∞ and 2.61 in L2. For pressure,

the estimated orders when throwing out the lowest resolutions are 0.90 in L∞, 1.77 in L2.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2

L-inf

L-inf order 3.86

L-inf order 1.82

L-2

L-2 order 3.83

L-2 order 2.05

(a) Velocity error

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2

L-inf

L-inf order 1.55

L-inf order 0.87

L-2

L-2 order 2.21

L-2 order 1.32

(b) Pressure error

Figure 12: Analytic test II-3D errors in velocity and pressure (shown log base 10), plotted against resolutions from 16

to 96 by increments of 8 (shown log base 10). Regression lines and the corresponding orders shown for L∞ and L2.

Separate regressions are provided for the highest resolutions 48 to 96 to eliminate bias from earlier resolutions. The

estimated orders for velocity when throwing out the lowest resolutions are 1.82 in L∞ and 2.05 in L2. For pressure,

the estimated orders when throwing out the lowest resolutions are 0.87 in L∞, 1.32 in L2.
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Figure 13: Couette flow errors in velocity (shown log base 10), plotted against resolutions from 16 to 128 by incre-

ments of 8 (shown log base 10). Regression lines and the corresponding orders shown for L∞ and L2. The analytic

solution (piecewise linear velocity, constant zero pressure) would often be resolved exactly by a second order method.

In our case, we do observe fourth order velocity convergence on this simple test. Note that the first two resolutions

are too small to resolve the setup and have been omitted from the regression. The pressure errors are below 10−9 in

L∞ and L2 for all resolutions and are limited by the convergence tolerance of our MINRES solver.

along the boundary of the outer circle. The inner fluid has ρ− = 1, µ− = 1 and the outer fluid has ρ+ = 2, µ+ = 3. As

in previous examples, the velocity field is initialized with the analytic velocity and evolved to the final time T = .1.
The analytic solution is given by

u=

{

.2− x x ∈ Ω−

2z− 3y otherwise
v=

{

y x ∈ Ω−

3x− z otherwise

w=

{

−2z x ∈ Ω−

y− 2x otherwise
p =

{

0 x ∈ Ω−

.5ρ+(x2+ y2) otherwise
.

Velocity and pressure errors along with convergence order estimates are shown in Figure 12.

4.6. Two-phase Couette flow

We run a two-phase Couette flow test, where two phases are separated by a stationary interface. The phases have

different density and viscosity. The domain is [0,1]× [0,1]. The fluid is confined by vertical no-slip walls at x0 = 0.2
(where u(x0,y) = (0,1)) and x2 = 0.8 (where u(x2,y) = (0,−1)). Periodic boundary conditions are enforced at the top
and bottom of the domain. The interface is vertical at x1 = 0.5, with phase 0 (ρ− = 1, µ− = 1) occupying 0.2< x< 0.5
and phase 1 (ρ+ = 2, µ+ = 3) occupying 0.5< x< 0.8 The analytic solution is u= 0, p= 0, and

v1 =
v0µ−(x2− x1)+ v2µ+(x1− x0)

µ−(x2− x1)+ µ+(x1− x0)
, v=

{

v0+
x−x0
x1−x0

(v1− v0) x≤ x1

v1+
x−x1
x2−x1

(v2− v1) x> x1
. (76)

The initial velocity is the analytic solution. This test demonstrates that the method correctly (and sharply) handles

discontinuities in viscosity. Convergence results are summarized in Figure 13.

4.7. Parasitic currents

In this test, we check for convergence of parasitic currents in the case of a stationary circle with surface ten-

sion. The fluid domain is [0m,0.01m]× [0m, .01m], with periodic boundary conditions and an initially circular

interface (center (0.005m,0.005m), radius 0.003m). We simulate glycerin inside the circle (ρ− = 1261kg m−2,

µ− = 1.4746kg s−1) and a generic light fluid outside (ρ+ = 1kg m−2, µ+ = 1kg s−1, similar in density to air but

more viscous). The interface is evolved with the level set method. Convergence results are shown in Figure 14.
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Figure 14: A stationary circle is run with surface tension to test convergence of parasitic currents. Errors in velocity

and pressure (y-axis, shown log base 10) are plotted against resolutions from 16 to 256 by increments of 8 (x-axis,

shown log base 10). We estimate the velocity to be order 1.96 in L∞ and 2.04 in L2. For pressure, we obtained 1.13 in
L∞ and 1.97 in L2.

4.8. Parasitic currents - 3D

This test is a 3D analogue of Section 4.7. The fluid domain is [0m,0.01m]× [0m, .01m]× [0m, .01m], with
periodic boundary conditions and an initially spherical interface (center (0.005m,0.005m,0.005m), radius 0.003m).

Glycerin is inside (ρ− = 1261kg m−3, µ− = 1.4746kg m−1 s−1), and a light fluid is outside (ρ+ = 1kg m−3, µ+ =
1kg m−1 s−1). The interface is evolved with the level set method, and the results are shown in Figure 15.

4.9. Relaxing ellipse

The tests up to this point have been analytic tests. Here we run a relaxing ellipse test similar to the one performed

in [1]. Two fluids are separated by an interface in the initial shape of an ellipse. The fluid domain is [−1m,1m]×
[−1m,1m], with periodic boundary conditions. The ellipse is centered in the domain with major axis 1.4m and minor

axis 0.8m. The inside fluid has parameters ρ− = 0.01kg m−2 and µ− = 1kg s−1. The outside fluid has parameters

ρ+ = 0.02kg m−2 and µ+ = 3kg s−1. The surface tension coefficient is 10kg m s2. The simulations were run with

time step ∆t = (0.01m−1s)∆x until time T = 0.05s. Convergence orders are shown in Figure 16. Snapshots from the

simulation are shown in Figure 17.

4.10. Relaxing ellipsoid - 3D

This relaxing ellipsoid test is a 3D analogue of Section 4.9. Two fluids are separated by an interface in the initial

shape of an ellipsoid. The fluid domain is [−1m,1m]× [−1m,1m]× [−1m,1m], with periodic boundary conditions.
The ellipsoid is centered in the domain with major and minor axes 1.4m, 0.8m, and 0.8m. The inside fluid has

parameters ρ− = 0.01kg m−3 and µ− = 1kg m−1 s−1. The outside fluid has parameters ρ+ = 0.02kg m−3 and µ+ =
3kg m−1s−1. The surface tension coefficient is 10kgs2. The simulations were run with time step ∆t = (0.01m−1s)∆x
until time T = 0.015s. Convergence orders are shown in Figure 18.

4.11. Rising Bubbles

We used our algorithm to simulate a rising fluid bubble surrounded by fluid of differing viscosity and density.

We assumed a uniform gravitational acceleration equal to g = 9.8, with the fluid densities being ρ− = 1 inside the

interface and ρ+ = 2 outside the interface for all simulations. The interface is an ellipse of major radius a = 0.5 and

minor radius b = .2 in a domain [−1,1]× [0,5], and we center it at (0,1). The top and bottom have zero Dirichlet

boundary conditions on the top and bottom, and the sides are periodic. We simulate exampleswhere the inner viscosity
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Figure 15: A stationary sphere is run with surface tension to test convergence of parasitic currents. Errors in velocity

and pressure (y-axis, shown log base 10) are plotted against resolutions from 16 to 64 by increments of 8 (x-axis,

shown log base 10). We estimate the velocity to be order 1.94 in L∞ and 2.09 in L2. For pressure, we obtained 1.12 in
L∞ and 1.87 in L2.

Resolutions Order (u) Order (p)

compared L∞ L2 L∞ L2

8 16 32 1.428 1.567 0.990 1.078

16 32 64 2.724 2.948 0.326 1.084

24 48 96 4.178 3.568 0.105 1.317

32 64 128 2.521 2.682 0.216 1.684

48 96 192 2.185 2.074 -0.358 1.638

64 128 256 2.453 2.112 0.457 2.334

Figure 16: Order of convergence for 2D relaxing ellipse. Note that pressure is too noisy in L∞ to give a meaningful

convergence estimate. On the other hand, the pressure error is transitioning to second in L2. (The transition to second

is not merely noise. Noisy L∞ and convergence orders consistent with second order in L2 were also observed when this

simulation was run with different parameters.) This suggests that, while the pressure may be noisy, it is converging.
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(a) t = 0.0s (b) t = 0.1s (c) t = 0.2s

(d) t = 0.3s (e) t = 0.4s (f) t = 0.5s

Figure 17: Pressure and interface configuration for the relaxing ellipse of Section 4.9. Dark regions have lower

pressure and lighter regions have higher pressure.

Resolutions Order (u) Order (p)

compared L∞ L2 L∞ L2

8 16 32 2.779 3.012 1.856 2.188

16 32 64 3.521 3.572 0.773 1.646

Figure 18: Order of convergence for 3D relaxing ellipse.
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µ− = 3 is greater than the outer viscosity µ+ = 1, and examples where the inner viscosity µ− = 1 is less than the

outer viscosity µ+ = 3. These values are similar to those used in the rising bubble example in [1]. For each of these

viscosity value pairs, we simulate a rising bubble without (Figures 19(a) and 19(b)) and with (Figures 19(c) and 19(d))

surface tension. In the simulations of Figures 19(c) and 19(d), we use a surface tension force coefficient equal to that

used in the other surface tension examples. These results are qualitatively similar to the rising bubble test in [1], which

used the same parameters but periodic boundary conditions on the top and bottom.

4.12. Stability Tests

To examine stability, we consider two different examples: the analytic example in Section 4.4 and the relaxing

ellipse described in Section 4.9. For both examples, we run simulations for a variety of parameters that affect our

stability. In each case, we choose five values of µ−, ten values of ρ−, two values of ∆x = 2/N, and ten values of

∆t, each sampled by powers of two. Each of these 1000 simulations is classified as stable or unstable. A simulation

is classified as stable if it completes without producing velocities larger than 10 (Section 4.4) or 2 (Section 4.9).

In practice, the classification was quite unambiguous most of the time (most simulations that are unstable simply

explode). The rather low cutoff is much smaller than what would normally be considered ‘blowup’, and errs on the

side of classifying simulations as unstable which do not blow up but still have large uncharacteristic variations in

velocity.

For both examples, we can demonstrate the stability characteristics of our method as a function of µ , ρ , ∆x, and
∆t. For the analytic test in Section 4.4 we vary ∆t, ρ , and µ over a range of values, as described in Figure 20. We also

use two different values of ∆x. For this simulation, the transition between stable and unstable occurs at
∆tµ

ρ∆x2
≈ 0.2.

When this threshold is reached, instabilities begin to develop at the interface between the two phases. Note that this

stability criterion places a lower bound on ∆t. Results are shown in Figure 20.
For the relaxing ellipse stability test, we use the setup in Section 4.9, sampling ranges of ρ , µ , ∆t, and ∆x as

before. For this simulation, the transition between stable and unstable occurs at
∆tµ

ρ∆x2
≈ 0.1. Instabilities, when they

occur, develop at the interface. Results are shown in Figure 21.

5. Conclusion

In this work we presented a second order accurate method for the Navier-Stokes equations which can incorporate

immersed interfaces, discontinuous fluid properties, and various boundary conditions. We considered examples in

which both the fluid viscosities and densities are discontinuous across the interface, examples implementing each type

of boundary condition listed in 8, and examples showing many combinations of these boundary conditions interacting.

We demonstrated the ability of our method to handle interface forces by considering examples with surface tension.

Our method yields a symmetric indefinite linear system of equations.

We discussed the two primary limitations of our method. The first limitation of our method, its additional stability

restriction, effectively restricts its use to problems involving low or moderate Reynolds numbers (Re up to about 20

in practice). The method presented is not suitable for high Reynolds number flows. The second limitation is the KKT

system, for which we currently lack an effective preconditioner. We leave the problem of preconditioning for future

work.

A. Continuous Weak Form of Implicit Equation

Here we derive the continuous weak form of (11) that we discretized in Section 3.4.1. For the purposes of this

derivation, we assume that we have an interface at Γ but no other non-periodic boundaries.

We begin by taking a dot product of both sides of (11) by a test function w, then integrating both sides over Ω\Γ
to get

∫

Ω\Γ
αw · (u−u⋆)dV =

∫

Ω\Γ
w · (∇ ·σ + f)dV, (77)

where we have used u= un+1 for conciseness. Integration by parts yields
∫

Ω\Γ
w · (∇ ·σ)dV =

∫

Ω\Γ
∇ · (w ·σ)−∇w : σ dV =−

∫

Γ
[w ·σ ] ·ndA−

∫

Ω\Γ
∇w : σ dV, (78)
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(a) µ− = 3, µ+ = 1, no surface tension

(b) µ− = 1, µ+ = 3, no surface tension

(c) µ− = 3, µ+ = 1, surface tension

(d) µ− = 1, µ+ = 3, surface tension

Figure 19: Pressure and interface configurations for the four rising bubble simulations described in Section 4.11 at

t = 0.0,1.0,2.0, . . . ,9.0,10.0s. For each simulation, dark regions correspond to lower pressure and lighter regions

have higher pressure.
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(a) µ− = 0.25, N = 32
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(c) µ− = 1, N = 32
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(d) µ− = 2, N = 32
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Figure 20: These plots show the stability of our method on one of our analytic tests. Each point on the (x,y) grid
corresponds to a simulation with ρ− = 10x, ρ+ = 2, µ+ = 2, ∆x = 2π/N, and ∆t = 10y. Circles represent stable

simulations, and squares represent simulations that were unstable.
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Figure 21: These plots show the stability of our method on the relaxing ellipse with varying parameters. Each point

on the (x,y) grid corresponds to a simulation with ρ− = 10x, ρ+ = 2ρ−, µ+ = 3µ−, ∆x= 2/N, and ∆t = 10y. Circles

represent stable simulations, and squares represent simulations that were unstable.
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where n is the outward normal from Ω− and [w] = w+−w− denotes the jump in w across the interface. Then,

∫

Ω\Γ
αw ·udV +

∫

Ω\Γ
∇w : σ dV +

∫

Γ
[w ·σ ] ·ndA=

∫

Ω\Γ
αw ·u⋆ dV +

∫

Ω\Γ
w · f dV. (79)

Utilizing symmetry,

∫

Ω\Γ
∇w : σ dV =

∫

Ω\Γ
∇w : (µ(∇u+∇uT )− pI)dV (80)

=

∫

Ω\Γ
µ∇w : (∇u+∇uT )dV −

∫

Ω\Γ
∇ ·wpdV (81)

=

∫

Ω\Γ

µ

2
(∇w+∇wT ) : (∇u+∇uT )dV −

∫

Ω\Γ
∇ ·wpdV (82)

(83)

Using the identity [w ·σ ] = [w] ·σ +w · [σ ], where σ = 1
2
(σ++σ−) and w= 1

2
(w++w−),

∫

Γ
[w ·σ ] ·ndA=

∫

Γ
[w] ·σ ·ndA+

∫

Γ
w · [σ ] ·ndA=

∫

Γ
[w] ·qdA+

∫

Γ
w · f̂ dA, (84)

where f̂ = [σ ] ·n is known but q = σ ·n must be treated as a degree of freedom since its value will not in general be

known. Combining these with (79) yields

∫

Ω\Γ
αw ·udV +

∫

Ω\Γ

µ

2
(∇w+∇wT ) : (∇u+∇uT )dV −

∫

Ω\Γ
p∇ ·wdV +

∫

Γ
[w] ·qdA=

∫

Ω\Γ
αw ·u⋆ dV +

∫

Ω\Γ
w · f dV +

∫

Γ
w · f̂ . (85)

Introducing test functions λ and v, the weak forms for (2) and (3) are

∫

Ω\Γ
λ ∇ ·udV = 0 (86)

∫

Γ
v · [u]dA=

∫

Γ
v ·ai dA. (87)

The equations (85-87) constitute our weak form of the Navier-Stokes problem.
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