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Abstract

This thesis considers the numerical simulation of a variety of phenomena, particularly

rigid bodies, deformable bodies, and incompressible fluids. We consider each of these

simulations types in isolation, addressing challenges specific to each. We also address

the problem of monolithic two-way coupling of each of these phenomena.

First we address the stability of rigid body simulation with large time steps. We

develop an energy correction for orientation evolution and another correction for

collisions. In practice, we have found these two corrections to be sufficient to produce

stable simulations. We also explore a simple scheme for rigid body fracture that is as

inexpensive as prescoring rigid bodies but more flexible.

Next we develop a method for simulating deformable but incompressible solids. Many

constitutive models for deforming solids, such as the neo-Hookean model, break down

in the incompressible limit. Simply enforcing incompressibility per tetrahedron leads

to locking, where the mesh non-physically resists deformation. We present a method

that uses a pressure projection similar to what is commonly used to simulate incom-

pressible solids and apply it to deforming solids. We also address the complications

that result from the interaction of this new force with contacts and collisions.

Then, we turn to two coupling problems. The first problem is to couple deformable

bodies to rigid bodies. We develop a fully-unified time integration scheme, where

individual steps like collisions and contact are each fully two-way coupled. The re-

sulting coupling scheme is monolithic with fully coupled linear systems. This leads to
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a robust and strongly coupled simulation framework. We use state-of-the-art integra-

tors for rigid bodies and deformable bodies as the basis for the coupling scheme and

maintain the ability to handle other phenomena, such as articulation and controllers

on the rigid bodies and incompressibility on the deformable bodies.

We follow this up by developing a scheme for coupling solids to incompressible fluids.

The method handles both deformable bodies and rigid bodies. Unlike many existing

methods for fluid structure interaction, which often typically lead to indefinite linear

systems, the developed scheme results in a symmetric and positive definite (SPD)

linear system. In addition to strongly coupling solids and fluids, the method also

strongly couples viscosity with fluid pressure. This allows it to accurately treat sim-

ulations with high viscosity or where the primary coupling between solid and fluid is

through fluid viscosity rather than fluid pressure. The method can be interpreted as

a means of converting symmetric indefinite KKT systems with a particular form into

SPD systems.

Finally, we propose a method for applying implicit Lagrangian forces to an Eulerian

Navier-Stokes simulation. We utilize the SPD framework to produce an SPD system

with these implicit forces. We use this method to apply implicit surface tension forces.

This implicit surface tension treatment reduces the tight time step restriction that

normally accompanies explicit treatments of surface tension.
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Chapter 1

Introduction

Numerical simulation of the laws of physics has important applications in many fields.

These applications heavily dictate the type of phenomena simulated and the relative

importance of accuracy and stability. On one side of the spectrum is the entertain-

ment industry, where the primary concern is results that are visually plausible. The

examples being simulated are often complex and involve diverse phenomena like rigid

bodies, deformable solids, and fluids. Since accuracy is of only limited importance,

the simulation time step size is often limited only by the stability and robustness of

the underlying methods. The requirement of accuracy is also reasonably relaxed in

cases like collisions where chaos and inaccurate models limit the meaningfulness of

simulation accuracy. At the other end of the spectrum are engineering applications

where accurate predictions are required. Such simulations are useful to the extent

that they accurately predict what will happen in the real world. In these cases,

the time step size is often limited by accuracy requirements. While stability is still

important, more emphasis is placed on accuracy and convergence.

Applications for full coupling between different phenomena are numerous and of great

interest. Ideally, numerical methods would be developed that perform well when

applied to a wide range of phenomena. The reality of the situation, however, is

that methods are designed specifically to simulate only a few phenomena. One may

1
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approach coupling by treating different phenomena using the methods developed for

one of the individual types. Thus one might couple deformable solids to fluids by

treating a deforming body as a viscoelastic fluid or couple rigid bodies to deformable

bodies by treating rigid bodies as extremely stiff deforming bodies. While this strategy

makes coupling straightforward, it does not permit the use of state-of-the-art methods

for each of the individual simulation types.

A simple approach to coupling is to use a partitioned method. Partitioned methods

work by building subsystems to simulate each individual type of phenomenon. Then,

each subsystem is evolved one time step using the other systems as boundary con-

ditions. This approach is very convenient, since the individual subsystems may be

developed independently and may even be black box solvers. This only produces a

weak form of coupling with limited information transfer between the different subsys-

tems in a single time step. This problem may be alleviated by iterating the system,

but this can be prohibitively expensive.

An alternative approach is monolithic coupling, where each of the individual subsys-

tems are unified into a single method with a coupled time integration scheme and

coupled implicit systems to solve. The coupled implicit system produces very strong

coupling. While these methods are significantly more difficult to develop, they often

have more favorable stability characteristics.

This thesis considers the simulation of a diverse range of phenomena with special em-

phasis on stability and monolithic coupling of different phenomena. Chapter 2 (based

on [144]) makes a number of improvements to the stability of rigid body simulation

with large time step sizes. Chapter 3 (based on [80]) develops a method for robustly

and stably simulating incompressible deformable bodies in the presence of collisions

with other objects. Chapter 4 (based on [134]) presents a method for fully two-way

monolithic coupling of rigid bodies and deformable bodies. The method supports col-

lisions, contacts, articulation, controllers, incompressibility, and bindings. Chapter 5

(based on [124]) presents a novel method for monolithic fluid structure interaction.

The method produces a symmetric positive definite system which is sparse to apply
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and supports both deformable bodies and rigid bodies. Finally, Chapter 6 (based on

[128]) develops a method for applying Lagrangian forces to an Eulerian simulation

and uses it to ease the tight surface tension time step restriction.



Chapter 2

Frame Rate Rigid Bodies

Rigid bodies under the influence of gravity and collisions do not have a stability time

step restriction per se, even when evolved using explicit methods. They do, however,

have a time step restriction based on accuracy. In practice these accuracy problems

can cause significant increases in energy and highly nonphysical behavior, and we

regard such simulations as unstable even though the extent of the problem typically

remains bounded. This chapter considers two mechanisms by which a significant

nonphysical energy increase is observed to occur in practice. In each case, the source

of the error is localized to a single step of the algorithm, and the errors are detected

and corrected by carefully considering changes in kinetic energy. We also consider a

new approach to fracture that is similar to but more flexible than prescoring. Fracture

tends to create sliver bodies, which are particularly difficult to simulate accurately.

This chapter is based on the work published in [144].

2.1 Introduction

Rigid body dynamics have been of great interest to the graphics community beginning

with the early work of [66, 103, 6, 7, 8], and optimizing these algorithms to be more

4
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efficient was also of early interest, see e.g. [9]. More recently, various authors have re-

visited rigid body simulation, focusing on a variety of phenomena [64, 87, 88]. There

has also been interest in fracture [5] and magnetism [153]. Though all these rigid body

techniques have been highly successful in the visual effects industry, the amount of

computational power they require has prevented their use in real-time applications.

However, when one examines today’s real-time rendering systems it is clear that mod-

ern and next-generation hardware provides for the rendering of incredibly complex

and detailed scenes in real-time, implying that significant computational resources

are available. While real-time rendering systems must only compute once per frame,

making all resources available for handling higher scene complexity, physics engines

typically perform many small time steps per frame, trading spatial complexity for

temporal complexity. Our stated goal is to simulate rigid bodies at the frame rate,

taking one time step per frame so that we can simulate as detailed a scene as possible.

While any basic simulation engine could be used as a starting point for this, we chose

[64], emphasizing that many of our ideas for robustly handling contacts, collisions,

rigid body evolution, etc. could be adapted to other algorithmic frameworks with

relatively little effort.

Numerical simulations are typically designed to converge to the correct solution as

the time step goes to zero. Moreover, shrinking the time step improves stability,

robustness, and accuracy. Therefore, constraining our simulations to go at the frame

rate will pose problems for almost every part of the algorithm. [32] discusses some

known flaws in state-of-the-art collision models including common misconceptions,

mentioning for example that the coefficient of restitution can be greater than one

in frictional collisions. [143] discusses non-unique solutions and the impossibility of

predicting which solution occurs in practice. We further illustrate that the standard

evolution equations can lead to overall energy gain. Obviously, energy should be

conserved if not dissipated due to damage and heat, and since this effect is highly

exacerbated using large time steps (i.e. the 30 Hz frame rate), we propose a novel

method for clamping collisions in order to guarantee that energy does not increase.

We note there has been work on energy conservation with respect to collisions and
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contact in deforming bodies, as in [3]. Whereas one might debate the correct behavior,

it is pretty clear from the aforementioned references that this is not yet understood,

and clamping the energy at least leads towards better plausibility in the sense of [13].

Similar ideas are needed for processing contact.

Besides the known problems with contact and collision, rigid body simulations are

prone to accuracy errors during evolution such as energy increase. These errors can be

quite unacceptable for bodies that are rotating quickly or have ill-conditioned inertia

tensors, such as those often introduced during simulations of fracturing bodies. These

problems are well known and have been addressed by several authors, including [161],

who propose a rather complicated analytic solution to the problem. [162] instead

focused on the conservation of the first integrals of the system. In the mechanics

literature, there has been work on energy and momentum conserving rigid body

dynamics, such as one of the algorithms in [140], but this algorithm requires the

iterative solution of a fully nonlinear equation and therefore does not fit well with

our goal of efficient simulation. In the same vein we propose a novel algorithm for

conserving kinetic energy as rigid bodies rotate. In some sense this focus on energy

conservation to provide better stability is analogous to variational integration, see

e.g. [89, 24, 91].

Both virtual environment designers and video game developers have found that their

users desire dynamic environments, and one of the simplest ways to provide is through

rigid body simulation. Whereas a number of systems provide basic rigid simulation

in real time, much of the recent interest is focused on destruction scenarios. In fact,

fracture has been of great interest to the graphics community for some time [111] and

has regained recent popularity via [114, 173, 113]. Other notable works include the

real time work of [104], the virtual node algorithm for decomposing meshes [101], and

the fracturing of rigid bodies [5]. One can envision fracturing an object in two specific

ways. The object can be prescored and subsequently broken apart based on a variety

of rules, or one can compute the fracture dynamically using finite element analysis

to determine internal stress. Prescoring the material is faster and thus desirable for

real-time simulations; however, a great deal of realism is lost because the object does
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Figure 2.1: The images above show a prescored pillar being dropped onto the ground
with (left) a small time step, (center) a frame-rate time step with no energy con-
servation, (right) a frame rate time step with energy conservation. During both the
small time step simulation and the frame-rate simulation with energy conservation,
the small shards highlighted in green behave as expected. However, in the frame-rate
simulation with no energy conservation, the green shards bounce non-physically high
into the air.

not fracture based on the point of impact. We propose a novel method to prescore all

of space and then subsequently apply this prescoring in the specific location of impact

to generate the fracture. This avoids the need for expensive algorithms that compute

the stress and fracture dynamically while still breaking the objects based on the point

of impact with the efficiency of prescoring. A further benefit of our approach is that

it gives the artist more control over the fracture patterns without constraining where

the fracture is initiated, i.e. where the collision takes place. (We refer the reader to a

rather interesting paper on generating fracture patterns [78].)

2.2 Rigid Body Evolution

Simple translation through space is trivially integrated accurately at any time step,

whereas orientation is non-linear and more complex. Typically one solves an ordinary

differential equation using a scheme written to conserve angular momentum exactly,

but kinetic energy is not necessarily conserved. In certain scenarios, a small time

step is needed to guarantee accuracy, and a time step equal to the frame rate can

cause an unacceptable gain in energy. For well-conditioned bodies with well-behaved
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inertia tensors and relatively slow rotations, the second order evolution suggested

in [134] and described in more detail in Section 4.4.1 adequately prevents energy

growth. However, for poorly-conditioned and rapidly rotating bodies evolved at the

frame rate, we have observed energy increases of over an order of magnitude in a

single time step even with higher order evolution. This can lead to significant and

noticeable artifacts, such as those seen in Figure 2.1.

In order to properly conserve kinetic energy during evolution one must adjust the

angular momentum or the orientation of the body. Since we desire to conserve mo-

mentum as well, we adjust the orientation. That is, the ordinary differential equation

solver produces errors in kinetic energy and orientation, and our aim is to adjust those

errors in orientation to conserve kinetic energy. We do this by analytically rotating

the body to an orientation that has the same kinetic energy as the initial state. Since

we do not change the angular momentum of the body, it is trivially conserved. Note

that while this conserves angular momentum and energy, we do not properly resolve

rotation, so the resulting orientations may still be inaccurate. If objects are moving

very rapidly a large time step may cause collisions to be missed or resolved poorly.

That said, the user is unlikely to notice that a collision occurred a frame too early

or that the body had a slightly incorrect orientation when the collision normal was

computed, nor is the user likely to notice that the body’s orientation is inaccurate.

Errors in momentum and energy, however, tend to produce noticeable artifacts.

2.2.1 Energy and Momentum Conserving Orientation

First, we show that there exist many nearby states that have the same kinetic energy

and angular momentum. Consider the rotational kinetic energy of a body

KE =
1

2
LT I−1L,



2.2. RIGID BODY EVOLUTION 9

where L is the angular momentum and I is the inertia tensor. If we change KE over

time while keeping the angular momentum fixed, we have

KE ′ =
1

2
LT (I−1)′L = −1

2
LT I−1

�

I I−1L (2.1)

Using the orientation R and object space inertia tensor I0, where I = RI0R
T , we can

expand
�

I to

�

I=
�

R I0R
T +RI0

�

R T =
�

R RT I+ IR
�

R T = u∗I+ (u∗I)T ,

where we defined u∗ =
�

R RT as the cross product matrix for the vector u which

represents our desired change in orientation. Substituting into (2.1),

KE ′ =−1

2
LT I−1(u∗I+ (u∗I)T )I−1L

=−LT I−1(u∗I)I−1L = −ωTu∗L = −uTL∗ω.

Since KE is to be conserved, KE ′ = 0 and therefore uTL∗ω = 0. Thus u must lie in

the space spanned by L and ω, or

u = c1ω + c2L,

where c1 and c2 are constants. Note that in the special case when L and ω are parallel,

u can actually be any vector. In this case there will be no errors in the trivial

integration of orientation. However, in general we have a two-parameter family of

equations that conserves both angular momentum and kinetic energy. This suggests

that there are many nearby states (i.e. orientations) that have both the same kinetic

energy and angular momentum.
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2.2.2 Computing the Energy Fix

Let KE be the kinetic energy obtained after evolution

KE =
1

2
LT I−1L =

1

2
LTRI−1

0 RTL,

and let KE0 be the kinetic energy that should have been obtained by energy conser-

vation. We would like to adjust the orientation obtained from evolution to fix the

kinetic energy by replacing R with eu
∗

R. Let u = εs, with the unit vector s being

the axis of rotation and ε being the amount to rotate. We will choose s such that

it is orthogonal to L. We set the kinetic energy of the modified post-evolution state

equal to

KE0 =
1

2
LT (eu

∗

R)I−1
0 (eu

∗

R)TL =
1

2
((eu

∗

)TL)T I−1((eu
∗

)TL).

Expanding eu
∗

, where δ is the identity matrix, we get

eu
∗

= eεs
∗

= δ cos ε+ s∗ sin ε+ ssT (1− cos ε)

(eu
∗

)TL=L cos ε− s∗L sin ε+ ssTL(1− cos ε)

=L cos ε− s∗L sin ε.

Substituting back into (2.2.2) yields

KE0=
1

2
(L cos ε− s∗L sin ε)T I−1(L cos ε− s∗L sin ε) (2.2)

=KE cos2 ε− a sin ε cos ε+ b sin2 ε,

where we have defined a = (s∗L)Tω and b = 1
2
(s∗L)T I−1s∗L. Note that ε is never used

directly but instead appears only as sin ε and cos ε. Letting x = cos ε and y = sin ε,

KE0 = KEx2 − axy + y2b. (2.3)



2.2. RIGID BODY EVOLUTION 11

Letting c = KE − b and k = KE −KE0, we obtain

axy= k − cy2 (2.4)

a2(1− y2)y2= (k − cy2)2

0= k2 − (2kc+ a2)y2 + r2y4,

where r =
√
c2 + a2. Solving for y2 we get

y2=
2kc+ a2 ±

√

(2kc+ a2)2 − 4r2k2

2r2

=
1

r2

(

kc+
1

2
a2 ± a

√

1

4
a2 + k(c− k)

)

=
1

2r2

(

r2 − cn± a
√
r2 − n2

)

,

where n = c− 2k. Finally, if we let q = a
√
r2 − n2, then

y =
ps
r

√

r2 − cn+ pbq

2
x =

pc
r

√

r2 + cn− pbq

2
, (2.5)

where we have used ps, pc, and pb (all equal to ± 1) to indicate signs that must be

chosen.

From (2.3) we note that only the sign of xy, that is pspc, is significant. For small angles

of rotation, cos ε > 0, so we choose pc = 1. From (2.4) we choose ps = sgn(k − cy2).

In the limit of very small errors in kinetic energy, the correction should also be very

small, leading to the final sign choice pb = −sgn(a).

2.2.3 Numerical Considerations

Direct use of (2.5) is not recommended. If |k| is near floating point precision, then

no significant error has been made and no correction is required. Similarly, if the

kinetic energy is sufficiently small, then any energy increase that may have occurred

is irrelevant to the simulation. Let g = a2 + 4k(c − k). If a/KE is very small (not
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robust), or g < 0 (infeasible search direction), then a fallback search direction should

be used. Let p = a2 + g + 2|a|√g. Finally,

x =

√

p + (c+ n)2

2r
ŷ =

2|k|
√

p+ (c− n)2
,

where y = sgn(k − cŷ2)ŷ.

2.2.4 Choosing a Rotation Axis

The previous section describes how to compute ε in a way that conserves the kinetic

energy once a direction s is chosen. As discussed in section 2.2.1, if u is chosen as a

linear combination of ω and L, then kinetic energy is conserved. The locally optimal

direction to choose is orthogonal to both, s = L∗ω/‖L∗ω‖. This can be seen formally

by noting that the Taylor series expansion of (2.2) is KE0 = KE − LT I−1s∗Lε =

KE − sT (L∗ω)ε. The magnitude of the linear term is optimized by choosing s to be

in the direction of L∗ω.

One issue with choosing s = L∗ω is that only the angular momentum L remains

constant as the object is rotated, and the angular velocity ω changes. Therefore,

while s = L∗ω was a good choice for an instantaneous and small rotation, L∗ω starts

changing as the rotation is applied, and the best choice changes as well. Though

locally optimal, this choice can fail for larger errors, in which case we simply choose

a different s.

At this point we fall back to using s = L∗r, where r is either the maximum or

minimum principal inertial direction, depending on the whether the current KE is

greater than or less than KE0. If KE > KE0, then we want to rotate such as to

align L and the largest principal inertial direction, rmax. In this state, the body has

the lowest KE it could possibly have for its angular momentum, so s = L∗rmax. If

KE < KE0, then we want to align L and the smallest principal inertial direction,

rmin, and so s = L∗rmin. Note that since we conserve angular momentum exactly and
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Figure 2.2: Collisions and contact behave correctly using our energy clamping. In
this example, we drop several boxes to form a stack. A larger box then disrupts this
stack and scatters the objects.

the maximum and minimum possible kinetic energy with this angular momentum

is obtained by rotating in this way, this method of choosing directions is fail safe

provided it is implemented robustly.

2.3 Collision and Contact Clamping

Contact and collision processing with Coulomb friction can also lead to energy gain,

even in the otherwise very well-behaved example of a cube falling on the ground

with a relatively small time step. Taking a large time step exacerbates this problem.
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This limitation of the Coulomb friction model is also recognized and addressed in

the literature, such as by replacing the Coulomb friction model with one that cannot

increase energy [32]. However, this is insufficient in the case of collision or contact

algorithms such as that of [64], since position and velocity live at different points in

time when the collision impulse is computed and applied.

2.3.1 Clamping in Split States

Many time integration schemes include states where velocities and positions live at

different times, a condition we refer to as a split state. Clamping energy while in a

split state can lead to very serious problems. Consider the forward Euler scheme with

gravity as the sole force, xn+1 = xn+∆tvn followed by vn+1 = vn+∆tM−1g. Between

the two updates lies a split state with position ahead of velocity. If the object is

rising, so that xn+1 > xn, one would calculate an increased potential energy and thus

increased total energy in this split state. Clamping xn+1 to xn removes this energy

gain, but prevents the objects from rising under gravity. Similarly, if we consider the

same forward Euler scheme computed in the reverse order, vn+1 = vn + ∆tM−1g

followed by xn+1 = xn+∆tvn, we have a similar problem when falling under gravity.

In the split state, we observe an increase in kinetic energy from gravity and clamp

vn+1 to vn, preventing the object from falling correctly. From these examples, it

is clear that conserving total energy is only meaningful when comparing non-split

states, as momentary changes in total energy in split states are an inherent property

of time integration schemes that utilize split states.

2.3.2 Clamping Impulses

In the case of both contact and collision processing, it is important to note that we do

not modify positions. Therefore, potential energy is left unchanged, and preventing

an increase in total energy is equivalent to preventing an increase in kinetic energy.

First, we outline our general strategy for clamping in a split state. Then we explain
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Figure 2.3: A rigid cube slides down an inclined plane and eventually stopping with
friction, where the half sphere represents the analytic solution.

how it is applied to both collisions and contact.

Consider two bodies A and B. An impulse j and angular impulse jτ are to be applied

to body A with the negations applied to body B to conserve momentum. We clamp

the linear and angular impulses by scaling them by ε. Since kinetic energy is quadratic

in velocity and the trivial solution ε = 0 results in an energy conserving impulse, there

will always exist another real solution ε that can be found as follows. First, we write

the kinetic energy of body A before and after the impulse is applied, KEa and KE ′
a

respectively, in the non-split state.

KEa=
1

2
pT
am

−1
a pa +

1

2
LT

a I
−1
a La

KE ′
a=

1

2
(pa + εj)Tm−1

a (pa + εj) +
1

2
(La + εjτa)

T I−1
a (La + εjτa),

where p is the linear momentum, m is the mass, and jτa = r∗aj + jτ . Note that both

j and jτ will be computed in a split state, and in particular ra will also be computed

in that split state. This simply means that the impulses used to compute KE ′
a will

come from a split state computation, but as long as equal and opposite impulses are

applied at the same point in space we will conserve linear and angular momentum.
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Figure 2.4: Our algorithm for prescoring all of space allows us to center a fracture
pattern around the point of impact. The above series of images shows a wall being
fractured at 3 separate locations, with all the fractures being generated from the same
fracture pattern. Finally, a sphere fractures as it hits the wall using the same fracture
pattern. The level set resolution of all the walls used in our examples is 150×10×100.

That is, split state impulses have no effect on conservation of momentum and are

fairly standard in the literature. However in our kinetic energy calculation, it is

important to view every term in KEa and KE ′
a as existing at a non-split state.

The change in the kinetic energy of body A is given by

KE ′
a −KEa = ε(jTm−1

a pa + jTτaI
−1
a La) +

1

2
ε2(jTm−1

a j + jTτaI
−1
a jτa),
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and the total change in kinetic energy including both bodies is

KE ′ −KE = ε(jTm−1
a pa + jTτaI

−1
a La − jTm−1

b pb − jTτbI
−1
b Lb)

+
1

2
ε2(jTm−1

a j+ jTτaI
−1
a jτa + jTm−1

b j + jTτbI
−1
b jτb).

Setting KE ′ −KE = 0 to preserve the kinetic energy results in the trivial solution

of ε = 0 as well as the nontrivial solution

ε =
2(jTm−1

b pb + jTτbI
−1
b Lb − jTm−1

a pa − jTτaI
−1
a La)

jTm−1
b j+ jTτbI

−1
b jτb + jTm−1

a j + jTτaI
−1
a jτa

.

If ε > 1, then the impulse required to conserve kinetic energy is larger than the

impulse we are applying. This simply means that Coulomb friction is reducing the

kinetic energy and nothing need be done. If 0 < ε < 1, the proposed impulse is

erroneously increasing the kinetic energy and thus we scale the impulses by epsilon in

order to prevent any energy increase. Note that ε < 0 is impossible in a non-split state

but can occur in a split state, representing an infeasible direction. In this case, we

choose ε = 0, meaning that we discard the impulse altogether. Note that discarding

the impulse leads to loss of friction, but in practice this case is very rare.

When one of the two bodies has infinite mass, such as the static ground plane or

a moving kinematic body (consider for example an elevator), the above equations

need a slight modification. For the case of a static body, all the terms pertaining

to the body vanish as m−1 and I−1 are zero. One might assume the same applies

to a kinematic body with non-trivial velocity, however this would preclude an object

from being lifted with an elevator. In particular, the terms relating to the infinite

mass body only cancel in the sense of relative velocities. Thus, for a collision with a

kinematic object we rewrite the velocities of the dynamic body in the relative frame

of the kinematic object based on its pointwise velocity at the point of collision. Then

the clamping can be done computing ε in the same manner as for a static body. This

preserves kinetic energy in the moving reference frame, giving the desired effect. Note

that infinitely massive bodies may transfer kinetic energy to other bodies without

change in velocity.
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Collision Clamping The collision algorithm of [64] applies collisions to the split

state xn+1, vn. However, we have a valid non-split state to clamp against, since we

can clamp the impulses applied to vn in the state xn, vn. This means that KE

is computed using entirely time n quantities, as are all terms in KE ′ except those

relating to j and jτ . Instead, j and jτ are computed using the split state, just as in

[64] where in particular ra (and jτa) are also computed using that split state.

Contact Clamping The contact algorithm of [64] also involves a split state. We

use a Newmark variant of this scheme introduced by [134], which performs two slightly

different contact steps, the first as part of a position update and the second as part

of a velocity update, rather than one as in [64]. The second contact step involves the

split state xn+2, vn+1, but we observe that we can clamp against the non-split state

xn+1, vn+1 using the method described above. This is identical to the treatment of

collisions, where the split state was formed by updating the position one time step

while leaving the velocity the same.

The first contact step involves the split state xn+1, vn+1/2. Since the only avail-

able non-split state at that point in the integration is at xn, vn, we tried clamping

there. Unfortunately, clamping against that state leads to problems. For example,

if bodies are initially at rest and in contact, any impulse will change vn away from

zero and increase energy, resulting in the impulse being clamped to zero. This pre-

vents contacting bodies at rest from applying contact impulses and leads to jittering.

Therefore, we do not clamp during the first contact step, and we have not observed

any ill effects from this omission. This may be partially due to the fact that this

first contact step is only used to update the position, and its effects on the velocity

are removed. Therefore, energy gain here may be less detrimental than during the

second contact step or during the collision processing where the results are used to

directly modify the velocity. However, in spite of our ability to obtain stable and

accurate simulations at the frame rate, we do think that clamping the first contact

step should be addressed as future work. That is, while the energy behavior of the

scheme is highly improved by limiting any kinetic energy growth during evolution,
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Figure 2.5: A cylinder (level set resolution of 55×105×55) is shattered into 25 pieces
by a sphere. This simulation averaged 22 frames/sec on a single 3.00GHz Xeon core
using only algorithmic optimizations.

collisions, and the contact phase of the velocity update, there may be scenarios where

the kinetic energy growth during the contact phase of the position update could have

adverse effects.

Observe that this approach to clamping does not rely on any of the details of the

collision or contact algorithms being employed, beyond the relatively simple assump-

tion that it will result in an impulse to be applied. It can be applied when the state

is non-split, or when the state is split but a suitable non-split state is available. It

is equally suitable for clamping the impulses obtained from any other process that

affects the state only through the impulse computed.
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2.4 Fracture

Fracture of rigid bodies has typically been achieved through prescoring methods or

by dynamically computing the stresses of the object to determine how to fracture it.

Prescoring is fast but constrains the artist’s control over the look of the fracture. The

artist could make a realistic fracture pattern emanating from a particular point on

the object and hope that the point of impact is close to the fracture center or make

a somewhat uniform fracture pattern that is not centered about any point and is not

very realistic. Computing fracture dynamically from the internal stresses of an object

produces realistic, point-of-impact-centered patterns but requires significantly more

computation time and is therefore impractical for real-time applications. The goal

of our method is to combine the speed of a prescoring technique with the point-of-

impact-centered realism of stress-computing methods. We achieve this by prescoring

all of space, generating a fracture pattern that emanates from a fracture center, which

can then be aligned on-the-fly with the collision location on the object we wish to

fracture. This approach provides artists with the ability to more precisely control

how an object breaks around a collision point while still being feasible for real-time

applications.

2.4.1 Framework

Rigid Body Representation As we will be implementing our fracture algorithm

in the context of [64], it is important to note that for their implementation, they

represented rigid bodies with a triangulated surface mesh and a volumetric level set.

Contact and collisions are both detected and processed by computing level set data

from one object at the positions of the surface particles of the other object. We note

that these algorithms do not require surface triangles but rather only the vertices.

Thus, each of our rigid bodies will contain a position, orientation, velocity, angular

velocity, mass, inertia tensor, list of surface particles, and volumetric level set function.

Any standard fast dual-contouring [85] or marching cubes method [100] can be used
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Figure 2.6: A complex bunny model with a level set resolution of 70 × 60 × 45 is
shattered into 35 pieces.

to triangulate the level set for rendering.

Fracture Patterns The goal is to fracture all of space, and this is easily accom-

plished by fracturing any piece of geometry that can subsequently be translated and

rescaled to enclose the dynamically simulated object to be fractured. For our ex-

amples we simply used the bounding box of the object and fractured this box into

a number of regions. A single point in this cube is defined as the point of impact

for the fracture, and a coordinate system is attached to that point to represent the

collision normal. When an object fractures, this box will be translated and rotated to

align with the collision and scaled to enclose the object, both important for the artist
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Figure 2.7: A wall is fractured in the lower right corner with a sphere, creating large
pieces away from the fracture location (left). Then, a second sphere fractures one of
the large fragments (right).

to keep in mind when sculpting the pieces. Each of the fracture regions represents

a fragment of the fractured space and stores a list of surface particles, a volumetric

level set function, and the location of the fracture center with respect to the region.

2.4.2 Fracturing a Rigid Body

Each rigid body in our simulation is assigned a fracture threshold, which represents

the magnitude of the collision impulse the body must feel before it will fracture.

When a pair of rigid bodies is processed for collision, we compute the impulse that

would be applied due to the collision, and if it is above the fracture threshold of the

body, we proceed to fracture the body. The result of this fracture will be a set of

fragment bodies, each of which is the result of intersecting the original body, which

we refer to as the parent body, with one of the regions of the fracture pattern.

Level Set To generate the level set of a fragment, we will merge the level sets of

the fracture region and parent body that intersect to form the fragment. The level set

of the fragment is computed at each point as the maximum of the fracture region’s

and parent body’s level set values at that point. This algorithm will produce a level
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Figure 2.8: 1000 small spheres are dropped onto a table. Then, a larger sphere is
dropped to fracture the table, resulting in 8992 rigid body fragments. The small
spheres have a level set resolution of 55× 55× 55, and the table top has a resolution
of 150× 10× 100.

set function that represents the correct signed distance value within the fragment

body but may underestimate the signed distance outside the fragment body. This

does not cause problems, since we still correctly answer inside/outside queries, and

such queries are the only usage of level set values outside a body by the collision and

contact algorithms of [64]. The level set of the intersection could be disconnected,

so we flood fill the level set, giving each connected component a unique color and a

separate fragment.

Besides this basic algorithm, we propose an aggressive optimization. If one disregards

the notion of a collision normal when aligning the prescored fracture pattern and the

parent body and allows up to a half-grid-cell perturbation of the point of collision

when aligning the parent body and the fracture pattern, it is possible to overlay the

prescored level set and the parent body’s level set in the material space of the parent

body. This means that one can avoid all interpolation when computing level set

values and simply visit each grid point, comparing the two level set values that exist

there. We use this optimization in all of our examples.
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Surface Particles When constructing a new dynamic fragment of the subsequently

fractured parent body, one must find all the particles on the fragment’s surface. Those

particles come from the surfaces of the fracture region in question and the parent

body we are fracturing, and we just need to determine which particles are retained

and which particles are discarded. The most straightforward way to test a particle

from one object against the other object is to compute its level set value on the other

object and see if it inside or outside that object. Particles outside the other object

are discarded, and those inside the other object are will help form the new surface

and are retained. After doing this for each object against the other, one obtains the

final set of all surface particles. However if a single fracture region results in two or

more separate disconnected pieces when intersected with the parent body, then we

have not properly divided the particles between these pieces. This is easily remedied

during the flood fill stage that identifies these connected components as the particles

lie closer to the zero contour of one level set than the other, and they are simply

assigned to the fragment to which they are closer, i.e. the one that has a smaller level

set value at the location.

When using the optimization mentioned above that was used to exactly align a frac-

ture pattern’s level set with that of the parent body’s in material space, a further

optimization can be done for assigning particles to each region. One can simply as-

sign particles to voxels, both for the parent rigid body and for each fracture region.

Then when the flood fill process determines which fragment a voxel belongs to, the

particles contained in that voxel are simply assigned to it.

Inertial Properties Once we have the level set and particles for a fragment, we

need to compute the inertial properties of the fragment. Since we do not store a

surface mesh for the fragments, we instead observe that we can compute the desired

inertial properties from the level set. The volume of the parent Vp can be computed

from its level set region P as Vp =
∫P dx. The density of the parent is given by

ρp = mp/Vp. The density of a subsequent fragment ρf is set equal to that of the

parent. Then, we compute a few more quantities from the fragment’s level set region
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Figure 2.9: A wall is fractured using a realistic fracture pattern.F,
Vf =

∫F dx, Cf = V −1
f

∫F x dx, Σf =

∫F xxT dx,

where Vf and Cf are the volume and center of mass of the fragment. Finally, the mass

is mf = ρfVf , and the inertia tensor is If = ρf(tr(Σf)δ−Σf). We can simplify these

computations by treating a level set cell as entirely inside or outside the fragment

based on the sign of its center.

Position and Orientation We choose the position of the fragment to be its center

of mass, and we diagonalize the inertia tensor to obtain the orientation of the frag-

ment. We are careful to transform the surface particles of the fragment into the new

coordinate system. We also store this same transform along with the level set.
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Velocity and Angular Velocity We compute velocity and angular velocity to

conserve both momentum and angular momentum, as in [104]. That is, ωf = ωp and

vf = vp+ωp×rf , where rf points from the center of mass of the parent to the center

of mass of the fragment.

2.4.3 Generating Fracture Patterns

We do not propose any particular method for fracture pattern generation, though

we explore a few possibilities for doing so. The most straightforward is for an artist

to design the fracture regions in the form of surface meshes for those regions using

existing tools in much the same way that they prescore models today; the main differ-

ence is that the artist would prescore a large cube rather than prescoring individual

models. Alternatively, these surfaces may be computed using offline finite element

analysis in which some portion of space is fractured. From the surface meshes, the

level sets can be calculated using a standard algorithm such as the fast marching

method. The surface particles might be the vertices of the surface mesh, vertices of

a refined surface mesh, or even simply particles sampled on the mesh depending on

the quality and refinement of the sculpted mesh.

2.4.4 Alternatives to Level Sets

We chose to use level sets for our fracturing implementation because we need level

sets for our collision algorithms already, and implementing the proposed fracturing

algorithm is particularly straightforward to do using level sets. It should be noted,

however, that level sets have a number of limitations. Level sets tend to be memory

intensive, and it is difficult to properly resolve thin geometry or shards at a reasonably

coarse resolution. Due to the level set based collisions, the fractured pieces do not fit

snugly together after fracture, but since fracturing tends to be energetic, we have not

found this to be a problem. The same high level fracturing algorithm can be performed

using only surface meshes by performing Boolean operations of the meshes against
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the fracture patterns. We note that while such Boolean operations are complicated to

implement robustly, implementations are available. In this case, the inertial properties

of the fragments should be computed from their surface meshes.

2.5 Examples

We ran all of our simulations on a single 3.00GHz Xeon core using only the algorithmic

optimizations proposed in this paper, i.e. no aggressive hardcoding, special libraries,

or other hardware tricks were used. In Figure 2.4, we show a sphere fracturing a wall

at different locations, all using a single radial fracture pattern. We then lower the

fracture threshold of the ball and increase the threshold of the wall, allowing the ball

to shatter while the wall does not. These examples show that our method can use

a single fracture pattern to generate point-of-impact-centered fracture of any object

in the scene. Figure 2.9 shows the same scenario, but with a more realistic fracture

pattern. All of these simulations ran at 15 frames/second or faster.

In Figure 2.5, we show that we can handle the fracture of other objects, simulating a

sphere fracturing a tall cylinder at 22 frames/second. Figure 2.6 illustrates that we

can handle more complicated geometry, simulating a sphere fracturing a bunny into 35

fragments at 4 frames/second. Figure 2.7 illustrates that the fragments produced by

our fracture algorithm are just normal rigid bodies and can themselves be fractured.

Finally, Figure 2.8 shows that our algorithms scale to a large number of rigid bodies,

shattering 1000 spheres on a table top and finally shattering the table itself. After

the table top fractures, there are 8992 rigid bodies in the scene. We also ran the

same example with 25 and 100 spheres. For the 25 sphere drop, the early frames

averaged 25 frames/second while the later frames averaged 3 frames/second. For the

100 sphere drop, the early frames averaged 25 frames/second while the later frames

averaged .26 frames/second. For the 1000 sphere drop, the early frames averaged 25

frames/second while the later frames averaged 5 minutes/frame with 8992 fragment

bodies in contact on the ground.
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2.6 Conclusion

We present a method for conserving both kinetic energy and angular momentum

during rigid body evolution as well as a method for clamping kinetic energy during

contact and collision processing. These methods allow for stable rigid body simula-

tions at the frame rate. Moreover, we introduce a method for prescoring all of space,

allowing realistic point-of-impact-centered fracture of rigid bodies that runs efficiently

on modern machines.

Though our methods for mitigating energy gain allow us to achieve stable simulations

while taking time steps at the frame rate, there may still be situations in which

energy can increase, as we do not clamp kinetic energy during the contact phase of

the position update. Although we did not notice any visual artifacts, we believe that

this should be addressed as future work.



Chapter 3

Incompressible Solids

In this chapter, the focus switches from rigid bodies to deformable bodies. The Pois-

son’s ratio of a material provides an indication of how resistant an elastic material is to

changes in its volume. When a block of material is compressed in one direction, it will

normally expand in the other two (transverse) directions. The ratio of the expansion

in a transverse direction divided by the compression applied is the Poisson’s ratio.

If the material conserves its volume exactly, the Poisson’s ratio will be 0.5. Many

constitutive models, such as the neo-Hookean model, break down under this limit.

This manifests numerical in the form of locking, where the material is excessively and

non-physically resistant to any changes in shape. This chapter addresses a method of

simulating incompressible materials by treating the incompressibility of a material as

a constraint separate from its constitutive properties. This constraint is enforced us-

ing a pressure projection as is commonly done when simulating incompressible fluids.

The material in this chapter is based on the published work of [80].

29
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3.1 Introduction

Recently virtual humans have received increased attention for modeling stunt dou-

bles, virtual surgery, etc. When modeling virtual humans, one needs to consider shape

changes dictated by muscles, skin, fat, and other organs. These soft biological tis-

sues are highly incompressible and involve complicated constitutive models including

anisotropy and both active and passive components. Notably, volume in biological

tissues is conserved locally, and it is insufficient to only conserve the total volume.

Besides realistic modeling of tissues for virtual humans, volume preservation is im-

portant in its own right. [95] states, “The most important rule to squash and stretch

is that, no matter how squashed or stretched out a particular object gets, its volume

remains constant.”

Although our interest is in physically based simulation, constant volume deformations

are also of interest in shape modeling, e.g. [174, 2, 163]. Several authors have proposed

methods that conserve total but not local volume, e.g. [121, 122], and [74] proposed

an ad hoc method to address the “undesirable behaviors” caused by conserving only

total volume.

A number of authors have considered approximate local volume preservation using

simple spring-like forces, e.g. [39, 106, 25, 102, 152]. In the area of finite element simu-

lation, [118] added a volume preserving force to each tetrahedron, a technique similar

to the notion of quasi-incompressibility (see [139]) which has been used extensively in

finite element simulations of muscle tissue [170, 151]. See also [120, 42]. The problem

with mass-spring and quasi-incompressible formulations is that they only provide a

force towards volume preservation, and therefore volume is not preserved in the pres-

ence of competing forces. This can be alleviated to some extent by increasing the

stiffness of the volume-preserving forces, but this competes with and can overwhelm

the other forces in the model.

In fluid dynamics, volume preservation is addressed by decomposing a vector field into

the gradient of the pressure plus a divergence-free part and subsequently discarding
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the gradient (see e.g. [52]). By introducing this pressure variable, one discards com-

pressible motions while retaining those orthogonal to volume change. [109] proposed

a fluid dynamics approach to incompressible deformable solids, but used artificial

compressibility (requiring ad hoc volume adjustments) rather than fully divergence-

free velocities and did not consider constitutive models or elastic forces in the object’s

interior. We take a fluid dynamics approach to deformable solids as well, introducing

a pressure variable into a standard finite volume approximation. Others, such as

[127], have used an independent pressure variable for similar purposes. Besides using

the pressure to obtain a divergence-free velocity, we also project the positions to ex-

actly conserve volume avoiding error accumulation (note that Eulerian fluids do not

have a position variable). Similar approaches are currently receiving attention in the

computational mechanics literature, see e.g. [43, 112, 92, 19, 20, 126, 38]. In contrast

to most of these works, we present a simple technique independent of any particular

constitutive model or time integration scheme so that it is easily integrated into any

finite element solver. Moreover, we show how to integrate this incompressibility con-

straint with other possibly competing constraints, in particular object contact and

self-contact.

3.2 Time Discretization

Regardless of the time integration scheme, our goal is to make the velocity divergence

free as well as to update the positions in a manner that moves the nodes to maintain

constant volume in one-rings. When processing collisions or treating volume errors,

some methods can only modify the position via adjustments to the velocity. Unfortu-

nately, this requires O(1) velocity changes to make O(∆x) changes in position (since

∆t ∼ ∆x). Thus, we propose a method that treats errors in position and velocity

separately, ensuring that volume errors due to collisions or other phenomena can be

corrected without introducing oscillations. Note that structural integration methods

such as [92, 89] do not have this property: in order to quickly correct O(∆x) errors

in volume they must produce O(1) velocities.
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For concreteness, we give the particular time integration scheme used for our examples

below, with the two additional steps required for incompressibility highlighted, and

then explain these new steps in detail. We used a modified version of the semi-implicit

Newmark scheme of [28] (see [130] for details). A step of size ∆t from (xn,vn) to

(xn+1,vn+1) proceeds as follows:

1. v
n+1/2
⋆ = vn + ∆t

2
a(tn+1/2,xn,v

n+1/2
⋆ )

2. ṽn+1/2 = v
n+1/2
⋆ + γx (to correct positions)

3. Modify ṽn+1/2 with elastic and inelastic self-repulsions

4. x̃n+1 = xn +∆tṽn+1/2

5. Collide with objects to obtain xn+1 and vn
⋆

6. ṽn = vn
⋆ + γv (to correct velocities)

7. vn+1/2 = ṽn + ∆t
2
a(tn+1/2,xn+1/2,vn+1/2)

8. vn+1 = 2vn+1/2 − ṽn

9. Modify vn+1 for inelastic self-repulsions and friction

where xn+1/2 = (xn+xn+1)/2 in step 7 is the average of the initial and final positions

and a(t, x, v) is the acceleration due to all forces except collisions and incompress-

ibility. Step 1 is a backward Euler solve to obtain a velocity for use in the position

update, and we adjust this velocity in step 2 so that step 4 corrects the volume in

each one-ring. After colliding with kinematic objects in step 5, steps 7 and 8 advance

the velocity field forward in time, and we apply a correction in step 6 to make the

velocity field divergence free before time evolution.

If we temporarily ignore collisions, steps 2 and 4 combine to form

xn+1 = xn +∆tvn+1/2
⋆ +∆tγx.

This formula is valid for any time integration scheme that computes xn+1 from xn by
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Figure 3.1: An incompressible elastic armadillo falls down a flight of stairs preserving
its volume to an accuracy of 0.1%.

defining v
n+1/2
⋆ = (xn+1−xn)/∆t. Since volume is to be conserved, the final volumes

should equal the initial volumes, i.e. V(xn+1) = V(x0). Substituting for xn+1 and

linearizing gives

V(x0) = V(xn+1) = V(xn +∆tvn+1/2
⋆ +∆tγx) ≈ V(xn)−∆tGT (vn+1/2

⋆ + γx),

where −GT is the volume-weighted divergence (see Section 3.3). Similar to the typical

pressure correction in fluids, we use

ṽn+1/2 = vn+1/2
⋆ −M−1Gp̂ γx = −M−1Gp̂,
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where p̂ = ∆tp is the scaled pressure, G is the volume-weighted gradient (see Sec-

tion 3.3), and M is the diagonal mass matrix. Substituting into (3.2) we have

V(xn)−∆tGTvn+1/2
⋆ +∆tGTM−1Gp̂ = V(x0).

Rearranging into standard Poisson equation form,

GTM−1Gp̂ = GTvn+1/2
⋆ − 1

∆t
(V(xn)−V(x0)), (3.1)

which can be solved for p̂ and then γx = −M−1Gp̂. Note that M is 3n × 3n, G

is 3n × n, v
n+1/2
⋆ is a 3n-vector, and p̂, V(xn), and V(x0) are n-vectors. Finally,

we stress that (3.1) corresponds to a single step of Newton’s method applied to the

equation V(xn+1) = V(x0).

We correct the velocity to be divergence free in step 6, although this can be executed

at any point in the algorithm since it is a static projection. Taking the divergence of

step 6 and setting −GT ṽn = 0 yields 0 = −GTvn
⋆ +−GTγv, where γv is also defined

as γv = −M−1Gp̂. Similar to (3.1) we obtain

GTM−1Gp̂ = GTvn+1/2
⋆ , (3.2)

which we can solve for p̂ and subsequently correct the velocity via ṽn = vn
⋆ −M−1Gp̂.

The difference between (3.1) and (3.2) is that (3.2) computes a divergence-free velocity

whereas (3.1) adds an extra term to obtain a non-zero divergence (similar to [53]) in

order to correct any drift in volume.

Although the velocity projection is always stable, small time steps and significant

volume errors can lead to difficulties as all the missing volume is recovered at once.

We alleviate this by introducing a minimum volume recovery time scale ∆τ and

clamping the last term in (3.1) such that its magnitude is no larger than V(x0)/∆τ

in any given time step.
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Figure 3.2: An elastic sphere is dropped on the ground. (Top) Enforcing the volume of
each one-ring using our method maintains correct volume within 1%. (Middle) Using
standard finite element forces with a Poisson’s ratio of .45 results in a maximum
volume loss of over 15%. (Bottom) Increasing the Poisson’s ratio to .499 reduces
the maximum volume loss to 2% but causes severe locking of the sphere’s degrees of
freedom hindering deformation.

3.3 Spatial Discretization

A mesh with n nodes has 3n degrees of freedom, and enforcing a volume constraint

for each tetrahedron typically results in more than 4n constraints (the number of

tetrahedra) making the system heavily overconstrained and resulting in locking as

shown in Figure 3.2 (bottom). We avoid locking by enforcing incompressibility on

one-rings, i.e. on composite elements centered at each node, as shown in the Figure 3.3

(the blue region). This approach adds only n constraints. Composite elements have

proven useful in a number of scenarios, see e.g. [154, 23, 119, 41]. Note that the spatial

discretization derived below is identical to the average pressure element in [21].

We use a standard finite volume discretization with all information colocated on the

nodes of the mesh as in [149]. Let p0 to p3 and x0 to x3 be the pressures and positions
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k

t

Figure 3.3: The neighborhood of a particle k is the ring of tetrahedra around it. The
one-ring is shown in blue with tetrahedron t labeled.

of the four vertices of a tetrahedron. Define

D =
(

x1 − x0 x2 − x0 x3 − x0

)

Ḋ =
(

v1 − v0 v2 − v0 v3 − v0

)

,

and let V be the volume of the tetrahedron, ank the outward-facing area-weighted

normal opposite vertex k, and

B = VD−T = −1

3

(

an1 an2 an3

)

.

The linearly interpolated velocity field is

v(x) = ḊD−1(x− x0) + v0,

from which

∇ · v(x) = tr(ḊD−1) = D−T : Ḋ.

The total volume-weighted divergence over the one-ring centered at node k is

(−GTv)k =
1

4

∫

R(k)

∇ · v dx =
1

4

∑

t∈R(k)

VtD
−T
t : Ḋt =

1

4

∑

t∈R(k)

Bt : Ḋt,
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Figure 3.4: An incompressible elastic sphere falls down a flight of stairs illustrating
rigid body collisions and contact.

where R(k) is the set of tetrahedra incident on k, and the fact that the divergence

of the velocity is constant on each tetrahedron allows us to assign one-fourth of the

tetrahedral volume to each incident node.

In line with our use of −GT to represent the divergence operator, we construct our

gradient operator to be the negative transpose of the divergence operator so that

(3.1) and (3.2) result in symmetric positive definite systems allowing for fast iterative

techniques such as conjugate gradient. Thus, we want 〈∇p,v〉 = 〈p,−∇·v〉. That is,
∫

Ω

∇p · v dx+

∫

Ω

p∇ · v dx =

∫

Ω

∇ · (pv) dx =

∫

∂Ω

pv · dS = 0

This holds, for example, in the case of Dirichlet boundary conditions (p = 0 on the

boundary). Note that we cannot define gradient using an analogue of the formula
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Figure 3.5: An incompressible elastic armadillo drops onto the ground illustrating
self-collisions and contact.

used to define divergence, since the resulting forces would not conserve momentum

near the boundary.

In order to define G, we assume that the pressure field is zero outside the object

(noting that it is straightforward to relax this restriction). We then partition the

pressure field into p =
∑

t∈R(k) pt, where pt is a pressure field that agrees with p

in t and is identically zero elsewhere. This allows us to restrict attention to a single

tetrahedron, since the linearity of the gradient operator gives (Gp)k =
∑

t∈R(k)(Gpt)k.

Each tetrahedron in R(k) makes a contribution to (−GTv)k of the form

(−GTv)k =
1

4
B : Ḋ = − 1

12

3
∑

j=1

(vj − v0) · anj = − 1

12

3
∑

j=0

vj · anj.

Thus, we can interpret the divergence operator on a single tetrahedron as a 4 × 12

matrix

−GT = − 1

12
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We can now write gradient as a 12 × 4 matrix G = 1
12

(

N N N N
)

so that the
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contribution of a single tetrahedron to the gradient at a node k is

(Gp)k =
1

12
Nk

3
∑

j=0

pj =
1

3
ankp,

where p is the average pressure of the four vertices of the tetrahedron. Summing over

R(k) gives

(Gp)k =
1

3

∑

t∈R(k)

ptant,k,

where pt is the average pressure in t and ant,k is the area-weighted normal of the

face opposite node k. This equation is exactly the standard FVM force for a Cauchy

stress of pt (see [149]) and can be computed by forming S = −Btpt and distributing

the columns of S to the nodes (where one node gets the negation of the sum of the

columns). In particular our volume preservation forces conserve momentum for each

tetrahedron independent of other tetrahedra, since the net force on a tetrahedron is

F =
∑

k

Fk = −
∑

k

(Gp)k = −1

3
p
∑

k

ank = 0.

Let ek = xk − x0. Then, an1 = −1
2
e2 × e3, with similar expressions for an2 and an3

obtained by cycling indices. Angular momentum is also conserved per tetrahedron,

since the torque is

τ =
∑

k

(xk − c)× Fk =
∑

k

ek × Fk + (x0 − c)×
∑

k

Fk

=−
∑

k

ek × (Gp)k = −1

3
p
∑

k

ek × ank

=
1

6
p(e1 × (e2 × e3) + e2 × (e3 × e1) + e3 × (e1 × e2)) = 0

by Jacobi’s identity.
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3.4 Collisions and Contact

While steps 2 and 6 of the time integration algorithm work to preserve incompressibil-

ity, steps 5, 3, and 9 add additional constraints for object collisions and self-collisions.

In practice, we have noticed that the blind application of our algorithm can cause

serious artifacts due to these competing constraints, resulting in unusably tangled

surfaces. Therefore, we incorporate both object contact and self-contact constraints

into our incompressible Poisson equations. Despite being important for robust be-

havior in the presence of collisions, this coupling is largely undiscussed by previous

authors who focused primarily on integrating incompressibility into their particular

time or space discretization schemes.

Step 5 sets the position and velocity of particles to respect collisions with objects, and

the conjugate gradient solver used in step 7 incorporates constraints in the normal

direction to maintain the correct normal velocity for colliding particles, i.e. nT∆v = 0

where n is the local unit normal to the collision body and ∆v is the change in velocity

due to conjugate gradient. We incorporate a similar constraint into the Poisson

equations solved in steps 2 and 6 of the algorithm, stressing that this is a linear

constraint of the form cT∆v = 0. Self-contact can similarly be written as linear

constraints of the form cT∆v = 0. Constraining the relative velocity of a point and

triangle to not change yields

nT (∆vp − w1∆v1 − w2∆v2 − w3∆v3) = 0,

where wi are the barycentric weights of the point on the triangle interacting with par-

ticle p and n is the triangle’s normal. Constraining the relative velocity of interacting

points in an edge-edge pair yields

sT ((1− α1)∆v1 + α1∆v2 − (1− α2)∆v3 − α2∆v4) = 0,

where αi are positions of the interacting points along the segments and s is the shortest

vector between the interacting segments. Self-contact constraints are generated for
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Figure 3.6: 40 incompressible elastic tori fall into a pile illustrating complex collision
and contact. Object contact and self-contact are represented as linear constraints
during each Poisson solve. Each torus maintains correct volume to within 0.5%, even
at the bottom of the pile.

each point-triangle and edge-edge pair currently in close proximity (these correspond

to the repulsion pairs in [27]). Note that the ability to set the velocity before the

Poisson solve and guarantee no changes during the solve is equivalent to using a

Neumann boundary condition on the pressure.

First consider a single constraint, i.e. a single point-object, point-triangle, or edge-

edge interaction. We project out any constraint violating contribution by redefining

γ = −PM−1Gp̂, altering the left-hand sides of (3.1) and (3.2) to GTPM−1Gp̂,

where P projects a change in velocity using an impulse j defined by

P∆v = ∆v +M−1j.

The impulse j can be found by minimizing the kinetic energy jTM−1j/2 subject to

cTP∆v = 0 using the objective function

jTM−1j/2 + λ(cT∆v + cTM−1j).
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Differentiating with respect to j and setting to zero gives j = −cλ, and substituting

this into the constraint equation yields

λ = (cTM−1c)−1cT∆v.

Thus,

P∆v = (I−M−1c(cTM−1c)−1cT )∆v

and

P = I−M−1c(cTM−1c)−1cT .

Note that PM−1 is symmetric positive semidefinite with exactly one zero eigenvalue.

In the case of many constraints

CT∆v =
(

c1 · · · cn
)T

∆v = 0,

applying the projections in simple Gauss-Seidel order gives Pn · · ·P1M
−1 which is

only symmetric if none of the constraints overlap. For example, this is violated

whenever point-triangle or edge-edge pairs share vertices since the corresponding Pi
′s

do not commute. One might attempt to alleviate this problem by avoiding sequential

application and applying all constraints at once, but this would require inversion of

the n× n matrix CTM−1C appearing in the general form of the projection

P = I−M−1C(CTM−1C)−1CT ,

which is prohibitively expensive for complex scenarios with dynamic constraints. In-

stead, we apply the projections in alternating forward and backward Gauss-Seidel

sweeps using the symmetric positive semidefinite matrix

PM−1 = (P1 · · ·Pn · · ·P1)
qM−1,

where q is a small integer. To see that this is symmetric, consider the case with

n = 2 and q = 1. Since M−1 and PkM
−1 are symmetric, PkM

−1 = (PkM
−1)T or
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PkM
−1 = M−1PT

k . Then,

PM−1 = (P1P2P1)M
−1 = P1P2P2P1M

−1 = P1P2P2M
−1PT

1 = (P1P2)M
−1(P1P2)

T

Similarly, if n = q = 2, then

PM−1 = (P1P2P1)
2M−1 = P1P2P1M

−1PT
1P

T
2P

T
1 = (P1P2P1)M

−1(P1P2P1)
T .

In particular, note that PM−1 = PM−1PT , so that the system could alternatively be

formulated as GTPM−1PTGp̂ = (PTG)TM−1(PTG)p̂, so that the velocity projec-

tion and forward-backward sweeps could instead be replaced with a modified gradient

operator, and the projections imposed could be interpreted as a boundary condition.

Applying a single unsatisfied projection Pi strictly reduces the energy, so this iteration

is stable and always converges to the correct constraint satisfying velocity. In practice,

we found that using only q = 4 iterations reduced the constraint violating components

by 1-2 orders of magnitude on average. Since the pressure system is itself solved to

only 1% accuracy and the alternating sweeps ensure symmetry of the full matrix

regardless of convergence, this was sufficient for all our examples. These projections

increase the cost of solving for pressure only moderately since there are typically

many fewer collisions than vertices and each Pi can be applied in constant time. Since

object and point-triangle contacts have more coherent normals and are typically better

behaved than edge-edge contacts, we bias unconverged results towards the former by

placing them first (and last) in the ordering.

The final matrix GTPM−1Gp̂ is always symmetric positive semidefinite, but it can

become singular in cases with large numbers of constraints. Since conjugate gradient

breaks down for singular matrices, we instead use MINRES, an alternative Krylov

space method which requires only symmetry of the matrix. MINRES required signifi-

cantly fewer iterations than conjugate gradient even in nonsingular cases, though this

is largely due to MINRES targeting the minimization of the terminating criterion. For

example, Figure 3.2 averaged 72 iterations with conjugate gradient and 34 iterations

with MINRES (with small additional cost per iteration). Thorough description and
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Figure 3.7: The volume error, in percent, as a sphere is pressed between plates is
shown. The plates are just touching the sphere at time 0 and move towards each
other with constant velocity until they meet at time 1. The sphere is flattened into a
pancake with a width only 1.4% of its original diameter before a volume error of one
percent is obtained.

analysis of MINRES, conjugate gradient, and related solvers for singular or nearly

singular systems can be found in [35].

3.5 Examples

We used the method of [81] for internal deviatoric finite element forces in all our

examples. When necessary, we used a minimum volume recovery time scale of one-

fifth of a frame. Figure 3.2 shows a comparison of our method against a standard

finite volume discretization using a 104k element mesh. Using a 3GHz Xeon machine,

the computational cost was 18 s/frame for our method, 25 s/frame with Poisson’s

ratio .45, and 3.4 min/frame with Poisson’s ratio .499. Similarly the simulation time

for Figure 3.4 was 34 s/frame. The armadillo simulations in Figures 3.1 and 3.5 were

both under 4 min/frame with a 112k element mesh. The simulation in Figure 3.6 took

an average of 15 min/frame for 40 12k element meshes (500k elements total) with

approximately 65% the time spent in the two Poisson solves due to the complexity of

the contact constraints.
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As a stress test for our method, we squeezed an incompressible sphere with 22k ele-

ments between two kinematic plates (similar to an example in [74]). The minimum

volume recovery time scale was not used (i.e. we set τ = 0). The sphere was success-

fully compressed to 1.1% of its original thickness before numerical error forced the

time step to zero (all computations were performed in single precision). The total

volume error remained below 1.7% throughout the simulation, and was lower than

0.1%, 0.5%, and 1% until the sphere reached 13%, 2.3%, and 1.4% of its original

thickness, respectively. A plot of volume error vs. time is shown in Figure 3.7. For

this simulation we modified the time integration scheme to enforce contact constraints

during both backward Euler solves (steps 1 and 7) instead of only in step 7, so that

the volume correction in step 2 used the correct collision-aware velocities for parti-

cles in contact with the plates. The use of uncorrected velocities as input to volume

correction would have caused significant degradation for this simulation due to the

high tension involved. This modification was not necessary for the other examples,

which is fortunate since enforcing contact constraints in both solves typically causes

sticking artifacts during separation.

3.6 Alternate Formulation

The method presented for applying incompressibility as a correction step to an im-

plicit velocity update. This problem can also be viewed as updating velocities subject

to the two constraints, the incompressibility constraint and the contact constraint.

In the position update, the incompressibility constraint takes the form

GTv = (V(xn)−V(x0))/∆t, (3.3)

so that a nonzero divergence is targeted. When cast in this way the SPD framework

to be developed in Chapter 5 can be used to merge both steps into a single SPD

system. That is, steps 1 and 2 can be combined into a single coupled solve, and

steps 6 and 7 can be combined into a coupled solve. In such a formulation, forward
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and backward projection sweeps become unnecessary. This formulation is developed

in Section 5.10.

3.7 Conclusion

We proposed a novel technique for enforcing local incompressibility in deformable

solids by drawing ideas from computational fluid dynamics. We benefit from the sim-

plicity and flexibility of tetrahedra while avoiding the pitfalls of locking by enforcing

volume preservation over one-rings instead of individual tetrahedra. We augmented

our method to incorporate both object contact and self-contact constraints into the

incompressible solve to alleviate problems with conflicting constraints.



Chapter 4

Rigid Deformable Coupling

The previous two chapters considered rigid bodies and deformable bodies where only

one is evolved in time. In this chapter, we develop a method for fully two-way mono-

lithic coupling of rigid and deformable bodies. We combine the time integration

schemes for each into a single integration scheme with fully coupled linear systems.

The scheme includes fully coupled collisions and contact as well as support for the

incompressible solids from Chapter 3, articulation, and controllers. We also intro-

duce constraints in the linear systems for contact and articulation to strengthen the

coupling. This section is based on work published in [134].

4.1 Introduction

A number of authors have proposed methods for simulating two-way coupling be-

tween rigid and deformable bodies, see e.g. [11, 115, 84, 97, 138]. Although coupling

deformable and rigid bodies is interesting from the standpoint of simulating new

phenomena as demonstrated by those authors, it is also quite interesting from the

standpoint of designing creatures. Typically creatures are designed as articulated

rigid bodies with some sort of joint or muscle control with notable examples being

47
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Figure 4.1: A chain is assembled from rigid and deformable tori as well as loops of
articulated rigid bodies. The leftmost torus is static (kinematic and fixed), and the
rightmost torus is kinematically spun to wind and unwind the chain.

Luxo Jr. [171], athletes from the 1996 Summer Olympics [73], and the virtual stunt

man of [50]. However, creatures are more life-like when their internal skeleton can be

used to drive a deformable exterior, such as the tentacles for Davy Jones [40, 167].

The difficulty with wrapping a rigid skeleton with a deformable exterior is that the

creature can only interact with its environment if environmental forces deform the

exterior and the deformable exterior subsequently applies forces to the rigid inte-

rior. That is, modeling deformable creatures with rigid skeletons requires two-way

rigid/deformable interaction [56].

For the two-way coupling of physical phenomena, there are two common approaches.

One approach is to start with the best methods for each phenomenon and subse-

quently design methods for linking these disparate simulation techniques together.

Typically interleaving is necessary, where each simulation is run using the results of

the previous one in an alternating one-way coupled fashion. This leads to stability

issues as one system cannot adequately predict what the other system will do–similar

to explicit time integration. Various ad hoc tricks can be applied to increase the sta-

bility making the system semi-implicit (e.g. solving for the effect of damping forces

between rigid and deformable bodies implicitly and subsequently mapping the mo-

mentum back to the rigid body simulator [138]). Still, stability issues remain. The
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other approach is to design a fully two-way coupled system, and there are essentially

two ways to accomplish this. One could use the same type of simulation for both types

of phenomena (e.g. SPH for both solids and liquids [105] or cloth as an articulated

net of rigid bodies [17]). Unfortunately, this typically leads to inferior methods for at

least one of the two phenomena being simulated. For example, one could imagine ex-

tending the mass-spring simulation framework to the rigid limit and simulating rigid

bodies with very stiff springs. We take the alternative approach and fully hybridize

the simulation frameworks in a manner that maintains the ability to use the more

advanced techniques for each physical phenomenon. That is, we want to retain the

ability of our rigid body framework to accurately model contact, collision, stacking,

friction, articulation, and proportional derivative (PD) control and our deformable

object framework to handle arbitrary constitutive models, finite elements, masses

and springs, volumes or thin shells, contact, collision, and self-collisions. In addition,

we would like to maintain stability and avoid ad hoc methods for interleaving the

simulations.

Full two-way coupling of state-of-the-art rigid body and deformable object time inte-

gration schemes, though seemingly straightforward, is more difficult and subtle than

it appears. Robust rigid body systems tend to be sensitive to the time integra-

tion scheme because a minor change in the scheme can, for example, cause blocks

to tumble rather than slide down an inclined plane. In contrast, deformable object

Newmark schemes are far less sensitive and allow more freedom in the way collisions

are processed but utilize separate position and velocity updates as well as implicit

solves. Our approach demonstrates that we can fully integrate these disparate meth-

ods without losing their individual capabilities. Notably, this can be done by coupling

together standard rigid body and standard deformable body simulation systems using

our newly proposed techniques instead of requiring one to design a unique simulation

system from scratch.

We propose a unified time integration scheme, where the rigid and deformable bodies

are integrated forward together in every manner, not only with position and velocity

evolution, but such that collision, contact, and interpenetration resolution are all
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handled at the fine-grained level with fully two-way coupled algorithms. On the

rigid body side, we were guided by the time integration scheme proposed by [64],

which proposes a clean separation of contact and collision and handles both simple

and more complex scenarios ranging from a block sliding down an inclined plane to

large-scale stacking behaviors. We also wanted our rigid body simulator to include

the effects of articulation and internally torque-controlled joints [169, 168]. On the

deformable side, we require a Newmark-style algorithm as in [138], which cleanly

separates the evolution of position and velocity. The deformable algorithm should

at least be implicit in the damping forces as in [27] but could also be fully implicit

as in [12]. We propose such a time integration scheme, which evolves every object

synchronously using fully coupled algorithms at each step.

We describe in detail the steps of our unified time integration scheme below. We note,

however, that the approach does not depend on our particular choice of algorithms

for the various subsystems but rather serves as a proof of concept of the benefits of

a unified approach. Other choices of specific algorithms such as contact and collision

can be substituted. Much of what we incorporate is optional, including the incom-

pressibility of [80], the articulation of [169], the PD control of [168], and the bindings

of [138]. We include them to demonstrate the breadth of phenomena that can be

incorporated, but we note that the remaining system remains fully functional in their

absense.

4.2 Time Integration

The basic structure of our time integration scheme is that of a Newmark method.

Newmark methods are characterized by separate position and velocity updates. In

particular, the velocity used in the position update can be distinct from the final

velocity, and we take advantage of this to treat the position and velocity updates dif-

ferently. For example, one might add constraint violating components to the velocity

during the position update to correct drift while projecting out these components



4.2. TIME INTEGRATION 51

Figure 4.2: Silver rigid boxes and orange deformable boxes are arranged to form a
stack, which is knocked down by a rigid ball.

in the final velocity update (e.g. as in [80]). Moreover, maintaining the Newmark

structure allows us to incorporate a wide range of algorithms from computational

mechanics. For example, we can enforce the incompressibility of materials, deal with

contact and collisions, self-collisions, friction, etc. For background on the Newmark

family of methods see e.g. [76].

We begin by outlining our time integration scheme as composed of five major steps:

I. Advance velocity vn → ṽn+ 1
2

II. Apply collisions vn → v̂n, ṽn+ 1
2 → v̂n+ 1

2

III. Apply contact and constraint forces v̂n+ 1
2 → vn+ 1

2
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IV. Advance positions xn → xn+1 using vn+ 1

2 , v̂n → vn

V. Advance velocity vn → vn+1

Adhering to the time integration scheme proposed in [64], we cleanly separate position

and velocity updates from contact and collision. Collisions are done with time tn

velocities so that objects in contact do not bounce, and contacts are performed only on

a subset of pairs processed by collisions so that one does not inaccurately apply contact

forces to objects before they collide. The algorithmic ordering of collisions followed

by contact followed by position updates followed by velocity updates is exactly as in

[64], except for the initial advancement of velocities to vn+1/2. In fact, their algorithm

would have been more accurate if it had done this rather than using the full ∆t for the

predictive velocities, obtaining xn+1 = xn+∆tvn+∆t2a. [168] took special measures

to deal with this inaccuracy, changing parameters to get the desired solution. Using

vn+1/2 as in the Newmark scheme automatically alleviates this issue.

Each of the five major steps of the time integration scheme is further described in the

five sections that follow.

4.3 Step I: Advance Velocity

Typically the first step in a Newmark iteration scheme is to predict the velocity that

will be used to update the positions. We accomplish this as follows:

1. Advance velocities v
n+ 1

2
⋆ = vn + ∆t

2
a(tn+

1
2 ,xn,v

n+ 1

2
⋆ )

2. Apply volume correction v
n+ 1

2
⋆ → v

n+ 1
2

⋆⋆

3. Apply self-repulsions v
n+ 1

2
⋆⋆ → ṽn+ 1

2

Here and in the remainder of the paper we use starred variables to denote intermediate

states that do not carry over from section to section. When using semi-implicit

time integration with implicit, linear damping forces as in [28], step 1 requires the
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Figure 4.3: A row of silver rigid balls and yellow deformable balls are impacted by a
rigid ball. The yellow balls are modeled as deformable and incompressible.

solution of a linear system, which we solve using the conjugate gradient method. One

could instead use the fully implicit method from [12]. In that case step 1 becomes

v
n+1/2
⋆ = vn + ∆t

2
a(tn+1/2,xn+1/2,v

n+1/2
⋆ ), where xn+1/2 is replaced with xn+1/2 =

xn + ∆t
2
v
n+1/2
⋆ . The resulting nonlinear equation is subsequently solved via Newton-

Raphson iteration. During the solve, the acceleration in step 1 is projected to satisfy

equality constraints such as joint velocity equality constraints, but we avoid applying

constraints that may lead to undesirable sticking artifacts at this stage.

If we are simulating incompressible solids, as in Figure 4.3, step 2 adjusts the velocities

such that local volume errors will be corrected when positions are advanced [80]. One

could also make the velocity field inextensible as in [59]. Step 3 applies self-repulsions

as in [27].

While we include steps 2 and 3 here, the only essential part of Step I is to advance

the velocity to time tn+1/2 as required by the Newmark structure.
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Figure 4.4: Ten rigid balls and ten deformable tori fall on a cloth trampoline. The
trampoline is constructed by embedding the cloth in a kinematically controlled torus
using the framework of [138]. The trampoline tosses the objects after they have
landed and then allows them to settle.

4.4 Step II: Collisions

Once the time tn+1/2 velocities have been computed, we correct them for rigid/rigid,

rigid/deformable and deformable/deformable collisions. As in [64], collisions are pro-

cessed before contact to allow elastically colliding rigid bodies to bounce. The main

goal of this step is to adjust velocities for collisions, and other collision algorithms

may be used. The steps we use for our collision processing are

1. Process collisions vn → vn
⋆

2. Apply post-stabilization vn
⋆ → v̂n

3. Re-evolve velocities v̂n+ 1

2 = v̂n + (ṽn+ 1

2 − vn)

For collision detection, all positions are evolved forward in time to look for interfer-

ences between pairs of rigid/rigid, rigid/deformable, or deformable/deformable bodies

using the update formula xn+1
⋆ = xn+∆tṽn+ 1

2 (see Section 4.4.1 for rigid body orien-

tations). As in [64], collisions are processed using vn so that objects in contact do not

bounce, even if they have a nonzero coefficient of restitution. For details on rigid/rigid

collisions, see [64]. Rigid/deformable collisions are processed by iteratively colliding
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Figure 4.5: The four silver boxes are rigid, and the deformable blue bar is attached to
the boxes using the embedding framework of [138]. The far left box is kinematically
rotated, causing the bar to twist and subsequently turn the box to its right, which is
attached to the static box to the right of it by a twist joint. The free box on top falls
off as the bar is twisted.

each particle of the deformable body against the rigid body. Each rigid/particle pair

is processed using the rigid/rigid collision algorithm treating the particle as a rigid

body (with an infinite inertia tensor so that it does not rotate) and a zero coefficient

of restitution. For deformable/deformable pairs, one could use tetrahedral collisions

as in [150]; however, we instead use the self-collisions of [27] after the position update

as described in Section 4.6.

In Gauss-Seidel fashion, we iteratively process the collisions one pair at a time and re-

update the post-collision position of each body via xn+1
⋆ = xn+∆t(vn

⋆+(ṽn+1/2−vn)),

where ṽn+1/2 − vn includes the forces added in step 1 of Section 4.3. If no collisions

were applied, then vn
⋆ = vn and the position is unchanged. Note that the positions

computed here are only used to resolve collisions and are subsequently discarded.

We also explicitly save a list of all pairs processed so that contact later considers

only those pairs already processed by collisions. This ensures that newly colliding

objects will have an opportunity to bounce before being processed for contact. After

processing collisions, we apply the post-stabilization algorithm of [169] to ensure that

the collision velocities do not violate joint constraints. Finally, step 3 applies the

effects of collisions v̂n − vn to the time tn+1/2 velocities ṽn+1/2. We consider an
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Figure 4.6: 1600 bodies are dropped on a 5×5 grid of static rigid pegs to form a pile.
There are 160 colored deformable balls, 160 colored deformable tori, 160 rainbow-
colored articulated loops with six rigid bodies each, 160 silver rigid balls and 160 blue
rigid rings.

alternative global formulation of post-stabilization in Appendix C.

4.4.1 Second Order Rigid Body Evolution

Given a rigid body in a certain orientation with a certain kinetic energy and angular

momentum, the number of states the rigid body is allowed to evolve to in the absence

of external torque is limited by conservation of both energy and momentum. Not

every orientation will conserve both quantities, and typical simulators only conserve

momentum, allowing kinetic energy to rise or fall. [169] used the first order update

Rn+1 = e∆tω∗

Rn,

where ω∗ is the matrix such that ω∗u = ω×u for any vector u. The matrix e∆tω∗

is

a matrix exponential and corresponds to a rotation of ∆t‖ω‖ about the axis ω. To

reduce errors in kinetic energy, we instead propose using the second order update

Rn+1 = e∆tu∗

Rn u = ∆tω +
1

2
∆t2I−1L∗ω.
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A straightforward Taylor expansion can be used to verify that this formula is second

order accurate. Rather than working out the Taylor series, which is rather tedious,

we instead note that the result can be obtained by considering an update rule similar

to second order Runge Kutta. Higher order corrections are also possible, and the

third order variant is

u = ∆tω +
1

2
∆t2I−1L∗ω +

1

12
∆t3(ω∗I−1 − 2I−1ω∗ + 2I−1L∗I−1)L∗ω.

For a derivation of the second and third variants, see Appendix A.

4.5 Step III: Contact and Constraint Forces

The main purpose of this section is contact and constraint processing. Articulation

and PD are optional, and other contact processing algorithms could be substituted.

The steps used for the contact and constraint forces stage are

1. Compute contact graph using v̂n and v̂n+ 1
2

2. Apply PD to velocities v̂n+ 1
2 → v

n+ 1
2

⋆

3. Apply contact and pre-stabilization v
n+ 1

2
⋆ → vn+ 1

2

We compute a contact graph for the rigid bodies similar to [64], which also includes

the order in which articulated rigid bodies will be processed for pre-stabilization

as in [169]. We also apply PD control as in [168]. Proceeding in the order deter-

mined by the contact graph, each rigid body is processed in turn for contact with

all rigid and deformable bodies it interpenetrates. For rigid/rigid pairs, we perform

contact as in [64]. Rigid/deformable pairs are treated in the same manner as they

were treated for collisions, since we always treat deformable body collisions inelas-

tically. This process is iterated as in [64]. If one were using tetrahedral collisions

for deformable/deformable pairs [150], they would also be processed at this stage.

We instead apply the self-collisions of [27] after the position update as described

in Section 4.6 to resolve deformable/deformable contact. The stack in Figure 4.2
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demonstrates the effectiveness of the two-way contact algorithm, standing upright

until being struck at its base by a rigid ball.

4.5.1 Improved Pre-stabilization

[169] performed pre-stabilization on orientations by solving a quaternion equation of

the form f(jτ ) = qp(jτ )− qc(jτ ) = 0 using Newton-Raphson iteration. Unit quater-

nions represent orientations with a two-to-one relationship, so that the overall sign of

a quaternion is not significant. This calls into question the meaning of performing a

quaternion subtraction, and we have indeed observed this to cause problems. To al-

leviate issues with quaternion subtraction, we instead solve g(jτ ) = qpq
−1
c = (±1, 0).

g(jτ ) consists of both a scalar and vector part, and it turns out to be enough to solve

the nonlinear equation that sets the vector part equal to 0. This neatly avoids the

sign ambiguity entirely. We consider an alternative global formulation in Appendix C.

4.6 Step IV: Advance Positions

In the preceding steps, we made all the desired adjustments to the velocities. The

purpose of Step IV is then to evolve the bodies to their final positions, which we do

as follows:

1. Advance positions x̂n+1 = xn +∆tvn+ 1

2

2. Interpenetration resolution x̂n+1 → xn+1

3. Post-stabilization v̂n → vn

Since our rigid/rigid and rigid/deformable contact algorithms do not guarantee that

the bodies are completely interpenetration free, we apply an interpenetration resolu-

tion method (similar in spirit to [10]), as described in detail below and in Appendix B.

Finally, since steps 1 and 2 changed rigid body orientations, rigid body angular veloc-

ities also changed, and thus post-stabilization of velocities for articulated rigid bodies

must be applied.
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Figure 4.7: A snake is constructed by embedding a 12-joint articulated rigid body
skeleton in a deformable body. The snake sidewinds up and down stairs using PD
control on its skeleton.

4.6.1 Interpenetration Resolution

One might consider an approach to resolving penetration that operates by iterating

pairwise algorithms. This approach suffers from the messenger problem, where a large

amount of momentum must be exchanged through low-capacity messengers. Consider

a row of colliding objects, with the outer two objects being massive and the objects

between them being light. The collision must be resolved by moving the massive

outer bodies, which requires the exchange of a large impulse. Because the objects in

between are light, they are unable to transfer large impulses without obtaining high

velocities. Each collision processing step is only able to transfer an impulse across the

chain one body at a time, so a large number of iterations are required to complete

the momentum transfer.

With this in mind, we propose a novel method to remove small interpenetrations

between bodies. Rather than process pairwise as was done for the contact and collision

algorithms, we consider one central object (either a rigid body or a particle of a

deformable body) at a time and push out every outer object (rigid or deformable)

intersecting it simultaneously in a fully two-way coupled fashion. This helps address

the messenger problem by allowing a single step to transfer impulses two links at

a time instead of one and by avoiding the problem entirely when there is only one

such light body. This approach is not easily applied to the full contact and collision

problems, primarily because of the complications introduced by friction. The central
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body c exchanges an impulse jo with an outer body o resulting in a change in relative

velocity at the pair’s intersection point of

m−1
c j+ r∗o

T I−1
c jτ −Kojo = vn+1, (4.1)

where

Ko = m−1
o δ + q∗T

o I−1
o q∗

o

is the impulse factor, a sort of generalized inverse mass, and ro and qo are the vectors

from the center of masses of body c and body o to the point of application of jo,

respectively, and j = −
∑

o jo and jτ = −
∑

o r
∗
ojo are the net linear and angular

impulses applied to body c. Solving Equation (4.1) for jo and plugging the result into

the expressions for j and jτ gives the symmetric 6× 6 system







mcδ +
∑

o

K−1
o

∑

o

K−1
o r∗o

T

∑

o

r∗oK
−1
o Ic +

∑

o

r∗oK
−1
o r∗o

T







(

m−1
c j

I−1
c jτ

)

=







∑

o

K−1
o vn+1

∑

o

r∗oK
−1
o vn+1






. (4.2)

Once Equation (4.2) is solved for the net impulse j and jτ on the central body, each

jo is obtained from substitution into Equation (4.1). To achieve a desired separation

distance d, we take vn+1 = d/∆τ and integrate positions with the velocity change due

to the computed impulses for a pseudo-time of ∆τ . The above procedure is iterated

over the bodies and is both more accurate and converges faster than an analogous

pairwise method.

Equations (4.1) and (4.2) apply generally to both rigid bodies and deformable par-

ticles, with the simplification that ro = 0 for a central deformable particle (reducing

Equation (4.2) to a 3 × 3 system) and that qo = 0 for an outer deformable particle.

When the central body is static or kinematic (having infinite inertia) the equations for

the outer bodies decouple as the first two terms in Equation (4.1) vanish. When any

outer bodies are static or kinematic the system must be decomposed into the degrees

of freedom determined by the static bodies and the remaining degrees of freedom

corresponding to the nullspace of the equations for the static bodies. Afterwards, the
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system can be reassembled and solved. For more details see Appendix B.

We note that in practice applying arbitrary forces and torques to resolve interpene-

tration may cause problems. It may be more advisable to apply only normal forces

as in Section 4.7.3. In this case, however, the nullspace will need to be computed

numerically, which will carry additional cost. Another option is to construct a global

system, which could be solved with conjugate gradient. The global solve can then be

repeated to convergence. This would avoid the potential for biasing, though we have

not observed ill effects from biasing in practice.

4.7 Step V: Advance Velocity

The second half of the Newmark time integration scheme is the velocity update, which

we do as follows:

1. Make incompressible vn → vn
⋆

2. vn+1
⋆ = vn

⋆ +∆t â(tn+
1
2 , 1

2
(xn + xn+1), 1

2
(vn

⋆ + vn+1
⋆ ))

3. vn+1
⋆⋆ = vn

⋆ +∆t a(tn+
1
2 , 1

2
(xn + xn+1), 1

2
(vn

⋆ + vn+1
⋆ ))

4. Apply constraints: post-stabilization, PD control, contact, post-stabilization

and self-repulsions vn+1
⋆⋆ → vn+1

We project the velocity field for incompressibility before our velocity evolution as

in [80]. In step 2, we use a variant of trapezoid rule to solve for the velocities. In

practice, we break this step into a backward Euler solve followed by extrapolation as

in [138]. We note that one could instead use backward Euler, which introduces more

damping. We discuss steps 2-4 in more detail below.
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Figure 4.8: Objects slide down an inclined plane with friction. From left to right:
analytic solution, rigid box, deformable box and a single particle.

4.7.1 Constrained Solve

The linear system in step 2 is solved using conjugate gradient. We include as many

linear constraints as possible in the conjugate gradient solve, accounting for post-

stabilization of joints between rigid bodies and two-way contact. This is desirable

because it allows the effects of constraints to propagate instantly during the implicit

solve. Note that â has been used instead of a in step 2 above to indicate that these

forces are modified during the conjugate gradient solve by applying projections to

satisfy constraints as in [12].

4.7.2 Final Velocities

As shown in [12], the unprojected residual of the converged system in step 2 gives

the net normal force due to all constraints. [12, 130] use the unprojected residual

to compute frictional forces due to contact between particles and a single immovable

body. They are able to postprocess each particle independently based on the normal

force it feels because they enforce contact in a one-way fashion. That is, computing

the frictional forces on a particle results in a change in the particle’s tangential velocity

relative to the body, but does not affect the body’s velocity. Thus, the particle/body
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interactions are decoupled, with the body acting as though it had infinite inertia.

In contrast to [12, 130], the interactions we compute are fully two-way. Thus, we

cannot postprocess constrained particles for friction independently after the solve,

since these constraints are not decoupled. Furthermore, the residual only yields the

net force, so we would not be able to untangle the effects of multiple interactions.

Therefore, we propose a novel framework of incorporating the constraints into conju-

gate gradient only for the purpose of determining damping forces (and elastic forces

if they are treated implicitly) and apply friction and contact as a postprocess. Step 3

uses the result of step 2 to compute the acceleration a as opposed to the projected

acceleration â. Thus, all of the projections in step 2 only help to determine what

velocity vn+1
⋆ will be used to evaluate the damping forces in step 3. This approach

produces accurate friction as illustrated in Figure 4.8.

An issue in our approach is that the postprocess of the velocities for constraint forces

does not allow the damping forces to act on forces applied during the postprocess until

the next time step. Thus, one needs to realize that there are undamped velocities,

such as when computing a CFL condition. In addition, those velocities may get

damped based on a smaller time step than the time step in which they were applied.

We have nevertheless found that we can work around this by simply moving the

postprocesses after applying explicit forces but before the conjugate gradient solve

(the postprocesses still see explicit forces but not implicit forces and will thus be less

accurate). We note that this was only done for the large pile example, and all other

examples were run as described above.

4.7.3 Enforcing Constraints in the Solve

We enforce the linear constraints in the conjugate gradient solve in a momentum-

conserving way. Let the constraints be written as CTv = 0, where C is a matrix

of coefficients and v is a vector containing the linear and angular velocities of all

particles and rigid bodies. If M−1 is the block-diagonal mass matrix, the projection
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Figure 4.9: We construct maggot by embedding a two-joint PD-controlled articulated
rigid body skeleton into a deformable body. The top row shows a maggot on the
ground and trapped under a large rigid body. The bottom row shows 20 maggots
dropped into a bowl wriggling and interacting with each other, and the last image
also has them interacting with 20 rigid tori.

to be applied is

P = δ −M−1C(CTM−1C)−1CT ,

where δ is the identity matrix. This general form for the projection matrix holds for

both rigid bodies and individual particles. When there are multiple constraints, we

iterate these projections using forward and backward sweeps to ensure our projection

step is symmetric even if it has not fully converged as in Section 3.4 and [80]. The

resulting matrix is always symmetric positive semidefinite and can be solved with

conjugate gradient provided the residual is properly projected at each iteration.
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Figure 4.10: We construct a deformable fish by embedding a four-joint PD-controlled
articulated rigid body skeleton inside a deformable fish model. The fish is dropped
on the ground and flops back and forth interacting with its environment.

An alternative approach would be to solve the augmented system (or KKT system),

which is symmetric and indefinite. This system was solved efficiently in [10] for the

case of explicitly integrated applied forces and a loop-free set of constraints. In the

case of loops, such as those introduced by loops of articulated rigid bodies or implic-

itly integrated damping forces, this approach is no longer efficient. Another possible

approach is to solve the KKT system with an iterative Krylov solver for indefinite

systems, avoiding the projections at the cost of potentially inferior convergence char-

acteristics. This KKT system can also be converted into an SPD system using the

SPD framework described in Chapter 5. This formulation is developed in Section 5.10.
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Post-stabilization The post-stabilization algorithm of [169] is included in our con-

jugate gradient solve to project the rigid body velocities in a momentum-conserving

fashion so that they satisfy joint constraints. Since step 3 discards these velocities,

they are reapplied in step 5.

Rigid/rigid contact We incorporate rigid/rigid contact constraints into the solve

by creating joints just prior to the solve and removing them afterwards. In this

fashion, we are able to use the articulated rigid body post-stabilization algorithm for

projecting contact constraints during the conjugate gradient solve. When computing

contact (during step 3 of Section 4.5) we record all points on the surface of one rigid

body processed for contact against another. For each such point, we use its time tn+1

location and the level set normal from the other body at that point. We then construct

a joint that only constrains motion in the normal direction and leaves the other two

prismatic degrees of freedom and all angular degrees of freedom unconstrained.

Rigid/deformable contact Rigid/deformable contact projection is performed in

a manner similar to interpenetration resolution as described in Section 4.6.1. We

process a rigid body against all particles in contact with it simultaneously. However,

we restrict impulses to the normal direction no during this contact processing phase.

We target a relative change vn+1 that will cancel out the relative velocities in the

normal direction of the particle and the body at the intersection point po. If the

central body is kinematic, the particles are given an impulse in the normal direction

that cancels the relative normal velocity between the particle and the rigid body.

Otherwise we apply impulses jono (where jo is a scalar) to each outer body c at po

so that

nT
o (m

−1
c j + r∗o

T I−1
c jτ −Kojono) = nT

o v
n+1. (4.3)

Using

Lo = no(n
T
o Kono)

−1nT
o ,
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we can express these equations in the form
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, (4.4)

where the net linear and angular impulses applied to the central body are j =

−∑o jono and jτ = −∑o r
∗
ojono. This 6 × 6 system is symmetric positive defi-

nite and can be solved to obtain j and jτ , from which jo is obtained by substitution

into Equation (4.3).

Self-repulsions Self-repulsions apply forces between edge-edge and point-triangle

pairs to help avoid collisions [27]. In the conjugate gradient solve, we use the projec-

tion algorithm proposed in [80] to enforce these constraints.

4.8 Examples

Figure 4.5 illustrates that we can use the embeddings of [138] in our fully two-way cou-

pled approach. Note that [138] was unable to handle two-way collisions and contact

and more generally used an interleaved, semi-implicit approach to rigid/deformable

coupling. Figure 4.1 demonstrates the robustness of the algorithm which allows sta-

ble two-way interaction between many types of competing constraints. Figure 4.4

demonstrates the ability of the two-way contact and collision algorithms to handle

both volumetric objects and thin shells. Figure 4.6 demonstrates the ability of the

algorithm to handle simulations with large numbers of two-way coupled bodies. One

of the major applications of two-way rigid/deformable coupling is the simulation of

skeleton-controlled deformable objects that can interact with their environment as

shown in Figures 4.7, 4.9 and 4.10. Table 4.1 provides timing information for all of

the examples in this paper. Most of the examples were fast enough that we simply

ran them with conservative time steps, whereas the large pile was expensive enough

to warrant performance tuning.
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Ave. Time Ave. Substeps
Per Frame Per Frame

Twisting Chain (Figure 4.1) 92.2 sec† 123
Stack (Figure 4.2) 10.0 sec 35
Row of Spheres (Figure 4.3) 35.3 sec 94
Deformable Bar (Figure 4.5) 4.1 sec 51
Trampoline (Figure 4.4) 14.5 sec 32
Large Pile (Figure 4.6) 40 min 14
Snake (Figure 4.7) 1.8 sec 38
Friction (Figure 4.8) 6.4 sec 2515+

Single Maggot (Figure 4.9) 0.6 sec 30
Maggot and Ring (Figure 4.9) 7.7 sec 100
Bowl of Maggots (Figure 4.9) 19.1 sec 30
. . . with Rings (Figure 4.9) 62.2 sec 59
Fish (Figure 4.10) 52.8 sec 117

Table 4.1: This table contains average times per frame and number of substeps re-
quired per frame for each example. † The individual times varied substantially be-
tween frames, depending strongly on the degree of stress. + This test was run as a
convergence test with an artificially low time step.

4.9 Conclusions

We propose a novel time integration scheme for two-way coupling rigid and deformable

bodies that retains the strengths of deformable object simulators and rigid body sim-

ulators. We build upon existing algorithms for rigid/rigid and deformable/deformable

interaction and where necessary propose new fully coupled algorithms. The resulting

scheme handles two-way coupled contact, collision, stacking, friction, articulation,

and PD control. We use our framework to simulate life-like creatures that interact

with their environment.



Chapter 5

Fluid Structure Interaction

The previous chapter addressed monolithic coupling of rigid bodies and deformable

bodies. In this chapter we consider a strongly coupled (monolithic) fluid structure

interaction framework for incompressible flow. We take a novel approach that consists

of factoring the damping matrix of deformable structures and show that this can be

used to obtain a symmetric positive definite system. The approach extends readily

to include fluid viscosity and arbitrary linear constraints on the fluid or structure

velocities. Under some circumstances, the same manipulations can be used to convert

a symmetric but indefinite KKT system into one that is SPD. For the special case

of rigid bodies, where there are no internal damping forces, we recover the system of

[15]. This chapter is based on the work published in [124].

5.1 Introduction

Fluid structure interaction has been of increasing interest to the computational fluids

community, due in part to the ability to address more computationally expensive

problems with improved hardware. Researchers have found differing approaches useful

for qualitatively different regimes of fluid structure interaction. Applications may

69
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involve low or high structural deformation. Problems involving low deformation can

be approached with aligning fluid meshes using for instance Arbitrary Lagrangian-

Eulerian (ALE) schemes. This has been quite successful for studying phenomena

such as airplane wing flutter, see e.g. [51]. High structural deformation is sometimes

also approached using ALE techniques, but frequent remeshing and the averaging

it requires can lead to reduced accuracy and increased computational cost. More

often, methods where the fluid and structure meshes are not aligned are employed

(e.g. the body of work originating from [117]). In this case the interaction between

fluid and structure is usually massaged via penalty methods or Lagrange multiplier

formulations.

Anecdotal evidence suggests that problems where either the fluid or the structure

dominates the interaction are inherently more stable than those where the effect is

more balanced. For example, it is more straightforward to solve problems where

a kinematic structure drives the fluid or a structure is passively advected by fluid,

as opposed to problems where structures and fluids have nearly equal densities (see

e.g. [30]). Partitioned coupling approaches are typically explicit and staggered, for

instance first imposing the fluid pressures as a force on the structure and then solving

for the fluid using the structure velocities as boundary conditions in a second step.

These approaches can also be iterated within a given time step for increased stability,

noting that one obtains a monolithic (albeit expensive) approach if the iteration is

run to convergence. Other approaches construct strongly coupled systems and then

solve them in one of several ways. We follow a monolithically coupled approach, in

which we model the fluid structure interaction by formulating and solving a single

coupled system of equations; however, we do this in a way which is more efficient

as well as more likely to converge than simply iterating the partitioned approach to

convergence in a simple Gauss-Seidel manner.

Our approach allows the use of existing discretizations for both the fluid and the

structure and requires only minor modification to existing codes. We do require that

the fluid and structure solvers have certain properties, though we will argue that

they ought to be true of any physically constituted system. The current formulation
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assumes that the fluid and structure systems are synchronized in time such that we

can solve for the coupling at the synchronization points.

The method that we propose in this paper is similar to the previous work in [125]

addressing an implicit method for two-way coupling of incompressible fluids and struc-

tures, with the chief difference being that the linear system presented in [125] was

indefinite. Our main contribution is the observation in Section 5.5.2 that the structure

damping operator can be factored and used to perform a change of variables that al-

lows us to symmetrize the coupled system while maintaining positive definiteness. We

examine the properties of the resulting linear system and demonstrate convergence

of the method on several example problems from the literature.

5.2 Fluid Equations

We address the Navier-Stokes equations for incompressible flow,

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p + µ∇2u+ f (5.1)

and

∇ · u = 0, (5.2)

in the presence of structures. Here, u is the fluid velocity, p is the pressure, µ is the

dynamic viscosity, ρ is the density, and f is any external body force such as gravity.

We use a standard Marker and Cell (MAC, [68]) grid discretization for the fluid.

When solving in the presence of structures, some faces may not contain valid velocity

samples because they are covered by structures. The vector of fluid velocity samples

omitting any covered by the structure is denoted by u. Pressure samples are defined

at cell centers. The divergence operator is defined to act on velocities at cell faces to

yield divergences at cell centers using the standard six-point stencil in three spatial
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dimensions, and the gradient operator is defined as the negative transpose of the

divergence.

We apply the projection method of [37] to solve the discretized form of (5.1) and

(5.2), making a first order approximation in time. This splits the time integration

into the computation of an intermediate velocity ignoring the pressure terms

u⋆ = un −∆t(un · ∇)un +
∆tµ

ρ
∇2u+

∆t

ρ
f (5.3)

followed by enforcement of incompressibility via an implicit pressure projection

un+1 = u⋆ − ∆t

ρ
∇p. (5.4)

We have omitted a specification of time from the viscosity term, since the viscosity

might be applied explicitly or implicitly. We postpone further consideration of vis-

cosity until Section 5.7, at which point we will include it in the coupling framework.

We use a semi-Lagrangian advection scheme (see e.g. [129]) to compute the convec-

tive terms in (5.3). In the presence of structures, this requires ghost cells or clipping

since the back-cast rays may intersect the solid; we use a method based on [65] for

semi-Lagrangian advection near solid surfaces. We advect using the divergence-free

time n velocities. We enforce incompressibility as usual by plugging (5.4) into the

discrete form of (5.2) to obtain

∇ ·
(

∆t

ρ
∇p
)

= ∇ · u⋆,

which we solve for p using the conjugate gradient method.

5.3 Structure Equations

We utilize a traditional Lagrangian approach for structures. For deformable struc-

tures, we solve the equations ẋ = v and Mv̇ = F. We take a lumped mass approach
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where the quantities x and v are the vectors containing the position and velocity

degrees of freedom for all n of the particles. The mass matrix M is a 3n × 3n diag-

onal matrix with each 3 × 3 diagonal block of the form miI, where mi is the mass

of particle i. The forces F = Fe + Fd contain both elastic Fe (velocity independent)

and damping Fd (velocity dependent) forces. Purely elastic forces (e.g., no plasticity)

can be expressed in terms of an energy potential as Fe = −∂φ
∂x
, where the energy po-

tential φ depends only on x. Damping forces are often chosen according to a simple

model Fd = Dv that is linear in velocities and has symmetric negative semidefinite

D. This is true, for example, for the damping applied to a simple spring and Rayleigh

damping.

One particularly simple and stable way of evolving these equations is via backward

Euler. We wish to solve

(

xn+1

vn+1

)

=

(

xn +∆tvn+1

vn +∆tM−1Fn+1

)

.

Taking the first order approximation Fn+1 = Fn + ∂Fn

∂x
(xn+1 − xn) + ∂Fn

∂v
(vn+1 − vn)

this becomes

(

xn+1

vn+1

)

=

(

xn +∆tvn+1

vn +∆tM−1(Fn + ∂Fn

∂x
(xn+1 − xn) + ∂Fn

∂v
(vn+1 − vn))

)

.

Using the first equation to eliminate xn+1 in the second equation yields

vn+1 = vn +∆tM−1(Fn +
∂Fn

∂x
∆tvn+1 +

∂Fn

∂v
(vn+1 − vn))

(

I−∆tM−1∂F
n

∂v
−∆t2M−1∂F

n

∂x

)

vn+1 = vn −∆tM−1∂F
n

∂v
vn +∆tM−1Fn (5.5)

From this we see that we must invert I−∆tM−1 ∂Fn

∂v
−∆t2M−1 ∂Fn

∂x
. The second term,

−∆tM−1 ∂F
∂v

= −∆tM−1D, is symmetric positive semidefinite under a mass weighted

inner product, which can be used for solving the equation. The third term, however,

can cause problems. Note that ∂F
∂x

= ∂Fe

∂x
+ ∂Fd

∂x
. The first term is symmetric since
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Fe = −∂φ
∂x
, but it might be indefinite. The second term need not even be symmetric

under the mass weighted inner product.

Another approach is a Newmark-style semi-implicit scheme

• v
n+1/2
⋆ = vn + ∆t

2
M−1F(xn,v

n+1/2
⋆ )

• xn+1 = xn +∆tv
n+1/2
⋆

• vn+1/2 = vn + ∆t
2
M−1F(xn,vn)

• vn+1 = vn+1/2 + ∆t
2
M−1F(xn+1,vn+1)

Each time step of this scheme involves two implicit solves, bulleted steps 1 and 4.

These solves differ from the fully implicit backward Euler solve in that the dependence

of force on position is explicit. The first solve, if taken for a full ∆t, would look like

vn+1=vn +∆tM−1F(xn,vn+1)

vn+1=vn +∆tM−1(Fn +
∂Fn

∂v
(vn+1 − vn))

(

I−∆tM−1∂F
n

∂v

)

vn+1=vn −∆tM−1∂F
n

∂v
vn +∆tM−1Fn (5.6)

(

I−∆tM−1D
)

vn+1=vn −∆tM−1Dvn +∆tM−1Fn (5.7)

We see from this that the fully implicit system (5.5) differs from the semi-implicit

system (5.6) by the presence of the extra −∆t2M−1 ∂Fn

∂x
term. This term was the

source of the indefiniteness and asymmetry problems in the fully coupled system. This

simplification comes at the price of stability, however. The fully implicit backward

Euler scheme is unconditionally stable, but the semi-implicit scheme is not. Of course,

this is the well-known difference between a fully implicit Newmark method and one

that resembles central differencing [76].

The particular scheme used for the simulations in this paper is based on the backward

Euler variant of [134], which differs from the previous scheme in that it has been

rewritten so that a backward Euler step can be used for updating the final positions.

That is
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1. v̂⋆ = vn + ∆t
2
M−1Fe(x

n)

2. vn+1/2 = v̂⋆ + ∆t
2
M−1D(xn)vn+1/2

3. xn+1 = xn +∆tvn+1/2

4. v⋆ = vn +∆tM−1Fe(x
n+1)

5. vn+1 = v⋆ +∆tM−1D(xn+1)vn+1

As before, both solves lead to systems of the form (5.7). This scheme is first order

accurate in time, limited to first order by the backward Euler step used to compute

the final velocities.

Our treatment of rigid bodies follows that of [134]. In general, each particle of a

deformable body contributes one block to v, M, and F. Each rigid body contributes

two blocks to each, with the first block corresponding to the linear part, vi, mi, and

fi, and the second block corresponding to the angular part, ωi, Ii, and τ i. With this

taken into account, the linear system (5.7) is valid for deformable and rigid bodies.

The ability to treat rigid bodies using the same formulas as deformable bodies breaks

down somewhat when dealing with advancing rigid body orientation. Fortunately,

the coupling formulation presented here is explicit in position and therefore does

not directly involve the integration of rigid body orientation, so this complication is

avoided. The coupling formulation is valid when bodies are deformable, rigid, or a

mixture of both.

5.4 Discrete Fluid Structure Coupling Equations

Our goal is to write down the equations that need to be solved in full, including the

coupling and any other terms such as boundary conditions. In doing this it is more

useful to work from the actual discretizations than it is from the continuous equations.

Therefore we will consider the MAC grid fluid discretizations and the Lagrangian
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structure discretizations as defined in Sections 5.2 and 5.3 and use them going forward

for our notation. However, we stress that one could use other discretizations for the

fluids and structures and apply the same methodology that we propose to those sets

of equations.

We follow a method similar to that of [125] to merge the time integration schemes

described in Sections 5.2 and 5.3,

1. v̂⋆ = vn + ∆t
2
M−1Fe(x

n)

2. û⋆ = un + ∆t
2ρ
f

3. Coupled solve with known quantities û⋆, v̂⋆, and xn and unknown quantities

un+1/2, p, and vn+1/2

4. xn+1 = xn +∆tvn+1/2

5. v⋆ = vn +∆tM−1Fe(x
n+1)

6. u⋆ = un −∆t(un · ∇)un + ∆t
ρ
f

7. Coupled solve with known quantities u⋆, v⋆, and xn+1 and unknown quantities

un+1, p, and vn+1

Steps 1 through 2 integrate the explicit structure forces and explicit fluid forces for

∆t/2. We leave out the convective terms in the fluid update because the coupled

solve in step 3 takes positions at time n and solves for velocities at time n + 1
2
. The

known quantities at the beginning of step 3, which replaces step 2 in Section 5.3, are

û⋆, v̂⋆, and xn. The remaining unknown quantities to solve for in (5.2), (5.4) and

(5.7) are un+1/2, p, and vn+1/2. The details of the coupled solve are described later,

but note that this solve takes place over only half of the time step (and thus has step

size ∆t
2
). In step 4, vn+1/2 is used to advance the structure positions to time n + 1,

and then un+1/2, p and vn+1/2 are discarded.

Steps 5 through 6 re-integrate the explicit structure forces and explicit fluid forces

for ∆t, this time including the convective terms in the fluid update to get time n+1
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fluid positions, resulting in v⋆ and u⋆. The known quantities at the beginning of

step 7, which replaces step 5 from Section 5.3 and (5.4), are u⋆, v⋆, and xn+1. We

use xn+1 to determine the valid degrees of freedom for un+1. The remaining unknown

quantities to solve for in (5.2), (5.4) and (5.7) are un+1, p, and vn+1. The coupled

solve used in this step has the same form as that in step 3.

For the sake of exposition, we consider below only the second of the two implicit steps

described above (step 7), and therefore we will discuss the updates from u⋆ and v⋆

to un+1 and vn+1, whereas the updates from û⋆ and v̂⋆ to un+1/2 and vn+1/2 will be

handled independently. One can replace ∆t, xn+1, u⋆, v⋆, un+1 and vn+1 with ∆t
2
, xn,

û⋆, v̂⋆, un+1/2 and vn+1/2 in the discussion that follows in order to apply the same

treatment to step 3.

5.4.1 Fluid Structure Coupling Constraints

The modifications to the fluid and structure equations correspond to constraints that

capture the behavior at the fluid structure interface. A fluid structure coupling con-

straint is an enforced constraint on the relative velocity of the fluid and the structure

at a point in space. In our implementation, a constraint occurs when a ray cast be-

tween two adjacent MAC grid cell centers, at least one of which is in the fluid region,

intersects a structure surface. The constraint is placed at the center of the MAC grid

face between the two cell centers and enforces that the projection of the fluid and

structure velocities at that point in the ray direction are equal. The impulse transfer

between the solid and the fluid which enforces the constraint is called λ. One may also

interpret this coupling impulse λ as the pressure the fluid applies to the structure,

although we note this analogy is only accurate up to a scale. See Figure 5.1. This

simple choice of constraint location is only first order accurate, since the constraint

locations are located O(∆x) from the structure surface.
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5.4.2 Modified Fluid Equations

For fluid structure interaction, (5.4) changes due to the interaction with the structure.

In Figure 5.1 for the x direction we have a mass in that dual cell m and a velocity u,

the product of which mu is equal to mu⋆ plus the contribution from p in the fluid on

the left side of the dual cell, plus a contribution from λ due to interaction with the

structure. This discards the pressure on the right hand side of the dual cell due to the

structure. We can neglect the dual cells that would lose two pressure contributions,

those inside the structure, since they are not degrees of freedom. We write this in

vector form for all of the fluid velocity terms as

βun+1 = βu⋆ −Gp̂+WTλ, (5.8)

where β is the diagonal matrix of fluid dual cell masses assembled from the product

of the density ρ and the volume V of each dual cell. We let p̂ = ∆tp. We define

−GT = −V∇T , the volume weighted divergence, with the additional modification

that we drop rows from −GT that correspond to cells without fluid. Its negative

transpose, G, is defined as the volume weighted gradient. −GT is simpler to describe

directly than G, since every row of −GT has the same stencil while the stencils for

rows of G differ because some pressure samples fall inside the structure. WT is the

matrix of 1s and 0s which maps λ to the appropriate fluid velocity scalars, which

will be discussed in more detail below. The discrete form of the incompressibility

constraint is

−GTun+1 = 0. (5.9)

Our discretizations of W, G, and −GT are first order accurate since the constraint

locations used in their definition are only first order accurate. We note that even

were G a higher order accurate approximation of the gradient operator it would

not necessarily imply that −GT would be a compatible and higher order accurate

approximation of the divergence. Unlike the second order discretizations [57, 108], it
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u, λp

Figure 5.1: A dual cell requiring an equal velocity constraint is depicted above inter-
secting the solid depicted by the dashed line. The fluid pressure on the left face of
the dual cell will be balanced by the constraint-maintaining impulse λ applied at the
equal velocity constraint location.

is not sufficient in this context to discretize the Poisson operator with higher order

accuracy. The discretizations of gradient and divergence in [108] do not satisfy the

negative transpose relationship, so using them in this formulation would produce an

asymmetric linear system.

5.4.3 Modified Structure Equations

To write the modified equations for the structure, one needs to consider the fact that

the fluid and structure degrees of freedom are defined at different spatial locations.

This is quite important as constraints must be applied to co-located fluid and structure

velocities, and the equal and opposite forces applied to the fluid and the structure

must be applied at the same location in space so as not to introduce a net torque.

We define an operator J which interpolates from structure degrees of freedom to fluid

velocity locations. Its transpose JT is a conservative redistribution from fluid velocity

locations to structure velocity degrees of freedom.

J can be decomposed into three matrices, J = NĴR. The matrix R is comprised of
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blocks Rpb, where body b is sampled by particle p. For particles within a deforming

body, the particles are the samples, and Rpb = I. If b corresponds to a rigid body,

then there is a sample point p at each nearby fluid velocity location. If such a sample

point p is displaced from the rigid body’s center of mass by rpb, the velocity at the

sample point is

vp = vb + r∗Tpb ωb =
(

I r∗Tpb

)

(

v

ω

)

b

= Rpb

(

v

ω

)

b

(5.10)

so that Rpb =
(

I r∗Tpb

)

, where r∗ represents the matrix such that r∗u = r × u for

any u.

The operator Ĵ interpolates particle velocity samples p to a MAC grid face f as
∑

p αfpvp, so that the blocks of Ĵ are Ĵfp = αfpI. Since Ĵ is an interpolation operator,
∑

p αfp = 1. The coefficients αfp are defined based on local geometric information

associated with the face f and the particle p such as the control volume around f

and structure faces incident on p. For the rigid body, R is used to sample the rigid

body velocities at sample points, and the most logical positions for sample points are

the fluid velocity locations at the centers of faces. In that sense, if only one rigid

body was present near a face, locally the Ĵ operator is the identity for that degree of

freedom. However multiple rigid bodies or particles may influence the same face, in

which case an averaging of the velocities would be required, making Ĵ nontrivial.

Finally, N extracts the appropriate scalar velocity component from the vector velocity

constructed via R and Ĵ. The matrix N is block diagonal, where each block Nff

corresponds to a grid face f with normal nf . These blocks are formed as Nff = nT
f .

Our discretization of the operator J is limited to first order accuracy since it depends

on the first order accurate structure interface location.

Since (5.8) applies an impulse to the fluid at MAC grid face locations, the equal and

opposite impulse must be applied to the structure at those same locations, guarantee-

ing conservation of angular momentum. For the case of rigid bodies, one can apply

impulses to the rigid body from any location in space and therefore the method does
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conserve angular momentum. However, in the case of deformable bodies ĴT contains a

spatial redistribution of the impulse which, while being a fully conservative remapping

with columns summing to 1 and thus conserving linear momentum, will not conserve

angular momentum. In summary, NT maps impulse magnitudes from dual cells to

impulse vectors normal to the face. Since
∑

p αfp = 1, ĴT conservatively distributes

these impulses to different spatial sample locations in the case of deformable bodies.

For rigid bodies the spatial location does not change although the impulse can still be

conservatively distributed among multiple rigid bodies influencing that face. Finally

RT conservatively applies those sample impulses to the structure degrees of freedom.

This mapping is trivial for deformable particles, but for rigid bodies it converts the

impulse sample into linear and angular impulses at the body’s center of mass. We

note that [4] proposed a method which allows the solid and fluid domains to be non-

coincident, coupled via interpolation and Lagrange multipliers, similar to our use of

W and J.

The full modified structure equations are

Mvn+1 = Mv⋆ +∆tDvn+1 − JTWTλ (5.11)

where M is the structure mass matrix and Dvn+1 is the implicit contribution of

structure forces. The last term is the constraint impulse mapped first by WT from

constraint locations to fluid velocity degrees of freedom and then by JT to structure

velocity degrees of freedom. The coupling momentum WTλ is subtracted from the

structure equation since it was added to the fluids equation. W has a number of

columns equal to the number of fluid scalar velocity samples and a number of rows

equal to the number of constraints. WT therefore maps to every MAC grid face but

puts zero on every face which is not coupled. As a consequence, JT only needs to

be nonzero for the faces which are coupled, even though it has a number of columns

equal to the number of fluid scalar velocity samples. JTWT then maps from the

fluid degrees of freedom that are coupled to the structure degrees of freedom that are

coupled.
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Although (5.8) and (5.11) indicate how momentum is conservatively transferred be-

tween the fluid and the structure, this still leaves open the question of how much

momentum is transferred. That is, we have introduced a new degree of freedom λ

and have not yet provided the equations to govern these new degrees of freedom.

In order to do this we consider the equal velocity constraints that the fluid and the

structure should move with the same velocity, or for inviscid flow the same velocity

in the normal direction. One way of governing these degrees of freedom is to set the

difference between the fluid velocity and the interpolated structure velocity equal to

zero at every fluid velocity degree of freedom as indicated in Figure 5.1. This can be

expressed as the equation

W(u− Jv) = 0, (5.12)

noting that J maps zero to all the face locations that are not influenced by the

structure and that W filters all of these locations out. Note that one can use (5.12)

and its variants in order to model a wide range of physical phenomena. For example,

one could use W(u − J(v − s)) = 0 in order to model an arbitrary source term

with inflow and outflow from the structure. One might also wish to constrain the

velocities at other locations than the faces of the MAC grid or to constraint limited

components such as the normal component as was done in [123] in order to achieve

better slip boundary conditions, but see also [1] for a more thorough discussion of the

applicability of slip boundary conditions. In this sense W may not be simply defined

as a trivial restriction matrix and may instead be thought of as a general interpolation

operator mapping from the faces of the MAC grid to constraint locations. This would

not change the inputs of W, but the outputs would no longer necessarily correspond

to the MAC grid faces but could instead be at arbitrary locations. Note that the

formulation of our equations does not rule out any of these approaches, but for the

sake of exposition we will deal with (5.12) going forward.
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5.5 Numerical Approach

We can write our system in symmetric form as









GTβ−1G −GTβ−1WT 0

−Wβ−1G Wβ−1WT −WJ

0 −JTWT −M+∆tD

















p̂

λ

vn+1









=









GTu⋆

−Wu⋆

−Mv⋆









.

The first equation,

GTβ−1Gp̂−GTβ−1WTλ = GTu⋆ (5.13)

is obtained by substituting (5.8) into (5.9). The second equation

−Wβ−1Gp̂+Wβ−1WTλ−WJvn+1 = −Wu⋆ (5.14)

is obtained by substituting (5.8) into (5.12). The third equation

−JTWTλ−Mvn+1 +∆tDvn+1 = −Mv⋆ (5.15)

is a rearrangement of (5.11).

If we make some assumptions about W and J, we can eliminate λ. If W takes on the

particularly simple form described in Sections 5.4.2 and 5.4.3, then WWT = I. If J

has nonzero rows only for constraint faces, then WTWJ = J. If we also take densities

to be constant at all constraint faces, then WTWβ−1 = β−1WTW. Multiplying

(5.14) by WT produces

−WTWβ−1Gp̂+WTWβ−1WTλ−WTWJvn+1=WTWu⋆

−WTWβ−1Gp̂+ β−1WTλ− Jvn+1=WTWu⋆ (5.16)

Adding GT times (5.16) to (5.13) yields

GT (I−WTW)β−1Gp̂−GTJvn+1 = GT (I−WTW)u⋆.
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Adding JTβ times (5.16) to (5.15) yields

−JTβWTWβ−1Gp̂+ (∆tD−M− JTβJ)vn+1=−Mv⋆ + JTβWTWu⋆

−JTGp̂+ (∆tD−M− JTβJ)vn+1=−Mv⋆ + JTβu⋆

These together form a symmetric system similar to that of [125],

(

GT (I−WTW)β−1G −GTJ

−JTG −JTβJ−M+∆tD

)(

p̂

vn+1

)

=

(

GT (I−WTW)u⋆

−Mv⋆ + JTβu⋆

)

.

Both of these systems are symmetric indefinite. Although numerical methods exist

for solving such systems, faster methods are available for systems which are symmet-

ric positive definite. In this paper, we propose a novel approach which leads to a

symmetric positive definite system.

We begin by forming the system









GTβ−1G −GTβ−1WT 0

−Wβ−1G W(β−1 + JM−1JT )WT −∆tWJM−1D

0 M−1JTWT I−∆tM−1D

















p̂

λ

vn+1









=









GTu⋆

WJv⋆ −Wu⋆

v⋆









,

(5.17)

where the equation, −Wβ−1Gp̂+W(β−1 + JM−1JT )WTλ−∆tWJM−1Dvn+1 =

WJv⋆ − Wu⋆, is obtained by substituting (5.8) and (5.11) into (5.12). The first

equation is (5.13), and the third equation is (5.15) multiplied through by M−1.

An obvious way to symmetrize this system is to multiply the third equation through

by −∆tD. Though this system is symmetric it is only positive semidefinite. The con-

ditioning of the original structure system is typically quite good, since I−∆tM−1D

has eigenvalues clustered near one for small ∆t. This symmetrized version looks more

like D, which will often have significantly worse conditioning.

A particularly interesting way of symmetrizing the system is to factor D.
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5.5.1 Factoring the Damping Matrix

If D is symmetric negative semidefinite, then it can be factored as −∆tD = CTC.

We rely on this property of D to apply our method, noting that although there

are instances where D will not have this property and in those cases our approach

based on factoring D is not applicable, there are a wide range of models in which

this property holds (see below). If D is a damping matrix, and the force is given by

f = Ma = −∇φ+Dv, then the energy is E = φ+ 1
2
vTMv and Ė = (∇φ)Tv+vTMa =

(∇φ)Tv + vT (−∇φ +Dv) = vTDv. Then, a non-positive change in energy leads to

negative definiteness of D. Furthermore, if D is decomposed into its symmetric and

antisymmetric parts, D+DT

2
and D−DT

2
respectively, then vT

(

D−DT

2

)

v = 0 shows that

the antisymmetric part does not contribute damping. Therefore, damping matrices

gain little by containing asymmetric parts. These facts lead to the conclusion that

for most purposes a damping matrix D can be considered to be symmetric negative

semidefinite.

On the other hand, if you consider the backward Euler formulation at the beginning

of Section 5.3, where D would be augmented by linearizations of elastic terms ∂Fn

∂x

in the process of carrying out the Newton-Raphson iterations, then much of this

would not be true. The current factorization is therefore limited to a semi-implicit

treatment of the structure, where elastic terms are handled explicitly. Moreover, a

fully implicit treatment would have the further complication of moving the locations

of the constraints and changing W during the solve, which we do not address.

For the sake of exposition, consider the case of a linear spring which connects two

particles p1 and p2. The magnitude of the damping force f is proportional to the

difference in particle velocities along the spring direction d, multiplied by a damping

constant kd. The force is then applied in opposite directions to p1 and p2. The

damping matrix for this single spring would be

D = −∆tkd

(

d

−d

)(

d

−d

)T

,
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which can be factored into

Ci =
√

∆tkd

(

d

−d

)T

D=−CT
i Ci.

For the case of n springs and an arbitrary number of particles, C is formed by stacking

up rows of the form Ci, and the same factorization applies.

Rayleigh damping is commonly used along with finite element constitutive models. In

practice, we have found that our routines for applying damping forces are naturally

partially factored. The implementation follows the framework of [81]. Below is a

description of what the implementation looks like in the case of a single element

and an isotropic constitutive model and how it lends itself to efficient factorization.

In this framework, the deformation gradient is factored into its polar singular value

decomposition as F = UF̂VT , where U and V are rotations and F̂ is diagonal, in

order to compute the elastic forces. Define two operators

G













x1

x2

x3

x4













=
(

x1 − x4 x2 − x4 x3 − x4

)

S
(

x1 x2 x3

)

=













x1

x2

x3

−x1 − x2 − x3













.

If xm are the material space positions of the element, then Dm = G(xm) and Ds =

G(x) are the locations of three vertices of the element relative to the fourth in material

and world space. The damping force application routine consists of the steps

1. Compute the relative velocities, Ḋs = G(v).

2. Compute the deformation gradient, Ḟ = ḊsD
−1
m .

3. Rotate the deformation gradient into the diagonalized coordinate system, ˆ̇F =

UT ḞV.
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4. Compute the first Piola-Kirchhoff stress in the diagonalized coordinate system,

P̂ = αtr
(

ˆ̇F
)

I + β ˆ̇F + β ˆ̇FT , where α and β are parameters of the constitutive

model.

5. Rotate back to compute the first Piola-Kirchhoff stress, P = UP̂VT .

6. Compute forces the element applies on three of the tetrahedron faces as G =

−PN, where N are the area weighted face normals. These normals can be

computed as N = −1
2
det(Dm)D

−T
m . To see that this is correct, note that

1
3
NTDm = −V I, where V is the volume of the tetrahedron. The negative sign

is because N need to point outwards. Note that, if we computed it, G4 =

−PN4 = −P(−N1 −N2 −N3) = −G1 −G2 −G3.

7. Distribute the forces from faces to vertices. The force f1 at the first vertex is

one third of the forces on the faces around it, or f1 =
1
3
(G2+G3+G4) = −1

3
G1.

Noting that the forces sum to one, the forces are finally obtained as f = S(−1
3
G).

Several observations make the process of factoring this force application simpler. The

first observation is that each of these steps can be regarded as a linear operator

between vector spaces, where the matrices are taken to be flattened into vectors. In

this way, the operators S and G are transposes, so that ignoring the factor of −1
3
, the

operator described by step 7 is the transpose of step 1. Similarly, step 6 is 1
2
det(Dm)

times the transpose of step 2. Step 3 is the transpose of step 5. Let P (α, β) represent

the linear operator applied in step 4. The damping force application can be written

as steps 1 through 3, followed by −1
6
det(Dm)P (α, β), followed by the transpose of

steps 1 through 3. Finally, the operation C is just steps 1 through 3, followed by the

square root of 1
6
∆t det(Dm)P (α, β). It remains only to determine what this square

root is.
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Assume that the square root has the form P (α′, β ′). Then,

P (α′, β ′) ˆ̇F=α′tr( ˆ̇F)I + β ′ ˆ̇F+ β ′ ˆ̇FT

P (α′, β ′)2 ˆ̇F=α′Itr(α′tr( ˆ̇F)I + β ′ ˆ̇F+ β ′ ˆ̇FT )

+ β ′(α′tr( ˆ̇F)I + β ′ ˆ̇F+ β ′ ˆ̇FT ) + β ′(α′tr( ˆ̇F)I+ β ′ ˆ̇F+ β ′ ˆ̇FT )T

= (3α′2 + 4α′β ′)tr( ˆ̇F)I+ 2β ′2 ˆ̇F+ 2β ′2 ˆ̇FT

=P (3α′2 + 4α′β ′, 2β ′2) ˆ̇F

β ′=

√

1

6
∆t det(Dm)

(

1

2

√

2β

)

α′=

√

1

6
∆t det(Dm)

(

1

3

(

√

3α + 2β −
√

2β
)

)

Since the operator P (α′, β ′) is symmetric, this construction results in the operator

C, and routines to apply both C and CT are readily constructed with only minor

modifications to the existing code.

5.5.2 SPD Formulation

Assuming a factorization of the form −∆tD = CTC allows us to left multiply the

third row of (5.17) by C and subsequently factor C out of the third column into the

solution vector to obtain









GTβ−1G −GTβ−1WT 0

−Wβ−1G W(β−1 + JM−1JT )WT −∆tWJM−1D

0 M−1JTWT I−∆tM−1D

















p̂

λ

vn+1









=









GTu⋆

WJv⋆ −Wu⋆

v⋆

















GTβ−1G −GTβ−1WT 0

−Wβ−1G W(β−1 + JM−1JT )WT WJM−1CTC

0 M−1JTWT I+M−1CTC

















p̂

λ

vn+1









=









GTu⋆

WJv⋆ −Wu⋆

v⋆

















GTβ−1G −GTβ−1WT 0

−Wβ−1G W(β−1 + JM−1JT )WT WJM−1CT

0 CM−1JTWT I+CM−1CT

















p̂

λ

v̂









=









GTu⋆

WJv⋆ −Wu⋆

Cv⋆
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where v̂ = Cvn+1 represents the new unknowns. Note that the substitution of (5.11)

into (5.12) to derive (5.17) allowed us to place a D into the third column of the

coefficient matrix in (5.17), leading to the factorization of C out of the coefficient

matrix and into the unknowns, and this was the reason for that extra substitution.

The resulting system is obviously symmetric, and we can recover vn+1 from v̂ by

replacing ∆tDvn+1 with −CTCvn+1 = −CT v̂ in (5.11)

Mvn+1 = Mv⋆ −CT v̂ − JTWTλ.

The symmetrized system can be expressed as the sum of three matrices that are

evidently symmetric positive semidefinite as









GTβ−1G −GTβ−1WT 0

−Wβ−1G Wβ−1WT 0

0 0 0









+









0 0 0

0 WJM−1JTWT WJM−1CT

0 CM−1JTWT CM−1CT









+









0 0 0

0 0 0

0 0 I









,

from which the symmetric positive semidefiniteness of the coupled system follows.

To consider the rank of this matrix, note that any vector in the nullspace of the

coupled system, consisting of three parts p̂, λ, and v̂, must necessarily be in the

nullspace of each of these three matrices. From the third matrix, we conclude that

this requires v̂ = 0. Assuming v̂ = 0 and looking at the second matrix leads one to

consider only requirements for λ. The first and second matrices factor as









GT

−W

0









β−1









GT

−W

0









T

+









0

WJ

C









M−1









0

WJ

C









T

.

For a vector to lie in the nullspace of the second matrix, it is necessary forM−1JTWTλ =

0, which implies that the constraint impulses have no effect on any degrees of free-

dom of the structure. A nontrivial nullspace of the first matrix satisfies β−1Gp̂ −
β−1WTλ = 0, which implies that the combination of constraints and pressures can-

cels to give no effect on the final fluid velocities un+1 as can be seen by inspecting
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(5.8). This immediately gives the cases β−1Gp̂ = 0 (Neumann region) and WTλ = 0

(redundant constraints), both of which will lead to nullspaces of the full coupled

system by placing zeros in the remaining entries.

The right hand side of our equations must be in the range of the coefficient matrix

in order for the system to be solvable. Comparing the form of our right hand side

to the requirements that a nullspace must satisfy, we find that it is sufficient but

not necessary condition for consistency for v⋆ to contain no nullspace components

of M−1 and u⋆ to contain no nullspace components of β−1. A Neumann region will

result in inconsistency if there is a net flux in u⋆ through the region boundary, so we

enforce consistency by summing up the net flux and subtracting it evenly from the

u⋆ on the region boundary faces. Clearly constraints which apply only to nullspace

components of M−1 and β−1 will result in inconsistency and must be avoided. Fluid

velocities which are constrained only to nullspace components of M−1 are in effect

Neumann grid faces and must be taken into account in detection of Neumann regions.

Isolated rigid bodies within a fluid region also do not prevent a region from being

a Neumann region. A region that contains deformable bodies does not behave as a

Neumann region, since the bodies can change volume to accommodate a net flux into

the region.

5.5.3 Note On Forming SPD System

Many problems can be formulated as a KKT system of the form

(

M+CTC BT

B 0

)(

u

λ

)

=

(

b

0

)

, (5.18)

where M is an SPD matrix that is easily inverted. Dissipative systems, such as

fluid viscosity or structure damping, produce terms of the form M+CTC. Evolving

such systems subject to constraints, such as the incompressibility constraint or the

constraint that the solid and fluid velocities be equal at their interface, then leads to

a KKT system in the form of (5.18). Multiplying the first row of (5.18) by CM−1
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produces

Cu+CM−1CTCu+CM−1BTλ = CM−1b. (5.19)

Multiplying the first row of (5.18) by BM−1 and simplifying using the second row

produces

BM−1CTCu+BM−1BTλ = BM−1b. (5.20)

These are then combined into the SPD system using the definition û = Cu to produce

(

I+CM−1CT CM−1BT

BM−1CT BM−1BT

)(

û

λ

)

=

(

CM−1b

BM−1b

)

. (5.21)

Finally, u is obtained from the first row of (5.18) using

u = M−1b−M−1CT û−M−1BTλ. (5.22)

To demonstrate that this is in fact equivalent to (5.18), we show that we can de-

rive (5.18) from û = Cu, (5.21) and (5.22). The first row of (5.18) is obtained by

substituting û = Cu into (5.22). The constraint row is obtained by subtracting the

second row of (5.21) from B times (5.22). Thus, the indefinite KKT formulation is

equivalent to the SPD formulation.

Note that the slightly more general form

(

M+CTC BT

B 0

)(

u

λ

)

=

(

b

s

)

, (5.23)

can also be formed into an SPD system following the same formulation. This produces

the system

(

I+CM−1CT CM−1BT

BM−1CT BM−1BT

)(

û

λ

)

=

(

CM−1b

BM−1b− s

)

. (5.24)
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Then, u can obtained as before.

5.6 Note On Conditioning

In the absence of coupling (W = 0), the structure system looks like

vn+1=v⋆ +∆tM−1Dvn+1

vn+1 −∆tM−1Dvn+1=v⋆

(I+M−1CTC)vn+1=v⋆

The modified structure system looks like

(I+CM−1CT )v̂ = Cv⋆

These two systems have the same eigenvalues. To see this

(I+M−1CTC)v=αv

C(I+M−1CTC)v=Cαv

(I+CM−1CT )v̂=αv̂

so that if v is an eigenvector with eigenvalue α in the original system, then v̂ is

an eigenvector of the modified system with the same eigenvalue. Note also that,

though modifying the system in this way may introduce new eigenvalues (since the

system may be larger), none of these eigenvalues will be visible to a Krylov solver.

This is because the right hand side is of the form Cv⋆ and application of the matrix

results in vectors that are also of this form. The modified system may have fewer

eigenvalues, however (caused by rank deficiency of C). The important point is that

this modification to the structure system will not adversely affect its convergence

properties with a Krylov solver.
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5.7 Viscosity

Applying viscosity as a separate step in the time evolution does not yield a fully

coupled time integration scheme, since viscous forces cannot apply momentum to

structures. This can be overcome by adding viscosity directly into the coupled for-

mulation. With this in mind, we redefine the intermediate velocity

u⋆ = un −∆t(un · ∇)un +
∆t

ρ
f . (5.25)

Assume that the fluid viscosity µ is constant and ignore the coupling term. Then,

the fluid momentum equation becomes

ρun+1 = ρu⋆ −∆t∇p+∆tµ∇2un+1. (5.26)

The viscous terms introduce a new gradient operator, which acts on face velocities.

The gradient operator itself is discretized using central differences. The boundary

conditions at structures are Dirichlet conditions, noting that these velocities are con-

strained implicitly using W and remain degrees of freedom rather than being moved

to the right hand side as would normally be done. The discretization of W used

above is not suitable for viscosity, however, since it does not couple to structures in

the tangential direction. This is resolved by locating faces adjacent to those in W

and adding them to W as shown in Figure 5.2. Domain boundary conditions can

be discretized in the usual way. For simplicity of implementation, however, we treat

domain walls as infinitely massive structures and add terms to W, J, and M−1 ac-

cordingly. This discretization is limited to first order accuracy since it uses the first

order accurate constraint locations.

Let Gµ =
√
∆tµV∇ be the discretized gradient operator that acts on face velocities,

where the scaling factors are pulled into the resulting matrix to simplify the presen-

tation. Substituting this into (5.26) and adding back the coupling term produces the
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Figure 5.2: The hashed region is the rasterized structure, and the thick faces at its
boundary are the original coupling faces in W. For viscosity, the dashed faces are
added to W to allow tangential forces to be exchanged between fluid and structure.

momentum equation

βun+1 = βu⋆ −Gp̂−GT
µGµu

n+1 +WTλ. (5.27)

Define û = Gµu
n+1. Then, multiplying (5.27) through by both GTβ−1 (using (5.9))

and Gµβ
−1 produces

GTβ−1Gp̂+GTβ−1GT
µ û−GTβ−1WTλ=GTu⋆ (5.28)

Gµβ
−1Gp̂+ (I+Gµβ

−1GT
µ )û−Gµβ

−1WTλ=Gµu
⋆. (5.29)

Multiplying (5.27) through by Wβ−1 and substituting in (5.12) followed by (5.11),

−∆tD = CTC and Cvn+1 = v̂ produces

Wβ−1Gp̂+Wβ−1GT
µ û−W(β−1+JM−1JT )WTλ−WJM−1CT v̂ = Wu⋆−WJv⋆.

Combining these with (5.11) produces













GTβ−1
G GTβ−1

GT
µ −GTβ−1

WT 0

Gµβ
−1

G I+Gµβ
−1

GT
µ −Gµβ

−1
WT 0

−Wβ−1
G −Wβ−1

GT
µ W(β−1 + JM−1JT )WT WJM−1CT

0 0 CM−1JTWT I+CM−1CT

























p̂

û

λ

v̂













=













GTu⋆

Gµu
⋆

WJv⋆ −Wu⋆

Cv⋆













(5.30)
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This equation has a structure very similar to what was obtained without viscosity,

and it can be shown to be symmetric positive semidefinite in exactly the same way.

Stokes Flow When the Reynolds number is very small, the viscosity term domi-

nates the inertial terms. Because viscosity and pressure are fully coupled in a single

linear system, our scheme does not experience difficulties at high viscosity. In this

case, one may also approximate the Navier-Stokes equations with those of Stokes flow

by omitting the inertial terms. We can simulate the unsteady Stokes flow equations

directly in our framework by omitting advection terms for the fluid (Step 6) and the

structure (Step 4). This renders the entire first half of the update unnecessary, and

our evolution scheme reduces to

1. v⋆ = vn +∆tM−1Fe(x
n+1)

2. u⋆ = un + ∆t
ρ
f

3. Coupled solve with known quantities u⋆, v⋆, and xn+1 and unknown quantities

un+1, p, and vn+1

We demonstrate our ability to simulate with high viscosity and Stokes flow in Sec-

tion 5.11.2.

As discussed in [125], the indefinite system of equations derived for fluid-structure

interaction has many similarities to the Stokes equations as both are dissipative sys-

tems combined with constraints (see Section 5.5.3). Indeed, we produce an SPD

formulation for both. If no structures are present then W = 0, C = 0 and J = 0,

and (5.30) simplifies to

(

GTβ−1G GTβ−1GT
µ

Gµβ
−1G I+Gµβ

−1GT
µ

)(

p̂

û

)

=

(

GTu⋆

Gµu
⋆

)

. (5.31)

This system provides an SPD treatment of unsteady Stokes flow. If convection is

handled explicitly, this formulation also provides an SPD treatment of Navier-Stokes.
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Fully implicit Navier Stokes We could take a fully implicit approach to the

full nonlinear Navier-Stokes equations by using a Newton-Raphson iteration method,

where we linearize at each Newton step to get a system of the form in (5.31). The

equation to be iterated is

un+1
(i+1) = un −∆t(un+1

(i) · ∇)un+1
(i) +

∆t

ρ
(−∇p+ µ∇2un+1

(i+1) + f),

where un+1
(i) is the time tn+1 fluid velocity after the ith Newton iteration and we let

un+1
(0) = un. The inner iterations are performed by solving the symmetric and positive

definite system (5.31). For each outer iteration, a new system is set up using the new

estimate of the final velocity to recompute the advection term. A similar approach

could be explored for treatment of fully implicit coupled fluid-structure evolution.

5.8 Note on Stability

We have found the proposed monolithic implicit coupling scheme described in this

paper to be quite stable. We have never observed stability problems due to this simple

choice. In the example from Figure 5.8, we consider the structure discretization to

be exact and refine only the fluid discretization. This results in a grid spacing much

smaller than the lengths of edges in the structure mesh, which has never been observed

to cause stability problems. We also tried running examples with a fixed resolution

fluid mesh, refining the structure so that the grid spacing was over 30 times the

lengths of the structure edges, again without noticing any stability problems. We

have tried making structures a billion times less dense than the fluid and a billion

times more dense than the fluid, and neither modification lead to stability problems.

We also note that solving the coupled linear system and applying the resulting update

to the velocities of the structure and the fluid has the property that it never increases

total kinetic energy. Since positions are not changed during this process, potential
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energy is unchanged. Let

K =













GT 0

Gµ 0

−W WJ

0 C













B =

(

β 0

0 M

)

P =













0 0 0 0

0 I 0 0

0 0 0 0

0 0 0 I













w =

(

u⋆

v⋆

)

wn+1 =

(

un+1

vn+1

)

z =













p̂

û

λ

v̂













(5.30) reduces to (KB−1KT + P)z = Kw. The new velocities are wn+1 = w −
B−1KTz. Finally, the change in kinetic energy is

2KEn+1 − 2KE⋆= (w−B−1KTz)TB(w −B−1KTz)−wTBw

=−2wTKTz+ (KTz)TB−1(KTz)

=−2zT (KB−1KT +P)z+ zTKB−1KTz

=−zT (KB−1KT + 2P)z ≤ 0

This does not imply that we always decrease kinetic energy over a full time step, since

elastic forces added to the structures or gravity added to fluids may both increase

kinetic energy. In particular, we are still explicit on elastic forces, and this continues

to impose a CFL restriction. On the other hand, if there is no potential energy

(e.g., rigid bodies without forces between them), and the remaining steps in the time

integration scheme make a similar guarantee on kinetic energy, the resulting scheme

would be unconditionally stable. We also note that if there is neither damping nor

viscosity, then P = 0, and the process of obtaining the final velocities wn+1 from

the intermediate velocities w is described by the mass-symmetric projection matrix

I − B−1KT (KB−1KT )−1K, which is exactly the property that would be desired in

this case.
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5.9 Minimization Formulation

It was pointed out in [16] that the pressure projection could be formulated as a kinetic

energy minimization problem. By allowing fluid pressure to exert forces on rigid bod-

ies in contact with the fluid, the pressures in addition to enforcing incompressibility

in the fluid also apply coupling exchanges between fluid and solid. The total kinetic

energy includes the kinetic energy of the fluid and structures. As in the case with

no solids, the pressures are computed by choosing pressures to minimize the kinetic

energy. This raises the question of whether the variational analogy also extends to

the FSI treatment presented here. There is in fact a quantity being minimized, but

that quantity is not quite the kinetic energy.

The final velocities are obtained using the coupled system and application rule

(KB−1KT +P)z = Kw wn+1 = w −B−1KTz. (5.32)

The total kinetic energy of the system is

KE =
1

2
(wn+1)TBwn+1 =

1

2
(w −B−1KTz)TB(w−B−1KTz). (5.33)

In [16], the quantities being minimized over were the pressures. That is, the forces

were chosen to minimize kinetic energy. In the case of our formulation, the forces are

z. Recall that z contains p̂, the pressures, û, the viscosity forces, λ, the coupling

forces which exchange forces between fluid and structures as pressures did in [16],

and v̂, which describes the structure’s constitutive forces. Differentiating KE with

respect to z produces

0 =
∂KE

∂z
= −(B−1KT )TB(w−B−1KTz) = −Kw +KB−1KTz. (5.34)

This leads to the system

KB−1KTz = Kw, (5.35)



5.9. MINIMIZATION FORMULATION 99

which is not quite the correct coupling system.

This differs from the correct system by the term Pz. This suggests that one should

instead minimize the modified energy

E = KE +
1

2
zTPz =

1

2
(wn+1)TBwn+1 +

1

2
zTPz. (5.36)

Observe that, as with KE, the quantity E is strictly nonnegative and quadratic in z,

making the minimization well-posed. Differentiating produces

0 =
∂E

∂z
=
∂KE

∂z
+Pz = −Kw +KB−1KTz+Pz. (5.37)

This leads to the correct coupling system

(KB−1KT +P)z = Kw. (5.38)

That the kinetic energy should be part of the minimization is not surprising, as

this is part of the classical Lagrangian. The interpretation of the 1
2
zTPz term is

much less clear. Since the P matrix is associated with damping terms (the vector

z contains constraint forces p̂ and λ and damping forces v̂ and û, and P removes

the contributions from the constraint forces), the additional term would appear to be

some sort of damping energy. Indeed

1

2
zTPz =

1

2
ûT û+

1

2
v̂T v̂ (5.39)

Recall that v̂ = Cvn+1 and û = Gµu
n+1. Substituting this in produces

1

2
zTPz =

1

2
(vn+1)TCTCvn+1 +

1

2
(un+1)TGT

µGµu
n+1. (5.40)

Next, recallCTC = −∆tD, so thatCTCvn+1 = −∆tfdamp and similarlyGT
µGµu

n+1 =

−∆tfvisc, where fdamp and fvisc represent the damping and viscosity forces at time tn+1.
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The extra term is now

1

2
zTPz = −1

2
∆t(vn+1)T fdamp −

1

2
∆t(un+1)T fvisc. (5.41)

Then, ∆tvn+1 is the change in position, so that Wdamp = ∆t(vn+1)T fdamp is the work

done by structure damping and similarly Wvisc = ∆t(un+1)T fvisc is the work done by

fluid viscosity. The quantity being minimized is finally

E = KE − 1

2
(Wdamp +Wvisc). (5.42)

This is consistent with [16], since they did not include fluid viscosity or structure

constitutive forces so that in their case Wdamp = Wvisc = 0.

5.10 Structure with Constraints

Consider a backward Euler velocity update with constraints, such as incompress-

ibility (Section 3.6), contact (Section 3.4 and Section 4.7.3), and poststabilization

(Section 4.7.3).

Mvn+1=Mv⋆ +∆tDvn+1 −HTλ (5.43)

Hvn+1= s

Here, Hvn+1 = s contains all of the constraints. Comparing with (5.24) results in the

system
(

I+CM−1CT CM−1HT

HM−1CT HM−1HT

)(

û

λ

)

=

(

Cv⋆

Hv⋆ − s

)

,

where vn+1 is obtained by substituting into (5.43).

Note that the presence of inhomogeneous constraints s 6= 0 was not considered in the

original formulation, though it could be included the same way as here. With this

extra term, the system will be inconsistent only if s is not in the column space of
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H. This can be demonstrated using the same logic as before. The meaning of this

inconsistency is clear, since in this case the constraint Hvn+1 = s cannot possibly

be satisfied. On the other hand, if the constraint can be satisfied, then the resulting

consistency of the linear system implies that the constraint will be satisfied.

5.11 Examples

The SPD formulation merely gives an analytically equivalent expression of the indef-

inite form of the equations. What we expect to illustrate in these examples is that

the method is numerically stable. We examine several common examples from the

fluid structure interaction literature to demonstrate the convergence properties of our

method.

We choose our time step size to be the minimum of the time step size required for

fluids alone and the time step size required for structures alone. The fluid time step

size is computed using a CFL number of 0.9 for all of our examples. Except in the

stability test described below, the structures in our examples are not refined, so the

time step size computed for the structures will not change significantly from resolution

to resolution. For higher resolutions, the fluid time step restriction will dominate. We

note that since all of our examples converge to nonzero velocities under refinement,

we effectively refine with ∆t ∝ ∆x. Thus, the first order convergence demonstrated

in our examples implies that our scheme is at least first order accurate in space and

time. We do not test convergence order separately for space and time, since we do

not expect to achieve better than first order.

5.11.1 Analytic example

Figure 5.3 shows a simple setup designed to mimic an infinite channel with a rigid

structure flowing through it and centered in the channel. The density of the fluid

is ρ = 100kgm−2, and the mass of the rigid body is M = 150kg. The height of
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Figure 5.3: A structure flows through a channel in an analytic test. The errors are
computed as the difference between the steady state velocity of the moving structure
and the analytic solution. The error depends on the grid resolution mod 3 since this
value determines how the structure aligns with the domain. The convergence order
of the errors is fit as .93.

the fluid domain is h = 1m, and the total domain width of 1m is divided into two

fluid regions with width w = 1
3
m with the central 1

3
m occupied by the structure.

The fluid viscosity is µ = 100kg s−1. Both the fluid and structure experience gravity

g = −9.8ms−1. We elongate the rigid body to extend slightly beyond the domain and

periodically reset its position, providing the illusion of an infinitely long rigid body

and allowing the simulation to be run long enough to reach steady state. Altering the

dimensions of the structure does not affect the analytic solution, provided its mass is

not altered.

We derive the analytic solution by considering the structure to be a boundary con-

dition to the fluid and then solving for the structure’s velocity using conservation

of energy. The analytic velocity profile for the left fluid region Ω = [0, w] × [0, h]
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(a) N-S, µ = 0.1 kg s−1 (b) N-S, µ = 0.5 kg s−1 (c) Stokes flow, µ = 0.1 kg s−1

Figure 5.4: A steady state velocity field is computed using the Navier-Stokes equations
(N-S) or the equations for Stokes flow.

is u = 0 and v = ρg
2µ
x(x − w) + vs

w
x, where the v is the vertical fluid velocity com-

ponent and vs is the vertical component of the structure velocity. The fluid experi-

ences no pressure gradient. The only unknown remaining is vs, the velocity of the

structure. Taking into account the symmetry of the system, conservation of energy

implies that the viscous dissipation equals the total work applied by gravity, so that

2
∫

Ω
(τ · ∇)u dV = 2

∫

Ω
ρgv dV + Mgvs. Solving this equation yields the analytic

solution vs = −(M + ρwh) gw
2hµ

.

5.11.2 Rigid cylinder falling under gravity

Motivated by [165, 166], a rigid cylinder is allowed to fall under an externally applied

gravitational force. The fluid domain has dimensions 2L × 8L, and the cylinder has

radius r. If the fluid density is ρf and the solid density is ρs, then the terminal

velocity is [165]

vterm =
(ρs − ρf )gr

2

4µ

(

− ln
( r

L

)

− 0.9157 + 1.7244
( r

L

)2

− 1.7302
( r

L

)4
)

.
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It is instructive to note the origin of this analytic solution. Consider a fluid domain

consisting of an infinite 2D channel with parallel walls separated by a distance of

2L. In the middle of this channel is a cylinder with radius a moving with a constant

velocity vs along the axis of the channel. Under the simplifying assumption of Stokes

flow, the resistive force experienced by the cylinder is approximately [67]

F =
4πµvs

− ln
(

r
L

)

− 0.9157 + 1.7244
(

r
L

)2 − 1.7302
(

r
L

)4 .

Note that because of the Stokes flow assumption, fluid advection and movement of

the cylinder are assumed to be insignificant and dropped. The steady state solid

velocity is obtained by balancing the resistive force against the net gravitational force

F = (ρs − ρf)gπr
2 on the solid (taking into account buoyancy).

We use the same parameters as [165]: g = 9.8ms−1, r = 5 · 10−3m, L = 2 · 10−2m,

µ = 0.1 kg s−1, ρf = 1 · 103 kg m−2, and ρs = 2 · 103 kg m−2. The top of the fluid

domain has a zero pressure Dirichlet boundary condition, and the sides and bottom

are no-slip walls. Our results are shown in Figure 5.5(a). We note that our results do

not agree with those in [165], and we note that their velocity profile does not appear

to reach a terminal velocity. We converge to a value significantly lower than the

analytic solution. The analytic solution was derived under the assumption of Stokes

flow, and the given parameters, Re = 35, which is well outside the Stokes flow regime.

We also ran with higher viscosities: µ = 0.2 kg s−1 (Figure 5.5(b)), µ = 0.5 kg s−1

(Figure 5.5(c)), µ = 1.0 kg s−1, µ = 2.0 kg s−1, µ = 5.0 kg s−1, and µ = 10.0 kg s−1.

We obtain close agreement with the analytic solution for µ = 0.5 kg s−1 and higher

viscosities. We also repeated the the original test µ = 0.1 kg s−1 using Stokes flow and

converge to the analytic terminal velocity as shown in Figure 5.5(d). The results from

all of these simulations are summarized in Table 5.1, and the steady state velocities

are shown in Figure 5.4.

The velocity profile shown in Figure 7 of [166] does show a faster initial increase in

velocity followed by the velocity profile reaching a plateau, which is consistent with

the behavior we observe. Their method, like ours, is first order accurate, and their
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(a) Navier-Stokes, µ = 0.1 kg s−1
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(b) Navier-Stokes, µ = 0.2 kg s−1
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(d) Stokes flow, µ = 0.1 kg s−1

Figure 5.5: Velocity of a falling cylinder in a channel over time.

µ Terminal Velocities (ms−1) Convergence
Eqn. (kg s−1) Analytic 40× 160 80× 320 160× 640 Order
N-S 0.1 −0.3501 −0.1716 −0.1882 −0.1966 - -
N-S 0.2 −0.1750 −0.1254 −0.1359 −0.1417 - -
N-S 0.5 −0.07002 −0.05983 −0.06438 −0.06721 0.85 1.01
N-S 1.0 −0.03501 −0.03052 −0.03264 −0.03399 0.92 1.22
N-S 2.0 −0.01750 −0.01533 −0.01635 −0.01702 0.91 1.26
N-S 5.0 −0.007002 −0.006148 −0.006547 −0.006828 0.91 1.38
N-S 10.0 −0.003501 −0.003013 −0.003279 −0.003417 1.14 1.40

Stokes 0.1 −0.3501 −0.2945 −0.3241 −0.3390 1.10 1.23

Table 5.1: Terminal velocity of a falling cylinder and convergence orders.
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(d) Convergence of u2 at A.

Figure 5.6: Laminar flow around a fixed cylinder.

figure shows two velocity profiles for each of two methods corresponding to a factor-

of-four refinement. This suggests that the close fit shown in their highest resolution

may be coincidental and that their scheme will actually converge to a value somewhat

higher than the predicted value.
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5.11.3 Laminar flow past a cylinder

In this example, we consider a simple one-way coupled setup and directly compare our

technique against a different scheme. For the comparison scheme, we use standard

Chorin splitting [37]. We then choose a sample point at a time and position which

exhibits dynamic behavior and demonstrate that the two schemes converge to the

same velocity at that point. This demonstrates that we are consistent with an existing

scheme from the literature in the simpler case where structures are only one-way

coupled to the fluid.

For this comparison we use laminar flow across a fixed cylinder. The domain is

[0m, 4m]× [0m, 4m] with a cylinder of radius 0.5m located at (2, 2). The cylinder

has no-slip boundary conditions. The top and bottom walls have slip boundary

conditions. The right wall has the condition p = 0, and the left wall has the boundary

condition u1 = 1 and a slipping boundary condition for u2. The density is ρ =

1kgm−2, and the viscosity is µ = 0.1 kg s−1. The initial fluid velocity is u = 0.

The setup is illustrated in Figure 5.6(a). The fluid velocity is sampled at the point

(3, 2.25) at time 0.5s using linear interpolation. The fluid velocity is far from steady

state at this time, so this comparison also tests dynamic behavior.

The Chorin splitting implementation at resolution 640× 640 is taken to be the exact

solution. The example was then run using the proposed method at resolutions 40×40,

80 × 80, 160 × 160, and 320 × 320. The differences for each velocity component

are plotted in Figure 5.6(c) and Figure 5.6(d). The convergence order for u1 is

0.89, and the convergence order for u2 is 1.07. The final velocity profile is shown in

Figure 5.6(b).

5.11.4 Vortex shedding

In this example we demonstrate Kármán vortex shedding around a cylinder and com-

pare the dynamic behavior of our method in the case of low viscosity and one-way cou-

pling against the results that others have obtained and against our implementation of
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Figure 5.7: Vorticity contours demonstrating vortex shedding. Contours are provided
for the range [−2.5, 2.5] in increments of 0.25.

Chorin splitting. Our setup is based on that of [71, 29], except that we employ slightly

different boundary conditions. Our domain is [−2.5m, 15.0m]× [−3.5m, 3.5m] with

a fixed cylinder of radius 0.5m centered at the origin. The top and bottom of the

domain walls have slip boundary conditions. The left boundary has a source term

u1 = 1ms−1 with a slipping boundary condition for u2. The right boundary has

the boundary condition p = 0. The flow has Re = 100 with ρ = 1kg m−2 and

µ = 0.01 kg s−1. We used a 400 × 160 grid for our proposed method and for Chorin
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splitting. Our vorticity contours for our proposed method and Chorin splitting are

shown in Figure 5.7. Our vorticity contours exhibit the same characteristics as those

shown in [71, 29] as well as being quite similar to each other. We note that the

contour plot for the proposed method has an additional zero contour near the left

side. The vorticity in this region is quite small, reaching its peak at roughly 1% of

the separation between two contour lines. At resolution 200× 80, the vorticity peaks

at roughly 3% of the separation between two contour lines, indicating that the extra

contour line will go away under refinement. For the proposed method, the frequency

and Strouhal number are f = 0.160Hz and St = 0.160. For the Chorin splitting

implementation, f = 0.166Hz and St = 0.166. These compare favorably with [29],

which reported St = 0.164− 0.173 depending on the details of their mesh.

5.11.5 Flow past deformable beam

This problem deals with a deformable beam immersed in fluid, similar to problems

investigated by [14, 175, 164, 165, 44, 133, 79, 176]. The fluid domain was [0m, 2m]×
[0m, 1m] with velocity boundary conditions of 0.25ms−1 on the left side, slip walls

on the top and bottom, and a p = 0 boundary condition on the right wall. The beam

has no-slip boundary conditions. The fluid density is 100 kgm−2, and the coefficient

of dynamic viscosity is µ = 1 kg s−1. The structure is discretized as a triangle mesh

using a mass-spring model with 20 particles in the vertical direction and 5 in the

horizontal, each of mass 0.1 kg except for the bottom row of particles, which are

treated as infinitely massive. The mesh is initially rectangular, with extent from

[0.95m, 1.05m]×[0m, 0.5m]. Edge springs with Young’s modulus E = 166 kgm−1s−2

and overdamping fraction 2 along with altitude springs with Young’s modulus E =

400 kgm−1s−2 and overdamping fraction 2 were used as the structure constitutive

model. (If considered in isolation, a spring can be made critically damped by choosing

a specific damping constant. When we refer to an overdamping fraction of 2, we mean

that the damping coefficient on the spring is twice the value that would result in a

critically damped spring. Isolated springs with an overdamping fraction greater than
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(a) Fluid velocities for flow over deforming beam
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Figure 5.8: Velocity profile and position error are shown for the top right particle of
the deforming beam at time 1 s. The position of the particle at the highest resolution
is taken to be the exact value xex.

one are overdamped, and isolated springs with an overdamping fraction less than one

are underdamped. The analogy does not extend to systems of springs, but we find

this approach to be more intuitive for describing the amount of damping present.)

Altitude springs [102] create a spring between each particle of a triangle and a virtual

node projected onto the opposite face and are used to give volumetric structure and

prevent inversion.

Note for the purposes of our convergence analysis we take the structure to be a

discrete system and refine only the fluid grid resolution. We examine convergence

with fluid grid resolution and time step size in Figure 5.8(b). The error is computed

assuming the simulation with resolution 256× 128 is the exact solution. We plot the

convergence of ‖x−xex‖, where xex is the position in the exact solution configuration,

for the top right particle of the beam at time 1 s in Figure 5.8(b). The convergence

order is 1.42. The velocity profile is shown in Figure 5.8(a).

5.11.6 Oscillating disk

We have implemented the oscillating disk example from [176], where a circular de-

formable body is placed within a fluid domain of dimensions [0m, 1m] × [0m, 1m]

with periodic boundary conditions and an initial velocity defined for both the fluid and
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Figure 5.9: Streamlines in the oscillating disk example. The fluid grid resolution is
128× 128 and the structure is composed of 2400 triangles.

the structure by the stream function ψ = ψ0sin(kxx)sin(kyy), with ψ0 = 0.05m2s−1

and kx = ky = 2πm−1. We used a neo-Hookean constitutive model as described in

[22] for the structure with Poisson’s ratio ν = 0.475, shear modulus G = 1Pa, and

Rayleigh damping coefficient 0.005. The structure and fluid densities were set to

ρ = 1 kgm−2, and the coefficient of dynamic viscosity was µ = 0.001 kg s−1. We ran

the simulation for a period of 1 s. For comparison to [176] we rasterize the structure

velocities onto the fluid grid and display the streamlines and structure deformation

(Figure 5.9). The frequency of the oscillator is similar to that in [176] as can be seen

from the energy plots in Figure 5.10. We note that our simulation is more damped

than theirs. Our extra damping is due to our use of semi-Lagrangian advection on

the fluid and Rayleigh damping on the structure.
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Figure 5.10: Energy over time for the oscillating disk shown in Figure 5.9.

5.12 Conclusions and Future Work

We have presented a method for formulating strongly coupled fluid structure interac-

tion problems as a symmetric positive definite linear system. The method is based on

factoring the structure damping matrix and performing a change of variables in the

structure unknowns. It can be applied to arbitrary linearized structure constitutive

models but requires a semi-implicit time discretization for the structure equations,

where elastic terms are handled explicitly and damping terms are handled implicitly.

For the special case of only rigid structures and no other rigid-rigid forces we recover

exactly the method of [15]. The numerical experiments on problems common in the

fluid structure interaction literature demonstrate that the method is convergent with

grid resolution.

Second order accuracy for fluid structure interaction has been achieved by some au-

thors, such as the formally second order methods [61, 60]. We note, however, that

second order accuracy came well after the original method and that the additional

accuracy comes at the cost of additional complexity. An approach which attempts

to be second order accurate in space might resolve the boundary between the fluid

and structure more accurately by placing constraints at the structure surface rather

than at MAC face centers or otherwise take advantage of the available geometric

information. Second order accuracy in time would be more difficult to achieve, as it
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would require finding second order accurate integration schemes for the fluid and the

structure that retain that accuracy when coupled. Instead of attempting to address

second order accuracy in this paper, we leave the problem of higher order accuracy

for future work.

Compared to standard Chorin splitting (without structures), our evolution will be

significantly slower. Chorin splitting with implicit viscosity requires the solution of

one well-conditioned viscosity system per dimension and a single poorly-conditioned

Poisson system for which preconditioning has been well studied. We replace these

with a single linear system that, due to the Poisson matrix it contains, is also poorly

conditioned. We have observed its conditioning to be significantly worse at high

viscosity than low viscosity, and we have also observed poor conditioning to result

from underresolved regions. In particular, we have observed poor convergence when

the structure is much coarser than the fluid grid and we add extra coupling faces to

W as described in Section 5.7, possibly due to being overconstrained. Increasing the

resolution of the structure improves convergence in these cases, but a more careful

treatment of boundary conditions might avoid the issue entirely. Conditioning with

deformable structures becomes worse with lower density and higher damping. The

conditioning improves significantly when all structures are one-way coupled.

The system is symmetric positive definite, making it suitable for solution with meth-

ods like conjugate gradient and generally easier to precondition and solve than other

types of linear systems. The solution of this system is still expensive in our imple-

mentation as we have not developed an effective preconditioner for it and have not

made significant effort to optimize our routines. We leave the problem of finding a

good preconditioner for future work. Solving the linear systems dominates the cost

of our time evolution. The algorithm compares favorably with [125], which has an

indefinite system that we have observed to converge much slower in practice.



Chapter 6

Implicit Surface Tension

In this chapter, we build a framework for applying implicit forces on Lagrangian

degrees of freedom to an Eulerian discretization of the Navier-Stokes equations. We

then leverage the framework established in Chapter 5 to produce a system that is

symmetric and positive definite. We then use this framework to address the tight

stability time step restriction imposed by surface tension. The work in this chapter

is based on the work under review [128].

6.1 Introduction

Surface tension is a significant force in many phenomena, generally becoming more

significant as features decrease in size. It plays a vital role in the dynamics of water

droplets and bubbles, where the shape becomes increasingly dominated by surface

tension forces as the size decreases. The foundations of surface tension simulation

began with smeared δ-functions applied to interfaces maintained by front tracking

[159], volume of fluid [26], and level sets [31, 146]. Another interesting early work

on surface tension is [75]. Since then, a wide variety of different formulations have

been investigated, and the difficulties posed by surface tension have been studied and

114
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increasingly understood.

Surface tension is subject to a tight ∆t = O(∆x3/2) time step step restriction, and

a significant number number of approaches have been considered for alleviating it.

The early approach of [72] started from a CSF formulation and worked out how

the curvature changes in time to derive an implicit formulation of surface tension.

This was followed up by [77], which used a simplified formulation that also added

additional damping along the interface. The approaches of [141, 172, 177] (see also

[45]) improve stability by adding and subtracting a Laplacian, effectively introducing

additional viscosity to the fluid. There has also been work on improving stability

with VOF-based surface tension schemes [145, 99].

The tendency for surface tension to produce parasitic currents is well known in the lit-

erature. [83] aimed to eliminate parasitic currents in the second gradient formulation

of surface tension at the cost of momentum conservation. Methods based on delta

functions require careful attention to produce accurate results, as even O(1) errors

may result if not implemented carefully, a point which has been noted for example in

the context of length computation [142, 46, 155]. In [86], it was noted that parasitic

currents when using a regularized delta function formulation were found to be three

orders of higher than were obtained from a formulation handling surface tension as a

pressure jump across a sharp interface using the ghost fluid method. [54] showed that

enforcing a balance between the pressure and the surface tension in a manner similar

to the ghost fluid method was important. [55] also found that balancing the pressure

with surface tension forces resulted in a more accurate formulation. [62], based on

[63], proposed using XFEM to formulate a discontinuous pressure jump as well. See

also [33, 34, 49]. Following these observations, we take a sharp-interface approach to

applying surface tension, addressing accuracy through careful attention to the force

balance between surface tension and pressure.

We develop a method for implicit surface tension based on a discretizing the Laplace

Beltrami operator on a Lagrangian mesh, which we couple to an otherwise Eulerian

discretization. The resulting scheme is very similar in form to CSF schemes, but we
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are able to take advantage of the flexibility in mapping between degrees of freedom to

reduce the severity of parasitic currents to levels comparable to those in [86]. While

we formulate surface tension as a force, our surface tension discretization can also be

formulated as a pressure jump.

We explore two approaches to maintaining our interface: level sets and front tracking.

For a good review on front tracking, see [156]. Front tracking has the advantage

that it is relatively easy to treat implicitly and is conveniently compatible with our

treatment of surface tension through a Lagrangian surface mesh. For other examples

of implicit front tracking see [96], which evolves an elastic membrane implicitly using

and Jacobian-free Newton Krylov method solver, and [147], which uses the Jacobian-

free Newton Krylov method to implicitly update control points.

6.2 Eulerian Navier Stokes with Lagrangian Forces

6.2.1 Navier Stokes Equations

In this paper, we consider the Eulerian form of the incompressible Navier Stokes

equations,

ρ

(

∂~u

∂t
+ (~u · ∇)~u

)

= −∇p + µ∇2~u+ ~fρ (6.1)

subject to the incompressibility constraint

∇ · ~u = 0. (6.2)

Here, ~u is the fluid velocity, p is the pressure, µ is the dynamic viscosity, ρ is the

density, and fρ is an additional force density. Later, fρ will be a surface tension force.

Our spatial discretization is based on a standard Marker and Cell (MAC, [68]) grid

discretization. Chorin splitting [37] is used to separate the advection term and ex-

plicit forces from the pressure and implicit forces. We apply advection to obtain an
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intermediate velocity

ρ~u⋆ = ρ~un −∆tρ(~u · ∇)~u+∆t ~fρ1, (6.3)

which is applied with 3rd order Runge Kutta [135] and 3rd order Hamilton Jacobi

ENO [116]. The pressure and implicit forces are discretized as

ρ~un+1 = ρ~u⋆ −∆t∇p+∆tµ∇2~un+1 +∆t ~fρ2. (6.4)

It will be convenient to work in a fully-discretized and volume-weighted form, which

is accomplished by first multiplying through by the cell volume V . The equations

now take the form

βun+1 = βu⋆ −∆tGp−∆tV −1µĜT
µĜµu

n+1 +∆tf .

Here, u represents a vector of velocity degrees of freedom, β = V ρ is a diagonal

matrix whose entries are the lumped fluid masses at faces, G = V∇ is the discretized,

volume-weighted pressure gradient, Ĝµ = V∇ is the discretized, volume-weighted

velocity gradient, p the vector of pressures, and f is the vector of additional implicit

forces V ~fρ2. Finally, dividing by β and letting Gµ =
√

∆tV −1µĜµ and p̂ = ∆tp for

notational convenience,

un+1 = u⋆ − β−1Gp̂− β−1GT
µGµu

n+1 +∆tβ−1f . (6.5)

The corresponding incompressibility constraint is

−GTun+1 = 0. (6.6)
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6.2.2 Structure Equations

Although an Eulerian framework is used for evolution, occasional references will be

made of the evolution equations for structures as well. We use a traditional La-

grangian approach for structures, where we solve the equations ẋ = v and Mv̇ = f̂ .

Here, the quantities x and v are the vectors containing the position and velocity

degrees of freedom for all of the Lagrangian particles, and M is the mass matrix.

It suffices for our purposes to consider elastic forces, where the force f̂ is defined in

terms of a potential energy as f̂ = −∂φ
∂x
, where φ is a potential energy function that

is a function of only the positions x.

One particularly simple and stable way of evolving these equations is via backward

Euler. In this case, one solves

xn+1=xn +∆tvn+1

vn+1=vn +∆tM−1f̂n+1

taking the first order approximation f̂n+1 = f̂n + ∂ f̂n

∂x
(xn+1 − xn) + ∂ f̂n

∂v
(vn+1 − vn) =

f̂n +∆t∂ f̂
n

∂x
vn+1 = f̂e +Dvn+1, since f̂n+1 does not have explicit velocity dependence.

fe and Dvn+1 represent the explicit and implicit portions of the force, respectively.

The backward Euler update now takes the form

xn+1=xn +∆tvn+1

vn+1=vn +∆tM−1(f̂e +Dvn+1) (6.7)

D = ∆t∂ f̂
n

∂x
= − ∂2φ

∂x∂x
is symmetric since it is a second derivative. In practice, D will

often be negative definite. This is the case for the surface tension force considered in

this paper. Note that D contains the factor ∆t, so that the damping forces due to

the implicit force treatment vanish under temporal refinement.
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6.2.3 Framework for Forces Discretized on a Lagrangian Mesh

Consider a single particle whose motion is computed from the velocities stored on an

Eulerian grid. This particle does not have any real degrees of freedom, and it does

not have mass. In general, these particles may be on the surface of a fluid region or

in the interior. The Lagrangian velocities v, a vector containing the velocities for all

Lagrangian particles, are defined in terms of the vector of all Eulerian velocities u by

the relation

v = Hu, (6.8)

where H is some linear operator that interpolates Eulerian velocities to Lagrangian

velocities.

The force f in (6.5) is discretized over the Eulerian degrees of freedom. We would

like to instead add a force f̂ which is discretized over the new Lagrangian degrees of

freedom. Let P be the power (work per unit time) performed by applying a force f to

fluid moving with velocity u. That is, P = fTu. In this case, we computed the power

using the Eulerian degrees of freedom. Computing it instead from the Lagrangian

degrees of freedom produces P = f̂Tv = f̂THu = fTu. Since v and f could have been

arbitrary, it follows that

f = HT f̂ .

Two variables whose inner product produces the work (or a related quantity like

power) are said to be work conjugates. The above derivation can be considered an

application of the principle of virtual work, a powerful tool that is describe in more

detail in [22]. The operator HT is a conservative force distribution operator. In

general, whenever H is an interpolation operator from one set of degrees of freedom

to another, the operator HT can be used to distribute forces from the second set of

degrees of freedom to the first.

Since the motion of the Lagrangian degrees of freedom is dictated by fluid motion,

one could compute an effective mass for the Lagrangian particles. Observe that the

velocity change of Eulerian degrees of freedom ∆u due to the Lagrangian force is
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∆u = ∆tβ−1f = ∆tβ−1HT f̂ . The velocity change of Lagrangian degrees of freedom

∆v due to the Lagrangian force is ∆v = H∆u = ∆tHβ−1HT f̂ = ∆tM−1f̂ , so that

M−1 = Hβ−1HT is the effective mass of the Lagrangian degrees of freedom.

In constitutive mechanics, Lagrangian forces for constitutive models have elastic and

damping components. These components are typically assumed to take the form

f̂ = f̂e + Dv [22]. Here, f̂e is the explicit force, and D is the symmetric negative

semidefinite damping matrix. The implicit portion of the Navier Stokes equations

now takes on the form

un+1 = u⋆ − β−1Gp̂− β−1GT
µGµu

n+1 +∆tβ−1HT f̂e +∆tβ−1HTDHun+1. (6.9)

Observe that the implicit component of the additional force has the same form as the

viscosity term. The explicit portion of the surface tension force goes in ~fρ1, and the

implicit part goes in ~fρ2. (6.3) and (6.4) can be written (in fully discretized form) as

u⋆=un −∆tA(u) + ∆tβ−1HT f̂e (6.10)

un+1=u⋆ − β−1Gp̂− β−1GT
µGµu

n+1 +∆tβ−1HTDHun+1, (6.11)

where A(u) is the discretized advective term. We have effectively constructed a

methodology for formulating arbitrary forces on a set of Lagrangian degrees of freedom

in a way that results in a purely Eulerian problem and such that the linearized force

terms take on the same form as the viscosity term. The framework of [124] allows

one to construct a symmetric and positive definite system where viscosity is applied

implicitly and coupled to the pressure projection. Since we have expressed the implicit

portion of the Lagrangian forces in the same form, we can implicitly compute the

pressure, viscosity, and Lagrangian forces in a way that is fully coupled and produces

a symmetric and positive definite system. We assemble this system in Section 6.2.6.

This combination is particularly appealing in the case of surface tension. Both surface

tension forces and pressure forces are stiff, and they are frequently in a delicate

balance. This point is exemplified by the classical and important situation of a
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stationary circle, which is considered in Section 6.4.2. If surface tension is treated

explicitly or in an implicit step separate from pressure, the surface tension force and

the pressure force will be only weak coupling. The proposed method, by contrast,

produces strong coupling between surface tension and pressure.

6.2.4 Fluid-Structure Interaction Equations

The derivation in Section 6.2.3 for applying forces on a Lagrangian mesh to an Eule-

rian simulation can also be obtained directly by considering the case of fluid-structure

interaction where the Lagrangian forces are applied to a Lagrangian structure which

is in turn coupled to an Eulerian fluid. The equations for fluid-structure interaction

are constructed from the equations of fluid dynamics and structure mechanics by the

addition of a contact constraint, which is enforced through a momentum exchange.

The contact constraint ensures that the relative velocity between fluid and structure

is zero at a set of constraint locations. In Chapter 5 (see also [124]) these constraint

locations were placed at fluid faces near the fluid-structure interface. The contact

constraint can be written Jvn+1 = Wun+1, where J is the matrix that interpolates

structure velocities to constraint locations and W is the matrix that interpolates fluid

velocities to constraint locations. Note that this convention differs slightly from that

in Chapter 5, where J is replaced by WJ. The constraint is enforced by exchanging

impulses λ between the structure and the fluid at the constraint locations. As noted

in Section 6.2.3, since fluid velocities are interpolated to the constraint locations with

W, the impulses λ should be applied back to the fluid using WT . This produces the

modified fluid equation,

βun+1 = βu⋆ −Gp̂+WTλ,

where for simplicity the viscosity term is ignored. An equal and opposite impulse is

applied to the structure similarly using JT . The modified structure equation is

Mvn+1 = Mv⋆ +∆tf̂e +∆tDvn+1 − JTλ.
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Finally the fluid-structure interaction equations are

βun+1=βu⋆ −Gp̂+WTλ (6.12)

Mvn+1=Mv⋆ +∆tf̂ +∆tDvn+1 − JTλ (6.13)

GTun+1=0 (6.14)

Jvn+1=Wun+1 (6.15)

For more details see Chapter 5.

6.2.5 Derivation from Fluid Structure Interaction

Consider the FSI coupling equations in Section 6.2.4, if J was an invertible matrix, it

would be possible to eliminate vn+1 from (6.13) by solving (6.15). Normally, however,

J will not be an invertible matrix. In this case, it is still possible to express vn+1

as the sum of two vectors, one (JTψ) in the range of JT and one (v̂) orthogonal

to it. There will in general be many suitable choices for ψ, since ψ could contain

components in the nullspace of JT . The vector ψ is selected to be the unique solution

with minimum norm. The quantity ψ is defined at the constraint degrees of freedom.

With this, vn+1 can be written as

vn+1 = JTψ + v̂ Jv̂ = 0. (6.16)

The vector ψ can now be eliminated. Substituting (6.16) into (6.15) produces JJTψ+

Jv̂ = Wun+1, which simplifies to

JJTψ = Wun+1 (6.17)

using (6.16). The minimum norm solution to (6.17) is obtained by taking the pseu-

doinverse, denoted by ·+.
ψ = (JJT )+Wun+1 (6.18)
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Substituting (6.18) into (6.16) produces

vn+1 = JT (JJT )+Wun+1 + v̂ = Hun+1 + v̂, (6.19)

where the definition

H = JT (JJT )+W (6.20)

has been used. The operator H maps fluid velocities to solid velocities and behaves as

an interpolation operator. The operator W interpolates fluid velocities to constraint

degrees of freedom, and J interpolates solid velocities to constraint degrees of freedom.

The operator JT (JJT )+ is almost the inverse of the interpolation operator J. Indeed,

(JJT )(JJT )+ is as nearly an identity matrix as is possible.

Next, we decompose λ using a similar orthogonal decomposition

λ = Jξ + λ̂ JT λ̂ = 0, (6.21)

where this time ξ is located at Lagrangian velocity degrees of freedom. As before,

ξ is taken to be of minimum norm, so that it is uniquely determined. Next, ξ is

eliminated. Substituting (6.21) into (6.13) produces

JTJξ + JT λ̂ = (∆tf̂ +Mv⋆) + (∆tD−M)vn+1,

which can be further simplified and solved using the pseudoinverse to produce

ξ = (JTJ)+((∆tf̂ +Mv⋆) + (∆tD−M)vn+1). (6.22)

Substituting (6.22) into (6.21) produces

λ = J(JTJ)+((∆tf̂ +Mv⋆) + (∆tD−M)vn+1) + λ̂.

Applying the identity J(JTJ)+ = (JJT )+J produces

λ = (JJT )+J((∆tf̂ +Mv⋆) + (∆tD−M)vn+1) + λ̂. (6.23)
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Substituting (6.23) into WTλ and simplifying with (6.20) produces

WTλ = HT ((∆tf̂ +Mv⋆) + (∆tD−M)vn+1) +WT λ̂. (6.24)

Finally, substitute (6.24) into (6.12),

βun+1 = βu⋆ −Gp̂+HT ((∆tf̂ +Mv⋆) + (∆tD−M)vn+1) +WT λ̂.

Rearranging and converting from Lagrangian degrees of freedom to the Eulerian de-

grees of freedom using (6.19) produces

βun+1 = βu⋆−Gp̂+HT (∆tD−M)Hun+1+HT (∆tf̂+Mv⋆)+HT (∆tD−M)v̂+WT λ̂.

The quantities v̂ and λ̂ are problematic, and it is desirable to choose a discretization

so that they vanish. One way of doing this is to introduce one (independent) coupling

constraint per solid degree of freedom. Then J is an invertible matrix, and v̂ and λ̂

vanish. This produces the lumped mass formulation

βun+1 = βu⋆ −Gp̂+HT (∆tD−M)Hun+1 +HT (∆tf̂ +Mv⋆)

This can be placed into a particularly appealing form using the simplifying assumption

v⋆ = Hu⋆ and the lumped mass β̂ = β +HTMH

β̂un+1 = βu⋆ +HTMv⋆ −Gp̂+HT∆tf̂ +∆tHTDHun+1 (6.25)

In the limit of a massless structure, M = 0, and β̂ = β, so that what remains is the

massless formulation

βun+1 = βu⋆ −Gp̂+∆tHT f̂ +∆tHTDHun+1. (6.26)

This equation depends only on the ability to eliminate the velocity degrees of freedom

using the contact constraints.
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In summary, we have shown that if one there is one constraint per Lagrangian degree

of freedom, so that J is invertible, then the FSI problem in (6.12) through (6.15)

can be entirely written in terms of the Eulerian degrees of freedom on the Eulerian

mesh with the momentum in v⋆ transfered to fluid with HT . What remains is an

Eulerian problem to solve. (6.15) is unchanged, but the other three FSI equations

are replaced with (6.25). In the event that the Lagrangian mesh is massless, as we

propose, then we are left with (6.15) and (6.26). This provides legitimacy to the the

last two terms in (6.9). We can now revert back to (6.6), (6.10), and (6.11), which

also include viscosity, advection, and other forces.

6.2.6 SPD Linear System

A symmetric positive definite (SPD) system is formed from (6.11) and (6.6) following

the approach of Chapter 5, which we utilize in a somewhat more concise way. If D is

symmetric negative semidefinite, there will exist a matrix C such that CTC = −∆tD.

un+1 = u⋆ − β−1Gp̂− β−1GT
µGµu

n+1 − β−1HTCTCHun+1. (6.27)

Rewriting this using block matrices produces

un+1 = u⋆ − β−1









GT

Gµ

CH









T 







p̂

Gµu
n+1

CHun+1









. (6.28)

(6.28) can be written more concisely as

un+1 = u⋆ − β−1KTz, (6.29)

where

K =









GT

Gµ

CH









z =









p̂

Gµu
n+1

CHun+1









. (6.30)
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Left multiplying (6.29) by K and rearranging produces

Kun+1 +Kβ−1KTz = Ku⋆. (6.31)

This can be simplified by using (6.6) and noting that

Kun+1 =









GT

Gµ

CH









un+1 =









0

Gµu
n+1

CHun+1









=









0 0 0

0 I 0

0 0 I

















p̂

Gµu
n+1

CHun+1









= Pz, (6.32)

where

P =









0 0 0

0 I 0

0 0 I









and I is the identity matrix. Substituting (6.32) into (6.31) produces the final SPD

system

(P+Kβ−1KT )z = Ku⋆. (6.33)

This system is symmetric positive semidefinite since it is the sum of two symmetric

positive semidefinite matrices. Note that to make this system SPD, the unknowns

must be changed, and this requires that the damping forces factor. The viscosity

factors in a straightforward way. For many force models, including the surface tension

model proposed in this paper, the matrix D factors in a straightforward way as well.

Solving this system produces z, and the desired result un+1 can be obtained by

substituting into (6.29).

It is possible to characterize the nullspace of this system. To do this, assume (P +

Kβ−1KT )z = 0. Semidefiniteness of each part implies Pz = 0 and Kβ−1KTz = 0.

Since β−1 is nonsingular, it must be that KTz = 0. The requirement Pz = 0 leads

to

z =









p̂

0

0









.
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The second requirement implies that Gp̂ = 0, which may occur when all Neumann

boundary conditions are imposed. That is, our new system will have a nullspace

under the same circumstances as a one-phase incompressible simulation. Note that if

z is a nullspace vector, then zTKu⋆ = 0, so that (6.33) remains consistent even when

the system is singular. That is, the right hand side is in the range of the system, so

no projection of the right hand side is required.

6.2.7 Comments on Extensions to Hybrid Solids

The framework of [138] provides a means of applying forces at locations other than

the locations of the actual degrees of freedom. It does this by introducing a notion

of a hard bound particle, which is a particle whose position and velocity are defined

implicitly as a linear combination of the actual degrees of freedom. This makes it

possible, for example, to embed a detailed mesh for resolving collisions inside a coarser

and better-conditioned simulation mesh. If H is the operator that interpolates from

velocity degrees of freedom to the hard bound velocities then the force felt at velocity

degrees of freedom due to forces on the hard bound particles is HT f̂+HTDHv, where

v are their Lagrangian velocity degrees of freedom. In each case, the force is applied

by interpolating velocities from real degrees of freedom to extra degrees of freedom

using H, computing the force over the extra degrees of freedom, and then distributing

forces back to the real degrees of freedom using H. What is different in this case is

that our real degrees of freedom are Eulerian rather than Lagrangian.

There is nothing special about defining Lagrangian degrees of freedom in terms of

other degrees of freedom. Indeed, one could also define Eulerian velocity degrees of

freedom in terms of other Eulerian degrees of freedom or in terms of Lagrangian de-

grees of freedom. One of the applications proposed in [138] for the purely Lagrangian

form is to stitch together meshes with T-junctions. In the context of a purely Eulerian

simulation, one could use it, for example, to simplify the discretization of adaptive

methods. Thus, for an octree discretization, each refinement level could be discretized
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independently. Then, where different levels meet, the coarse face velocities can be de-

fined implicitly in terms of the fine velocity degrees of freedom. The interpolation in

this case can simply be chosen so that the flux measured by the coarse or fine degrees

of freedom agree. This effectively decouples the problem of operator discretization

from that of managing degrees of freedom. Symmetry and definiteness are obtained

very easily.

Similarly, one might consider defining Eulerian degrees of freedom implicitly in terms

of Lagrangian degrees of freedom. One might, for example, treat the particles of

a fluid implicit particle (FLIP) scheme as being the real degrees of freedom, with

the Eulerian velocities required by the pressure projection step defined implicitly in

terms of the particle degrees of freedom. In this way, the composition of the fluid

interpolation operator and the divergence operator effectively defines a discretization

of a Lagrangian divergence operator over the particle degrees of freedom.

6.3 Spatial Discretization

Up to this point, we have been working in discrete form but have only described

the temporal discretization. In this section, we address our spatial discretization.

Evolving the proposed scheme requires the discretization of β, G, H, C, and Ĝµ.

We consider both one-phase and two-phase discretizations. Because the extension to

two-phase is straightforward, the one-phase case is considered, and differences in the

two-phase case are discussed as appropriate. In the one-phase case, the fluid region

is bounded by a free surface with a constant exterior Dirichlet pressure boundary

condition and a stress-free Neumann velocity boundary condition.

In the two-phase case, the velocity field is assumed to be continuous across the inter-

face. This simplifies advection and the discretization of Ĝµ, neither of which are the

focus of this paper. This assumption is not a limitation of the proposed technique,

as the discretization of G very naturally handles a discontinuous velocity field, and

the remaining operators do not depend on the velocity discretization.



6.3. SPATIAL DISCRETIZATION 129

Neither advection nor viscosity play an important role in the proposed algorithm, so

their discretizations are not particularly important. Our advective term is discretized

using 3rd order Hamilton Jacobi ENO [69, 135, 136]. For viscosity in the one-phase

case, a standard central differencing discretization of Ĝµ is applied with a simple

first order treatment of the Neumann boundary condition at the interface. In the

two-phase case, the velocity field is continuous and standard central differencing is

used throughout. The operators that remain to be discretized are β (Section 6.3.4),

G (Section 6.3.4), H (Section 6.3.5), and C (Section 6.3.2).

6.3.1 Lagrangian Degrees of Freedom

In this paper a Lagrangian discretization is used for the purpose of computing surface

tension, and therefore require a discretization of the surface. The details of the surface

mesh are not very important, though for simplicity in discretization both the fluid

grid and surface mesh are assumed to be fine enough to resolve the interface. Two

different approaches to maintaining this surface discretization are considered, each

suited to a different underlying interface representation. There many other possible

approaches for representing the interface, including volume of fluid [26], interface

functions [137], or meshless Lagrangian approaches such as moving least squares [58].

An alternative to classical front tracking is to instead track the entire fluid domain

with a mesh, which leads naturally to ALE or fully Lagrangian approaches, as was

done for example in [110].

Front Tracking

The first approach we consider is to use a front tracking surface mesh [156]. The

positions of the interface particles are evolved using xn+1 = xn + ∆tvn+1, where

vn+1 = Hun+1. In this case, the time evolution of the interface closely resembles

backward Euler. If advection and forces on the Eulerian degrees of freedom are
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ignored, the fluid update looks like

un+1 = un +∆tβ−1HT f̂e +∆tβ−1HTDHun+1.

Multiplying by H produces

Hun+1 = Hun +∆tHβ−1HT f̂e +∆tHβ−1HTDHun+1.

Let M−1 = Hβ−1HT be the effective mass (inverse) of the structure. Making the

approximation vn = Hun (this is not strictly true since H changes each time step as

the structure moves through the Eulerian grid) produces

vn+1 = vn +∆tM−1(f̂e +Dvn+1) = vn +∆tM−1f̂n+1.

This, along with xn+1 = xn + ∆tvn+1, is a backward Euler update for a structure

which has surface tension forces and an effective mass.

A level set is rebuilt from the front-tracked surface mesh after each time step to

simplify the discretization of other operators. Since only inside-outside tests will

be required of the level set in this case, the signed distance is computed from the

surface mesh exactly for the band |φ| < ∆x to ensure consistency between the two

representations. The remainder of the level set is computed using fast marching

[157, 158, 131, 70, 132, 36].

In order to maintain a valid and good quality surface mesh, remeshing is performed

whenever necessary. The remeshing is triggered when any segment has length larger

than 1.5∆x or smaller than 0.5∆x, where ∆x is the size of an Eulerian grid cell. Then

a long segment will be split into two segments by adding a new point through a third

order stencil, − 1
16
xk−1 +

9
16
xk +

9
16
xk+1 − 1

16
xk+2. Short segments will be merged into

adjacent segments by deleting surface points until the resulting length is larger than

the lower bound.
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Level Set Tracked

The second approach considered for maintaining the surface mesh is to compute

it from a level set representation of the interface at each time step. In this case,

the particle level set method [47] is used to evolve the level set. The method used

to compute the surface mesh from the level set is similar to marching cubes [100]

but with careful attention paid to accuracy and surface mesh quality. Variations

for computing surface meshes whose nodes are third and fourth order accurate are

described. Since the surface mesh will be used to compute curvature, which is a

second derivative, third order accuracy is required to obtain a first order accurate

curvature. We use the fourth order discretization in all of our examples, but we

demonstrate the accuracy of both variations in Section 6.4.1.

It is convenient to perform marching cubes such that the squares coincide with the

fluid grid cells, since this will produce a mesh that is very convenient for the dis-

cretization of G. Unfortunately, the fluid level set lives at cell centers and must be

averaged to nodes. We use the standard fourth order stencil in Figure 6.1(a),

φj+ 1
2
,k+ 1

2
=− 1

32
(φj−1,k + φj+2,k + φj−1,k+1 + φj+2,k+1)

− 1

32
(φj,k−1 + φj+1,k−1 + φj,k+2 + φj+1,k+2)

+
5

16
(φj,k + φj+1,k + φj,k+1 + φj+1,k+1).

These node-centered level set values are used to determine the location of level set

crossings and also as part of the computation of the location of those crossings.

The location of the level set crossing could be computed by constructing an interpolat-

ing polynomial from the node-centered level set. This results in an unnecessarily large

stencil, which we would like to avoid. Instead one can interpolate the cell-centered

level set to grid faces using the stencil in Figure 6.1(b)

φj+ 1
2
,k = − 1

16
(φj−1,k + φj+2,k) +

9

16
(φj,k + φj+1,k).



132 CHAPTER 6. IMPLICIT SURFACE TENSION

5
16

5
16

5
16

5
16

− 1
32

− 1
32

− 1
32

− 1
32

− 1
32

− 1
32

− 1
32

− 1
32

(a) Node stencil

− 1
16

9
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(b) Face sten-
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(c) Third order stencil (d) Fourth order stencil

Figure 6.1: Level set samples are located at cell centers. These stencils are used to
interpolate the level set to nodes (indicated with circles) and faces (indicated with
squares) with the weights shown in the first two diagrams. The other two diagrams
show stencils suitable for computing the location of a level set crossing along a face.
The signs at the circled nodes are used to determine whether a crossing exists. The
level set values averaged to the circled and squared locations are used to construct
an interpolating polynomial. The level set crossing is taken to be the zero of this
polynomial. The dashed lines and dashed circles indicate the cells used to compute
each interpolated value.

to provide additional samples for computing an interpolation polynomial.

We provide an interpolating polynomial for third order and fourth order. The third

order accurate crossing is obtained from the quadratic formed by interpolating the

three points shown in Figure 6.1(c)

(

0, φj+ 1
2
,k− 1

2

)
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2
, φj+ 1

2
,k

)

(

1, φj+ 1
2
,k+ 1

2

)

.

The third order crossing is obtained by locating a root θ of the interpolating poly-

nomial in the interval [0, 1]. The crossing occurs at the position (1 − θ)xj+ 1

2
,k− 1

2
+

θxj+ 1
2
,k+ 1

2
. The fourth order accurate crossing is a obtained from the cubic formed

by interpolating the four points shown in Figure 6.1(d)
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.
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The location of the crossing is similarly obtained by locating a root of the interpolating

polynomial.

Although two node-centered and three face-centered level set values are available, they

cannot be used to construct a fifth order accurate estimate of the level set crossing

since the interpolation of the cell-centered level set to nodes and faces is only fourth

order accurate. There are more face-centered, interpolated level set values available

than are needed, so the stencils are chosen to be symmetric for simplicity and to avoid

possible biasing. Note that using the two averaged node values in constructing the

interpolating polynomial guarantees that a polynomial root will be found whenever

the sign tests indicate that a face is crossed by the interface. A bracketed secant

method was used to compute the interpolating polynomial roots.

The resulting mesh is not quite suitable for use with our curvature discretization. The

surface may contain sliver elements, which the curvature discretization is sensitive

to, a point which is discussed in more detail in Section 6.3.2. This is handled by

eliminating surface elements whose length is less than 0.1∆x. Such elements are

merged with a neighboring element by removing an endpoint.

6.3.2 Lagrangian Surface Tension

Let xk−1, xk, and xk+1 be three consecutive vertices on the Lagrangian surface mesh.

These points conceptually lie on a smooth curve γ(s), where s is taken to be the arc

length parameter for simplicity. The curvature of this curve is then given by γ ′′ = κn.

Let ℓk− 1
2
= ‖xk − xk−1‖ and ℓk+ 1

2
= ‖xk+1 − xk‖ be the lengths of the edges adjacent

to xk. It will also be convenient to associate some portion of the surface with each of

the vertices on the Lagrangian surface mesh. We adopt the convention that a length

ℓk =
ℓ
k− 1

2
+ℓ

k+1
2

2
of the surface mesh is associated with point xk. With these definitions,

the curvature can be discretized using

(κ̂n)k = (γ ′′)k =

xk+1−xk

ℓ
k+1

2

− xk−xk−1

ℓ
k− 1

2

ℓk
. (6.34)
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This quantity is also known as the surface Laplacian. Since surface tension results in

a pressure jump [p] = σκ across the interface, the force due to surface tension will be

the pressure times the surface area, or

f̂k = σℓk(κ̂n)k = σ

(

xk+1 − xk

ℓk+ 1
2

− xk − xk−1

ℓk− 1
2

)

. (6.35)

Let f̂ = Dx, where f̂ and x are the vectors of forces and positions and D is the matrix

given by

Dk,k = −σ
(

ℓ−1
k+ 1

2

+ ℓ−1
k+ 1

2

)

I Dk,k+1 = Dk+1,k = σℓ−1
k+ 1

2

I

withDi,j = 0 otherwise. Note thatD depends on x through edge lengths. The matrix

D is a symmetric, and one can see that D is in fact negative semidefinite by noting

that it can be written as the sum of force contributions from individual segments,

(

f̂k

f̂k+1

)

= −σℓ−1
k+ 1

2

(

I −I

−I I

)(

xk

xk+1

)

.

These matrices are symmetric negative semidefinite, so their sum D must also be.

This per-element form of the force is particularly convenient. In the remainder of this

section, we focus on a single surface segment and drop indices where no confusion

will result. Let φ be the potential energy due to surface tension for the element.

Recalling that ℓ = ‖xk+1−xk‖, one may define a tangential direction for the element

t = ℓ−1(xk+1 − xk). The forces due to this segment are related to the potential by

f̂k = − ∂φ
∂xk

and f̂k+1 = − ∂φ
∂xk

. Finally, the potential energy and forces can be written

and computed very concisely as

φ = σℓ f̂k+1 = −f̂k = −σt (6.36)

That is, the potential energy due to surface tension is just a constant times the

surface area. As one would expect, this potential energy is bounded from below. It

is interesting to note that the 2D surface tension force has a form very similar to

that of a zero-rest-length spring, whose potential energy is proportional to its length
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squared. The force derivatives are given by

∂f̂k
∂xk

=
∂f̂k+1

∂xk+1

= −∂f̂k+1

∂xk

= − ∂f̂k
∂xk+1

= −σ
ℓ
(I− ttT ) = −σ

ℓ
nnT ,

where n is the normal vector defined to be orthogonal to t. This resulting system

is symmetric and negative definite. The force derivatives project out and tangential

velocity component before computing damping, and the resulting force acts only in the

normal direction. Interestingly, a frozen-coefficient treatment of edge lengths treats

D as constant. This leads to D as an approximation to the force derivatives, which

will damp motion in the tangential direction and apply forces with both normal and

tangential components. Though not the correct force derivatives, this extra damping

may actually be desirable in practice. Our scheme for handling surface tension uses

pressures (see Section 6.3.5 for more details on why this is so) and thus effectively

discards tangential velocity. This prevents the Lagrangian surface from experiencing

tangential velocity, so tangential damping is unnecessary. As such, the correct force

derivatives are used in our discretization.

To summarize, a fully implicit treatment and a fully explicit treatment would both

compute f̂e from (6.10) as

(f̂e)k = σtk+ 1
2
− σtk− 1

2
ℓk+ 1

2
= ‖xk+1 − xk‖ tk+ 1

2
=

xk+1 − xk

ℓk+ 1
2

.

A fully implicit treatment would compute D from (6.11) as

Dk,k = −∆tσ

ℓk− 1
2

nk− 1
2
nT
k− 1

2

− ∆tσ

ℓk+ 1
2

nk+ 1
2
nT
k+ 1

2

Dk,k+1 = Dk+1,k =
∆tσ

ℓk+ 1
2

nk+ 1
2
nT
k+ 1

2

where

nk+ 1
2
=

(

0 1

−1 0

)

tk+ 1
2
.
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A fully implicit treatment would compute C from Section 6.2.6 as

Ck,k = −Ck,k+1 = ∆t

√

σ

ℓk+ 1
2

nT
k+ 1

2

A fully explicit treatment would compute D = 0 and C = 0, making it less stable.

Discretization Accuracy

Consider again the three points on the smooth curve γ(s), where s is taken to be the

arc length parameter. Then, ‖γ ′‖ = 1 and κ = |γ ′′|. Assume that xk−1 = γ(−δ),
xk = γ(0), and xk+1 = γ(βδ). Here, β is fixed and the refinement δ → 0 is considered.

This corresponds roughly to choosing edge lengths which differ by a factor of β. The

first few terms of the Taylor series expansion of the discretization in (6.34) are

(κ̂n)k ≈ κn+
β − 1

12
(4κ̇n+ 3κ2t)δ +

β2 − β + 1

12
(2κ̇κt− κ̈n)δ2

+
β − 1

576

(

3(β − 1)2κ4 + 8(β2 + 1)(3κκ̈+ 2κ̇2)
)

tδ3

− β − 1

360

(

(4β2 − 5β + 4)κ̇κ+ 6(β2 + 1)
...
κ
)

nδ3,

where that n and t are the normal and tangential directions. There are a few useful

observations to make from this Taylor series. The discretization is first order accurate.

When β = 1, so that the surface mesh is uniformly spaced, the first and third order

terms vanish, and the discretization is second order accurate. In particular, the error

coefficient will be reduced if the discretization is approximately uniform.

The special case of a circle is quite interesting. In that case, κ is constant, so that

κ̇ = κ̈ =
...
κ = 0. The series simplifies significantly to

(κ̂n)k ≈ κn+
β − 1

4
κ2δt+

(β − 1)3

192
κ4δ3t.

If the discretization is uniform, these error terms vanish. What is more, the errors
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are purely in the tangential direction. Since our discretization of H does not transmit

(discretized) tangential impulses, the resulting tangential force errors do not feed

significantly into the rest of the simulation. This additional accuracy in the case of

a circle is observed numerically, and our curvature estimates for a circle correct to

roundoff error for a completely uniform discretization whose vertices lie exactly on

the circle.

Next the sensitivity of the proposed discretization to errors in particle locations is

considered. Errors made along the surface mesh correspond approximately to choos-

ing a different β. Since no attempt is made to keep β = 1, such errors are not a

significant problem. This leaves only the sensitivity of the curvature computation to

errors in the normal direction. Consider that three points are chosen on a circle, but

the middle point is displaced slightly in the normal direction. That is

xk−1 =

(

r cos θ

−r sin θ

)

xk =

(

r(1 + ǫ)

0

)

xk+1 =

(

r cosφ

r sinφ

)

.

As before, it is assume that φ = βθ, where β is held fixed and θ and ǫ are both very

small. Then

(κ̂n)k ≈
(

1

r
+

ǫ

βr

(

2

θ2
+
β2 − 12β + 1

12
+

(7β4 + 10β2 + 7)θ2

2880

))

n

+
(1− β)(1− ǫ)θ

192r

(

48 + (1− β)2θ2
)

t

Of particular importance is the term 2ǫ
βrθ2

. Convergence is only possible if this term

vanishes under refinement. Since the surface is a circle of radius r, the angle θ is

related to the Eulerian grid spacing ∆x by rθ ≈ ∆x. Then, the error term takes the

form 2ǫr
β∆x2

. Since we require the error to be of order O(∆x) or better for convergence,

it is necessary for ǫ = O(β∆x3). This is the level of sensitivity to ∆x that one would

expect from a second derivative. The tolerable error is also sensitive to the irregularity

β of the discretization, and very small elements will result in poor accuracy. For this

reason, it is important to avoid sliver elements in our boundary mesh.
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Our discretization of curvature can be obtained from the potential energy in (6.36).

The Taylor series expansion of the potential energy discretization along the portion

of the curve between γ(0) and γ(s) is

φ ≈ σs− 1

24
σκ2s3 − 1

24
σκκ̇s4.

Since γ(s) is assumed to be parameterized in terms of its arc length, the exact length

of this portion of the curve is s. Thus, the estimate of surface area is second order

accurate, which leads to a first order curvature force. This suggests that if a more

accurate curvature force computation is desired, a third or higher order approximation

of the surface area should be sought.

6.3.3 Eulerian Degrees of Freedom

We require additional accuracy at the fluid surface to obtain accurate surface tension.

There are a vast array of existing discretization schemes designed for irregular Dirich-

let boundary conditions that are able to achieve higher accuracy. For example, [98]

utilized a discontinuous-Galerkin scheme near the boundary to increase the available

degrees of freedom, avoid locking, and achieve second order convergence. Similarly,

there are second order discretizations available on regular grids, such as the finite

differencing dsicretization of [57]. To meet the needs of our Lagrangian-Eulerian cou-

pling, we have opted to use a first order Dirichlet variant of the second order finite

volume Neumann discretization [107].

Our Eulerian discretization is based on a standard MAC grid discretization, but it is

altered slightly near the interface. We refer to any cell through which the interface

passes as a cut cell, and we refer to any face through which the interface passes as a

cut face. We refer to cells/faces entirely inside/outside the fluid as interior/exterior

cells/faces. In addition to this, additional fluid degrees of freedom are defined that

lie approximately on the interface, and we will refer to these as coupling faces. These

degrees of freedom are illustrated in Figure 6.2.
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Figure 6.2: Two cells cut by a Lagrangian surface mesh. A face is constructed in each
cut cell (shown as a dashed line) connecting the point where the surface mesh enters
the cell and the point where it leaves. These two faces are referred to as coupling
faces and have lengths ℓ5 and ℓ6. There are three cut faces with lengths ℓ2, ℓ3, and ℓ4.
Finally, there is one interior face with length ℓ1 = ∆x. Each cut cell has a pressure,
which in this case are labeled pa and pb. In the one-phase case, there are Dirichlet
pressure boundary conditions paira and pairb outside the coupling faces. In the two-
phase case, there are additional pressure degrees of freedom in the outside portion
of each cut cell instead, labelled pc and pd, and there are additionally three exterior
faces with lengths ℓ′7 = ℓ′8 = ℓ′9 = ∆x.

One Phase In the one-phase case, each interior cell and each cut cell contains a

pressure degree of freedom, and each interior face (Figure 6.2, ℓ1), cut face (Figure 6.2,

ℓ2, ℓ3, and ℓ4), and coupling face (Figure 6.2, ℓ5 and ℓ6) contains one velocity degree

of freedom. In the case of coupling faces, the velocity degree of freedom is taken to

be directed in the outward normal direction. Outside the coupling faces, there is a

Dirichlet pressure.

Two Phase In the two-phase case, each cut cell contains an inside pressure and

an outside pressure. All other cells contain one pressure degree of freedom. Every

grid face and every coupling face contains one velocity degree of freedom. Note that

one may allow the velocity field to support a discontinuity in tangential velocity by

simply providing each cut face with an inside velocity and an outside velocity in

much the same way as is done for pressure. Since surface tension will be applied to

the coupling faces, there will be a pressure jump across this face. Thus, one cannot

assume a continuous pressure field, and cut cells must contain separate inside and
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outside pressures. As in the one-phase case, the velocity degree of freedom for a

coupling face is taken to be directed in the outward normal direction.

6.3.4 Gradient and Fluid Mass

The volume weighted gradient G and the fluid mass β are required for our discretiza-

tion. First consider the two-phase case. The mass for a interior or exterior faces

is just ρV , where V is the cell volume and ρ is the density at that face. For a cut

face with inside length and density ℓ and ρ and outside length and density ℓ′ and ρ′

the mass is β = (ρℓ + ρ′ℓ′)∆x. For a coupling face with length ℓ, the mass will be

β = 1
2
ℓ∆x(ρ + ρ′). The one-phase case is obtained by letting the exterior be mass-

less, so that ρ′ = 0. Intuitively, each face has a dual cell associated with it. Some

portion of that dual cell may be in the inside region, and some portion may be in the

outside region. The masses above correspond to dividing the dual cell up into inside

and outside portions, simplifying things by making all the pieces rectangular. This

discretization of mass is only first order accurate, since it double-counts mass on the

boundary and treats the boundary as linear rather than computing the mass based

on the curvature. A higher order discretization of mass will require a more detailed

and careful treatment.

The weights on the volume-weighted gradient stencil are just the lengths of the faces.

The stencil entry Gfc is positive if the velocity uf represents flow into cell c and

negative otherwise. One can think of this as corresponding to a constant pressure

in each (possibly cut) cell. Alternatively, one can think of this instead in terms of

the divergence operator, where the faces are now used to compute the flux into the

(possibly cut) cell.

As an example in the one-phase case, consider the discretization in Figure 6.2(a),

where faces and cells are labeled with the index of the length or pressure at that

location in the figure. Then, β55 = 1
2
ℓ5ρ5∆x, β66 = 1

2
ℓ6ρ6∆x, and βkk = ℓkρk∆x

for 1 ≤ k ≤ 4. The volume-weighted gradient stencil entries are G1a = ℓ1 = ∆x,
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G3a = ℓ3, G4a = −ℓ4, G5a = −ℓ5, G2b = ℓ2, G4b = ℓ4, and G6b = −ℓ6.

As a two-phase example, consider the discretization in Figure 6.2(b). Here, primes

indicate quantities corresponding to the outside phase and subscripts indicate velocity

or pressure degrees of freedom. Then, β55 = 1
2
ℓ5(ρ5 + ρ′5)∆x, β66 = 1

2
ℓ6(ρ6 + ρ′6)∆x,

β11 = ℓ1ρ1∆x, βkk = (ℓkρk + ℓ
′
kρ

′
k)∆x for 2 ≤ k ≤ 4, and βkk = ℓ′kρ

′
k∆x for 7 ≤ k ≤ 9.

The gradient stencil entries are G1a = ℓ1 = ∆x, G3a = ℓ3, G4a = −ℓ4, G5a = −ℓ5,
G2b = ℓ2, G4b = ℓ4, G6b = −ℓ6, G3c = ℓ′3, G4c = −ℓ′4, G5c = ℓ′5, G7c = −ℓ′7 = −∆x,

G2d = ℓ′2, G4d = ℓ′4, G6d = ℓ′6, G8d = −ℓ′8 = −∆x, and G9d = −ℓ′9 = −∆x.

6.3.5 Eulerian-Lagrangian Interpolation

The role of the velocity interpolation operator H is to interpolate Eulerian velocity

degrees of freedom to Lagrangian degrees of freedom, noting that HT serves the

complementary role of distributing force from the Lagrangian degrees of freedom back

to the Eulerian degrees of freedom. In principle, any interpolation operator could be

used for this purpose, such as one constructed from delta functions. In practice, using

such a discretization with surface tension produces large parasitic currents, and we

are lead to formulate H with the special needs of surface tension in mind. If there are

multiple forces on a Lagrangian mesh, each force can utilize its own discretization of

H, so formulating H specifically for one force is not problematic.

Formulating a discretization of surface tension that eliminates parasitic currents en-

tirely is quite difficult. This task is well beyond the scope of interest, as acceptable

results can be obtained even with parasitic currents, provided their magnitude is kept

at a manageable level. There are many sources for parasitic currents. One source

of parasitic currents is simply an inaccurate curvature computation [54]. While our

curvature computation is in general only first order accurate, we have found it to

produce acceptable results.

A more serious source of parasitic currents is related to the ability of the pressure

to discretely balance out surface tension, and this is the issue we seek to address.
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Consider the case of a static circle, where a force HT f̂ is produced by surface tension,

and a force −Gp̂ is produced by the resulting pressure field to resist it. The net

force on the fluid is HT f̂ −Gp̂. Since the pressure projection step can be formulated

as a kinetic energy minimization problem [15], if the fluid is at rest and a suitable

pressure field p̂ exists such that HT f̂ = Gp̂, then the result of the pressure projection

will be to choose such a pressure. The result would be to produce a zero velocity

field. Such a p̂ exists precisely when HT f̂ lies in the column space of G. This

suggests a formulation of a form similar to HT = GĤT , for some operator Ĥ, and

this is the approach that was taken. Note that HT = GĤT itself is not quite what

is desired, since then pressure would always cancel surface tension, which is not the

case. The force distribution operator HT is formulated directly, leaving the velocity

interpolation operator to be defined by its transpose.

Since the Lagrangian force will be applied to the Eulerian degrees of freedom using

the volume-weighted gradient operator G, the Lagrangian force must be translated

to a pseudo-pressure via ĤT . In fact, it is more straightforward to construct the

gradient times pseudo-pressure directly on coupling faces. Our first step, then, is to

define a force density everywhere on the surface. In Section 6.3.2, the particle xk is

associated with a length of the surface equal to half its neighboring segments, so that

the force density at the surface can be defined by

f̂ρk =
f̂k
ℓk

= σ(κ̂n)k, (6.37)

where as before

ℓk =
ℓk− 1

2
+ ℓk+ 1

2

2
=

‖xk+1 − xk‖+ ‖xk − xk−1‖
2

.

The force f̂k was defined in (6.35), and (κ̂n)k was defined in (6.34). Note that f̂ρk

is a vectorial quantity rather than a pseudo-pressure. This force density f̂ρ is ex-

tended from the Lagrangian degrees of freedom to the entire surface mesh by linear

interpolation.
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The next step requires the per-cell coupling faces illustrated in Figure 6.2 as ℓ5 and

ℓ6. Let ni be the area-weighted surface normal for the coupling face in cell i. For

cell i, let Si be the list of segments k of the Lagrangian mesh (with endpoints xk

and xk+1) that intersect cell i, and let αk,i and βk,i, where 0 ≤ αk,i ≤ βk,i ≤ 1, be

the barycentric coordinates on the segment k indicating the portion of the segment

contained within the cell i. That is, if αk,i = 0, then xk is inside cell i. Otherwise,

xk + αk,i(xk+1 − xk) is on the boundary of cell i. Similarly, if βk,i = 1, then xk is

inside cell i. Otherwise, xk+1 + βk,i(xk − xk+1) is on the boundary of cell i. With

these barycentric weights, the coupling face normal ni and its unit normal are easily

computed as the sum of a subset of the individual area weighted normals from the

Lagrangian mesh as

ni =
∑

k∈Si

(βk,i − αk,i)R(xk+1 − xk) R =

(

0 1

−1 0

)

n̂i =
ni

‖ni‖
.

Next, a force f̂i is computed for the cell by integrating the surface force density over

the portion of the surface in the cell i

f̂i =
∑

k∈Si

∫ βk,i

αk,i

f̂ρ dA.

The volume-weighted gradient of pseudo-pressure Gkcpi in cell i would then be

Gkcpi = n̂i · f̂i.

Here, the dot product with n̂i removes the tangential components of the force.

For convenience, the explicit form of (HT )i,k, the operator such that (HT )i,k f̂k is the

force at the coupling face in cell i from particle k, is provided as

Hk,i =

(

βk−1,i + αk−1,i

2

)

(βk−1,i − αk−1,i)ℓk
ℓk− 1

2

n̂i +

(

1− βk,i + αk,i

2

)

(βk,i − αk,i)ℓk
ℓk+ 1

2

n̂i,

(6.38)

where the convention that αk,i = βk,i = 0 for k 6∈ Si has been used. The first term in
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(6.38) is the contribution from the edge between xk−1 and xk, and the second term is

the contribution from the edge between xk and xk+1. This formula can be interpreted

more intuitively. The first term corresponds to a segment that touches the cell i over

some fraction of its length. The vector n̂i is the direction over which the force is

applied, and it is determined by the orientation of the Eulerian coupling face. The

average
βk−1,i+αk−1,i

2
is the location of the middle of this partial segment. If the portion

of the segment in cell i is near the node k, then βk−1,i and αk−1,i will be larger. If

the portion in cell i is closer to the other endpoint, then the average will be smaller.

This distributes more of the pressure force to the segment onto the endpoint of the

segment that is closer. The factor βk−1,i −αk−1,i scales down the area over which the

pressure is applied, and thus the magnitude of the final force, based on the fraction

of the segment over which the pressure from cell i applies. The remaining term is the

ratio ℓk
ℓ
k− 1

2

, which is effectively a correction for when the segments adjacent to particle

k are not the same length.

Note that n̂i · f̂i guarantees that only the normal component of the force from the

Lagrangian mesh will be transfered back to the fluid, a property entirely consistent

with a description of surface tension as a pressure jump. Substituting HT = GĤT

into (6.9) produces

un+1 = u⋆ − β−1G(p̂−∆tĤf̂e −∆tĤDHun+1)− β−1GT
µGµu

n+1.

Written in this way, the surface tension force takes the form of a jump in pressure near

the interface. Since HT does not transfer tangential forces, the interpolation operator

H will not transfer tangential velocities. This property is also consistent with surface

tension, which is sensitive to the interface location but not motion tangential to the

interface.
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Figure 6.3: Distribution of forces from the Lagrangian mesh to the Eulerian mesh.
A force defined on particle p is first distributed onto half length of its neighboring
segments to define a force density at p. Then the force density is be integrated over the
portion of a segment between barycentric weights α and β which indicate the portion
of the segment inside the grid cell under consideration. Finally, the integrated force
on segments s1, s2 and s3 within a cut cell will be added and projected onto the
coupling face c given its unit normal nc.

6.3.6 Note on Second Order Neumann Poisson Discretiza-

tion

Our discretization of gradient and mass in the one-phase case is very closely related

to the Neumann Poisson discretization of [107]. Let ℓf be the length of face f and

sfc = 1 if the velocity uf represents flow into cell c, sfc = −1 if the velocity uf

represents flow out of cell c, and sfc = 0 otherwise. Let rf = 1
2
if f is a coupling

face and rf = 1 otherwise. With these, our gradient is Gfc = ℓfsfc, and our mass is

βff = rfℓfρf∆x. In the absence of surface tension or viscosity, the system that must

be solved and the subsequent pressure application are

−GTβ−1Gp̂ = −GTu⋆ un+1 = u⋆ − β−1Gp̂

In terms of components, this is

−
∑

f,c

Gfc′β
−1
ff Gfcp̂c = −

∑

f

Gfc′u
⋆
f un+1

f = u⋆f −
∑

c

β−1
ff Gfcp̂c.
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Substituting in the discretization produces

−
∑

f,c

sfc′sfc
ℓf
ρfrf

p̂c
∆x

= −
∑

f

sfc′ℓfu
⋆
f un+1

f = u⋆f −
∑

c

sfc
ρfrf

p̂c
∆x

.

Our discretization corresponds to a Dirichlet boundary condition. The boundary

condition can be converted into a Neumann condition by prescribing fixed values for

the coupling faces, so that those values move to the right hand side. Assume for

simplicity that these velocities are zero. Since only cut and interior faces remain,

rf = 1, and the discretization simplifies to

−
∑

f,c

sfc′
ℓf
ρf

∑

c sfcp̂c
∆x

= −
∑

f

sfc′ℓfu
⋆
f un+1

f = u⋆f −
∑

c

sfc
ρf

p̂c
∆x

.

The Poisson discretization is the same as equation (2) in [107]. The pressure applica-

tion equation is the same as that used by [107]. In some sense, our Dirichlet pressure

discretization is compatible with the Neumann pressure discretization in [107]. This

also demonstrates that the Neumann discretization can be written in the form of

(6.3.6). This form is particularly useful, since it allows the discretization of [107] to

be used with the FSI formulations of [124]. Given our rather simple choice of the mass

at coupling faces, our discretization will only be first order accurate as mentioned in

Section 6.3.4. We leave it for future work to try to extend our Dirichlet discretization

to second order.

6.3.7 Note on Second Order Dirichlet Poisson Discretization

The second order Dirichlet Poisson discretization of [57] is used for the sake of com-

parison. As with with the proposed scheme, it is implemented within the framework

of [124], which requires the discretization to factor as in (6.3.6). It also requires the

application of nonzero Dirichlet boundary conditions, a task not addressed in [124].

The omission is straightforward to address by adding −β−1Gbcp̂bc to u⋆. Here Gbc

is a continuation of the gradient stencil to include pressures other than the degrees
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of freedom, and p̂bc are the corresponding Dirichlet pressures. One may obtain this

result by replacing the gradient and pressure with extended versions that include both

degrees of freedom and ghost pressures. Then, the ghost pressure terms are moved to

the right hand side, where it is found that they can be folded into u⋆ as described. It

is important to note that this correction to u⋆ occurs on the system right hand side as

well as in the pressure update equation. The next issue to address is that the pressure

jump conditions are not imposed at cells but rather at the interface location. This is

addressed by simply multiplying the appropriate pressure jump by each entry in Gbc

rather than using the same pressure jump for all faces adjacent to the Dirichlet cell

as would occur if ghost pressure jumps were computed, followed by a matrix vector

multiply.

The final issue to address is the factorization of the second order Dirichlet Poisson

operator. The appropriate discretizations are Gfc = sfc∆x and βff = ℓfρf∆x, where

ℓ = θ∆x. Indeed, the Poisson operator GTβ−1G simplifies to
∑

f

sfc′sfc
θfρf

, which is

just equation (21) in [57], except that our discretization is volume weighted and thus

scaled by ∆x2.

Implementing this discretization in the context of [124] has an interesting additional

benefit. This framework allows us to couple the pressure and viscosity systems,

something that could not be done by [86].

6.4 Examples

6.4.1 Interface and Curvature Accuracy

The purpose of this example is to demonstrate the accuracy of our method for com-

puting the interface location and for computing the curvature. We use a dimensionless

domain [0, 8] × [−2, 2] with resolution 2N × N . The fluid region is taken to be the

portion of the domain such that y ≥ sin(x). We only consider the portion of the fluid

interface that is at least 8∆x from the domain boundary to avoid boundary artifacts.
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Third Order Interface
N L∞(ǫΓ) order L1(ǫΓ) order L∞(ǫκ) order L1(ǫκ) order
40 1.299 · 10−5 - 3.214 · 10−6 - 3.375 · 10−2 - 9.626 · 10−3 -
80 1.478 · 10−6 3.14 2.838 · 10−7 3.50 2.063 · 10−2 0.71 4.931 · 10−3 0.97
160 1.783 · 10−7 3.05 2.637 · 10−8 3.43 1.065 · 10−2 0.95 2.350 · 10−3 1.07
320 2.230 · 10−8 3.00 2.827 · 10−9 3.22 5.258 · 10−3 1.02 1.127 · 10−3 1.06

Fourth Order Interface
N L∞(ǫΓ) order L1(ǫΓ) order L∞(ǫκ) order L1(ǫκ) order
40 1.295 · 10−5 - 3.012 · 10−6 - 2.876 · 10−2 - 8.497 · 10−3 -
80 8.227 · 10−7 3.98 1.848 · 10−7 4.03 1.425 · 10−2 1.01 4.318 · 10−3 0.98
160 5.179 · 10−8 3.99 1.166 · 10−8 3.99 7.636 · 10−3 0.90 2.043 · 10−3 1.08
320 3.431 · 10−9 3.92 7.468 · 10−10 3.96 3.788 · 10−3 1.01 9.842 · 10−4 1.05

Table 6.1: The interface error ǫΓ and curvature error ǫκ are shown for third and fourth
order interfaces computed from the function y = sin x.

The initial level set is computed computed numerically to be exactly a signed distance

function. Then, the interface is computed as in Section 6.3.1. In doing so, a number

of points (x, y) are computed for the Lagrangian surface approximation. We compute

the error for each of these points as ǫΓ = |y− sin x|. Then, we compute the curvature

times normal (κ̂n)k from the resulting Lagrangian mesh using (6.34). We compute

the error estimate as ǫκ =
∣

∣

∣
‖(κ̂n)k‖ − | sinx|(1 + cos2 x)−

3
2

∣

∣

∣
. The L∞ and L1 errors

for ǫΓ and ǫκ are shown in Table 6.1 for both the third and fourth order interface

computations.

6.4.2 Stationary Circle

Perhaps the most important analytic test that exists for surface tension is that of

a sphere in equilibrium. This example is considered in [77, 83, 145, 86], and we

use the parameters of [77]. Our domain is [0, 1] × [0, 1]. Our fluid has the unitless

parameters ρ = 104, µ = 1, σ = 1. The circle radius is r = 0.25. The analytic

solution is to have a constant pressure p = σ
r
, where the outside pressure is taken to

be zero. The velocity should be zero everywhere, but in practice numerical methods

generate nonzero parasitic currents. Both the L1 and L∞ norms of the velocity error
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One Phase
Pressure Jump Level Set Front Tracking

∆x−1 L1 L∞ L1 L∞ L1 L∞

20 9.40 · 10−5 3.20 · 10−4 1.07 · 10−4 3.70 · 10−4 1.83 · 10−7 9.59 · 10−7

40 5.66 · 10−6 4.73 · 10−5 5.39 · 10−6 2.64 · 10−5 4.41 · 10−8 3.28 · 10−7

80 4.39 · 10−7 6.56 · 10−6 2.38 · 10−7 2.37 · 10−6 4.16 · 10−9 3.11 · 10−8

160 1.58 · 10−7 1.76 · 10−6 1.74 · 10−8 2.71 · 10−7 5.20 · 10−10 5.54 · 10−9

Order 3.1 2.5 4.2 3.5 2.9 2.6

Table 6.2: Parasitic current magnitudes for a one-phase stationary circle.

Two Phase
Level Set Front Tracking

∆x−1 L1 L∞ L1 L∞

20 8.57 · 10−5 2.48 · 10−4 2.76 · 10−7 8.32 · 10−7

40 7.56 · 10−6 3.33 · 10−5 3.72 · 10−8 1.60 · 10−7

80 1.15 · 10−7 1.31 · 10−6 4.90 · 10−9 1.54 · 10−8

160 1.04 · 10−8 1.58 · 10−7 1.25 · 10−10 1.33 · 10−9

Order 4.5 3.6 3.6 3.1

Table 6.3: Parasitic current magnitudes for a two-phase stationary circle.

are shown. The L1 error is defined to be 1
N

∑

f |uf |, where f runs over all faces,

uf is the velocity component stored at that face, and N =
∑

f 1. The L∞ error is

defined to be maxf |uf |. In each case, the simulation is run until time t = 5 using a

time step ∆t = 0.2∆x, and all errors are computed at the final time. The results are

shown in Table 6.2 and Table 6.3 along with convergence order estimates. Note that

the pressure jump scheme that we have chosen for comparison is known to produce

parasitic currents as much as three orders of magnitude lower than would be achieved

from a delta function formulation [86].

6.4.3 Oscillating Circle

In this example we consider the problem of a deformed circle oscillating under surface

tension. This problem has been considered elsewhere [145, 48]. The initial configura-

tion consists of a deformed circle described in polar coordinates by r = r̂(1+ǫ cosmθ),
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where m ≥ 2 is an integer indicating the oscillation mode, r̂ is the unperturbed ra-

dius, and ǫ is the magnitude of the initial perturbation. The approximate frequency

and velocity field in the absence of viscosity (see [94]) are

ω2 =
σ(m2 − 1)m

ρr̂3
u = −ǫωr̂

(r

r̂

)m−1

sinωt

(

cos(1−m)θ

sin(1−m)θ

)

.

We note that this is only an approximate solution, and its accuracy improves as

ǫ → 0. Following [48], we use a dimensionless [0, 1] × [0, 1] domain with dimension-

less parameters r̂ = 1
3
, m = 2, ρ = 27, σ = 2

3
, and µ = 0. Several choices of ǫ

are considered. The (approximate) analytic period with these parameters is π. The

first test was run with ǫ = 0.05, where the period of the first oscillation and the x

component of the fluid velocity were determined at the location (0.75, 0.5) at time

t = 0.5 to establish convergence. In the second test, we consider the refinement of ǫ

with the resolution fixed to demonstrate convergence to the analytic analytic solution

as the solution itself becomes more accurate. Here we determine the period of the

first oscillation, which does not depend on ǫ, and the relative error at time t = 0.5.

The relative error is taken to be the velocity error, computed for each velocity de-

gree of freedom, divided by the (approximate) maximum analytic velocity magnitude

ǫωr̂| sinωt|. Note that the solution scales down with ǫ, but the relative velocity does

not, so that a decreasing relative velocity error indicates actual convergence.

The results of both tests are shown in Table 6.4. The first simulation is a pressure

jump formulation of surface tension applied using a second order accurate Dirichlet

boundary condition which we use for comparison purposes. The second scheme is the

proposed method with a surface mesh constructed from the level set, and the third

scheme is the proposed method with a front-tracked surface mesh. In the refinement

test, the velocities in all three cases appear to be converging first order to a value

around −2.063 · 10−2. Thus, the three methods are all consistent, at least with each

other. Moreover, the pressure jump scheme is consistently more accurate. This is

not particularly surprising, since it uses a second order curvature and applies it with

a second order boundary condition. This test does not indicate convergence to the



6.4. EXAMPLES 151

Refinement Test
Pressure Jump Level Set Front Tracking

N T u T u T u
50 3.188 −2.074 · 10−2 3.277 −1.916 · 10−2 3.222 −1.945 · 10−2

100 3.192 −2.069 · 10−2 3.289 −1.992 · 10−2 3.224 −2.002 · 10−2

200 3.185 −2.066 · 10−2 3.171 −2.027 · 10−2 3.198 −2.032 · 10−2

Epsilon Test
Pressure Jump Level Set Front Tracking

ǫ T L∞(u) T L∞(u) T L∞(u)
0.05 3.185 5.487 · 10−3 3.171 1.021 · 10−2 3.198 9.712 · 10−3

0.025 3.162 2.277 · 10−3 3.166 5.718 · 10−3 3.180 6.412 · 10−3

0.0125 3.152 8.749 · 10−4 3.203 4.697 · 10−3 3.168 5.532 · 10−3

Table 6.4: A deformed circle oscillates under surface tension. The maximum deforma-
tion as a fraction of the radius is ǫ. In the refinement test, the spatial and temporal
resolution are increased while ǫ is held fixed to demonstrate convergence of the nu-
merical methods. In the epsilon test, the deformation is decreased, demonstrating
that as the approximate analytic solution becomes more accurate it approaches the
numerical results. The analytic period T in all cases is π.

analytic solution, as the analytic solution is only approximate. Note that the periods

of all three methods are near the (approximate) analytic value of π, but these values

appear to be noisy in all three schemes, and no clear order of convergence can be

deduced in any of the schemes. The periods produced for the pressure jump scheme

are very close to the values predicted in [48], which uses essentially the same scheme.

The second test effectively refines the analytic solution to make it more accurate. This

allows us to test that the schemes are converging to the correct results. The decreasing

velocity errors indicate that the analytic solution and the numerical solutions are

approaching each other. The velocity errors are approximately first order for the

pressure jump formulation but appear to be less than first order for the proposed

method, suggesting that the proposed schemes are not yet fully in the convergence

regime. This fact is even more evident from the periods. The periods for the pressure

jump are converging first order, but they remain noisy in the proposed schemes. We

also observed noisy periods when we tested the pressure jump formulation with a first

order accurate discretization of the irregular Dirichlet boundary condition.
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6.4.4 Rising Bubble–Stability

In this example, we test the stability of our method concerning a rising bubble in a

heavier fluid, as also considered in [77]. We use the same parameters as in [77]. The

domain is [0m, 1m] × [0m, 2m]. The bubble is given an initial radius of r = 0.2m

and is placed at [0.5m, 0.5m]. The density of heavier fluid is ρwater = 104 kg m−2,

and the density of the lighter fluid is ρair = 103 kg m−2. The viscosity of both fluids

is µ = 1 kg s−1. The surface tension coefficient is σ = 0.5 kg s−2. We use a gravity

of g = −8 · 10−4ms−2. We perform computations on a 80× 160 mesh. As discussed

in [77], the capillary time step restriction is ∆t = 0.056 s, and they achieved stable

results up to ∆t = 2.0 s. We ran the same test for both the level set version and

the front tracking version of our method. The results demonstrate good stability up

to ∆t = 3.0 s for both the level set version and the front tracking version. We note

that the stability we obtained here is not just limited by our surface tension model

but also by the CFL condition imposed by advection. To demonstrate that, we ran

another set of tests using the semi-Lagrangian advection, and we obtain stable results

up to ∆t = 7.0 s for both the level set version and the front tracking version.

6.4.5 Rising Bubble–Convergence

This example tests the convergence behavior under grid refinement concerning a rising

bubble. We use the parameters of [86]. A [−.01m, .01m] × [−.02m, .01m] domain

is initially filled with water except for a circular air bubble of radius 1
300

m centered

at the origin. The fluid parameters are: g = −9.8ms−2, σ = .0728 kg s−2, ρwater =

1000 kgm−2, and ρair = 1.226 kgm−2. We set the viscosity of both water and air to

be µ = 1.78 × 10−5 kg s−1, since the method presented in this paper cannot handle

variable viscosity or viscosity jumps in an implicit manner, and the viscosity plays

only a a minor role in the dynamics of this example. The computations were carried

out on meshes of size 40 × 60, 80 × 120, 160 × 240 and 320 × 480. Figure 6.4 and

Figure 6.5 show snapshot results at different times for the level set version and the

front tracking version respectively. We tested the convergence of the interface location



6.4. EXAMPLES 153

(a) t=0 (b) t=.02

(c) t=.035 (d) t=.05

Figure 6.4: Rising bubble tests for convergence under grid refinement using the level
set method. The grid resolutions are: solid line, 40×60; dash line, 80×120; dash-dot
line, 160× 240; and dash-dot-dot line, 320× 480.
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(a) t=0 (b) t=.02

(c) t=.035 (d) t=.05

Figure 6.5: Rising bubble tests for convergence under grid refinement using the front
tracking method. Grid resolutions: solid line, 40 × 60; dash line, 80× 120; dash-dot
line, 160× 240; and dash-dot-dot line, 320× 480.
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at the top middle and bottom middle and in each case observed convergence consistent

with first order.

6.4.6 Stability

In this example, we probe the stability characteristics of different integration schemes

to determine the effectiveness of our formulation for implicit surface tension at im-

proving stability. In each case, a [0m, 0.04m]× [0m, 0.04m] domain was used. The

fluid density is 1000 kgm−2, and the surface tension coefficient is σ = .0728 kgms−2.

Since the purpose of this test is to stress the stability of each scheme, we do not use

viscosity. The fluid starts in a circle of radius 0.01m centered within the domain. We

test five schemes. The first scheme is a pressure jump scheme based on [86] which we

use for comparison purposes. The other four are variants on the schemes proposed

here. Two have a front-tracked interface, and the other two have a level set interface.

Each interface type is run explicitly (without force derivatives) and implicitly as dis-

cussed in Section 6.3.2. Each scheme is run with a wide range of ∆x and ∆t choices,

and in each case it was noted whether the resulting simulation was stable or unstable

when run for 500 time steps. The results are shown in Figure 6.6. The pressure jump

scheme and the explicit versions of the proposed scheme have similar stability char-

acteristics. The implicit level set version is noticeably more stable than the explicit

schemes allowing a ∆t approximately 2-3 times larger. The implicit front-tracked

version is far more stable, allowing a ∆t approximately an order of magnitude larger.

Unlike the implicit level set scheme, the position update used on the front-tracked

interface corresponds to a backward Euler update, whereas the level set version has

a level set update that differs significantly from the update suggested by the force

derivatives. Thus, it is not surprising to see better stability from the front-tracked

scheme. This opens up an avenue of research to produce an implicit level set scheme,

which may be used to improve the stability of the proposed method when the interface

is tracked with a level set.

We repeated this on a dynamic configuration. This setup is identical to the first,
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Figure 6.6: Stability tests for five schemes on stationary circle. The x axis indicates
the ∆x used, with more refined simulations on the right. The y axis indicates the
∆t used, with smaller time steps at the top. A circle indicates a stable simulation,
and an X indicates an unstable simulation. The “ex” and “im” indicate whether the
scheme was explicit or implicit.

except that the initial fluid configuration is an ellipse with major axis 0.011m and

minor axis 0.009m. The results are shown in Figure 6.7. The results are quite similar

to the stationary circle case, though the dynamic nature of the simulation and the

special circle configuration do appear to make a noticeable difference for the implicit

front tracking scheme. Since this example has a nonzero velocity as part of its correct

behavior, there will be a CFL restriction for advection, but all of the methods became

unstable before this CFL restriction was reached.

6.5 Conclusions and Future Work

We have presented a method for applying implicit forces on a Lagrangian mesh to an

Eulerian discretization of the Navier Stokes equations. The method leverages the SPD

FSI framework of [124] to produce a sparse symmetric positive definite system. The
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Figure 6.7: Stability tests for five schemes on an ellipse. The x axis indicates the ∆x
used, with more refined simulations on the right. The y axis indicates the ∆t used,
with smaller time steps at the top. A circle indicates a stable simulation, and an X
indicates an unstable simulation. The “ex” and “im” indicate whether the scheme
was explicit or implicit.

resulting method has implicit and fully coupled viscosity, pressure, and Lagrangian

forces.

We apply our new framework for forces on a Lagrangian mesh to the case of a surface

tension force. We describe two approaches for constructing and maintaining a suitable

Lagrangian surface mesh with sufficient accuracy for accurate second derivatives at

the surface. We construct a discretization that is able to reduce the magnitude of

surface tension parasitic currents down to levels comparable to other state-of-the-art

schemes. Finally, we demonstrate the accuracy and enhanced stability of our new

method.

Our surface tension discretization is only first order. Nevertheless, many parts are

already at second order, and other parts share many attributes with second order

methods, including the use of subcell information. We leave it for future work to

construct a fully second order accurate discretization.
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The stability results in Section 6.4.6 demonstrate drastic improvement in stability

for the front tracking interface but only modest improvement for the level set based

interface. This is likely because we update the front-tracked interface in a way that

is implicit and similar to backward Euler, whereas the level set version is updated

instead using an explicit particle level set evolution. This suggests that significant

stability improvements could be made by making the level set update implicit in

a way compatible with the Lagrangian surface velocities obtained from the coupled

system, and we leave this for future work.

There are many interesting avenues for extending the proposed method, which we

leave for future work. One may extend the method to treat surfactants [148, 93, 82]

and foam [90]. Another potential extension is to problems where a jump in pressure is

caused by phenomena other than surface tension, such as an electric potential [160].

Another potential application is to solving partial differential equations on a surfaces

as in [18].



Appendix A

Higher Order Orientation

Evolution

Second order Runge Kutta has two stages,

1. Rn+ 1
2 = e∆t(ωn)∗Rn

2. Rn+1 = e∆t(ωn+1
2 )∗Rn

We want to approximate compute u = ωn+ 1
2 . Note that Rn+ 1

2 = e
∆t
2
ω∗

R ≈ R +
1
2
∆tω∗R. Then, ignoring terms higher than first order,

u = (I−1)n+
1
2L

u = (Rn+ 1
2 )I−1

0 (Rn+ 1
2 )TL

u = (R+
1

2
∆tω∗R)I−1

0 (R+
1

2
∆tω∗R)TL

u = RI−1
0 RTL+

1

2
∆t(ω∗R)I−1

0 RTL +
1

2
∆tRI−1

0 (ω∗R)TL

u = ω +
1

2
∆tω∗ω +

1

2
∆tI−1(ω∗)TL

u = ω +
1

2
∆tI−1L∗ω
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This is the second order update rule. Note that the exponential is used on the final

update to guarantee that a rotation matrix is produced. This restriction is effectively

relaxed for the first stage, since the final rotation will be a rotation even if the first

one is not.

Deriving the third order method is not as easy, since the third order Runge Kutta

schemes end with an averaging step, which is problematic with rotations. Instead,

it can be derived directly from a Taylor series expansion. First it is necessary to

compute some derivatives. Note that in the absence of forces, L̇ = 0. The inertia

tensor in the body’s reference configuration is also fixed, so that (I−1
0 )′ = 0. The

identity matrix is denoted as δ here to distinguish it from the inertia tensor I.

RRT = δ

Ṙ = ω∗R

(I−1)′ = (RI−1
0 RT )′ = ṘI−1

0 RT +RI−1
0 ṘT = ω∗RI−1

0 RT +RI−1
0 RT (ω∗)T

= ω∗I−1 − I−1ω∗

ω̇ = (I−1L)′ = (ω∗I−1 − I−1ω∗)L = I−1L∗ω

R̈ = (ω∗R)′ = ω̇∗R+ ω∗Ṙ = ω̇∗R+ ω∗ω∗R
...
R = (ω̇∗R+ ω∗ω∗R)′ = ω̈∗R+ ω̇∗Ṙ+ ω̇∗ω∗R+ ω∗ω̇∗R+ ω∗ω∗Ṙ

= ω̈∗R+ 2ω̇∗ω∗R+ ω∗ω̇∗R+ ω∗ω∗ω∗R

Next, consider the update rule, ignoring fourth order terms

Rn+1RT = e∆tu∗

1+∆t2u∗

2+∆t3u∗

3

= δ +∆t(u∗
1 +∆tu∗

2 +∆t2u∗
3) +

1

2
∆t2(u∗

1u
∗
1 +∆tu∗

2u
∗
1 +∆tu∗

1u
∗
2)

+
1

6
∆t3u∗

1u
∗
1u

∗
1

= δ +∆tu∗
1 +

1

2
∆t2(u∗

1u
∗
1 + 2u∗

2) +
1

6
∆t3(u∗

1u
∗
1u

∗
1 + 3u∗

2u
∗
1 + 3u∗

1u
∗
2 + 6u∗

3)
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Next, consider the Taylor series expansion of Rn+1RT

Rn+1RT = (R+∆tṘ+
1

2
∆t2R̈+

1

6
∆t3

...
R)RT

= δ +∆tω∗ +
1

2
∆t2(ω̇∗ + ω∗ω∗) +

1

6
∆t3(ω̈∗ + 2ω̇∗ω∗ + ω∗ω̇∗ + ω∗ω∗ω∗)

The identity terms match, and the first order terms imply u1 = ω. Next, consider

the second order terms

u∗
1u

∗
1 + 2u∗

2 = ω̇∗ + ω∗ω∗

u2 =
1

2
ω̇

These together with ω̇ = I−1L∗ω reproduce the second order evolution result. Finally,

match up the third order terms.

u∗
1u

∗
1u

∗
1 + 3u∗

2u
∗
1 + 3u∗

1u
∗
2 + 6u∗

3 = ω̈∗ + 2ω̇∗ω∗ + ω∗ω̇∗ + ω∗ω∗ω∗

u∗
3 =

1

6
ω̈∗ +

1

12
(ω̇∗ω∗ − ω∗ω̇∗)

The last term is not in a suitable form, but this can be fixed with Jacobi’s identity.

x× (y × z) + z× (x× y) + y × (z× x) = 0

x× (y× z) + z× (x× y)− y × (x× z) = 0

x× (y × z)− y × (x× z) = (x× y)× z

x∗y∗z− y∗x∗z = (x∗y)∗z

x∗y∗ − y∗x∗ = (x∗y)∗
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Now, the third order terms become

u∗
3 =

1

6
ω̈∗ +

1

12
(ω̇∗ω∗ − ω∗ω̇∗)

u∗
3 =

1

6
ω̈∗ +

1

12
(ω̇∗ω)∗

u3 =
1

6
ω̈ +

1

12
ω̇∗ω

u3 =
1

6
ω̈ − 1

12
ω∗ω̇

u3 =
1

6
(I−1L∗ω)′ − 1

12
ω∗I−1L∗ω

u3 =
1

6
(I−1)′L∗ω +

1

6
I−1L∗ω̇ − 1

12
ω∗I−1L∗ω

u3 =
1

6
(ω∗I−1 − I−1ω∗)L∗ω +

1

6
I−1L∗I−1L∗ω − 1

12
ω∗I−1L∗ω

u3 =
1

12
ω∗I−1L∗ω − 1

6
I−1ω∗L∗ω +

1

6
I−1L∗I−1L∗ω

This completes the third order correction.
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Interpenetration Resolution

B.1 Introduction

We process interpenetration resolution on a central body, whose quantities are de-

noted with subscript c, and the outer bodies intersecting it, denoted with subscript d

for a dynamic body, s for a static body, or o for either type. Let D denote the set of

dynamic outer bodies, S denote the set of static outer bodies, and O = D∪S. Let po

be the deepest intersection point between body c and body o. Let do be the vector

from the point on the surface of body c to the corresponding point on the surface

of body o. Interpenetration resolution tries to make these two points coincident by

creating a relative velocity vr that will be evolved for an arbitrary pseudo-time ∆τ .

The desired relative velocity between bodies c and o at the point po is

vr = do∆τ
−1.

Note that this velocity is only used to determine how far the bodies should be dis-

placed. The momenta of the bodies are unchanged. Note that since the orientation

of bodies may be changed, leaving the angular momentum unchanged is different

163
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do

qo

ro

po

outer body o

central body c

Figure B.1: Central body intersecting two outer bodies.

from leaving the angular velocity unchanged. We choose to leave angular momen-

tum unchanged since it is the conserved quantity and recompute the angular velocity

afterwards.

Let jo be the impulse applied to outer body o at the intersection point po. Then the

total linear impulse applied to the central body is

j = −
∑

o∈O

jo,

and the total angular impulse applied to the central body is

jτ = −
∑

o∈O

r∗ojo,

where ro is the vector from the center of mass of body c to po. The impulse factor

for a dynamic body d measured at location pd is given by

Kd = m−1
d δ + qT

d I
−1
d qd,

where qd is the vector from the center of mass of body d to pd. The impulse factor

is the matrix such that for a chosen displacement rd from the center of mass of the
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rigid body, an impulse jd results in a velocity change of ∆vd = Kdjd. That is, K−1
d

is a sort of effective mass. This 3 × 3 matrix is sufficient, and the full 6 × 6 version

derived in Appendix C is not required. This is because impulses are applied but not

torques, and the relative velocity at point of torque is required but not the angular

velocity.

Static bodies are the limit of infinite mass, and the impulse factor is zero in this limit.

If there is more than one static body, it is not sufficient to consider static bodies in

this way. If more than one surrounding body has infinite mass, the central body may

be stuck between two such bodies. In this case, it may be that no suitable correction

exists, and instead one effectively considers a slightly relaxed problem. To do this, it

is useful to consider a notion of how the bodies go to infinity relative to each other.

We take the mass and inertia tensor of body s to be ǫ−1ms and ǫ−1Is, where ǫ → 0

is the limit of the body to being static. In particular, all static bodies are taken to

infinity together. The static body s has the impulse factor

Ks = ǫK̂s = ǫ(m−1
s δ + q∗T

s I−1
s q∗

s).

Note that even though a nonzero impulse factor is being computed for the static body,

it is still regarded as static and is never moved.

B.2 Solving for the Central Body

We wish to apply an impulses jo at each of the penetration points po such that the

central body and each outer body satisfy

m−1
c j+ r∗o

T I−1
c jτ −Kojo = vr. (B.1)

That is, the impulse should cause a relative velocity sufficient to resolve the inter-

penetration. The interesting thing about this equation is that once the impulse j and

torque jτ on the central body have been computed, the individual impulses jo for
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the outer bodies can be computed directly. This allows us to eliminate all of these

impulses jo from the system and solve for j and jτ efficiently as a 6×6 system. Solving

for jo, we have

jo = K−1
o

(

−vr +m−1
c j+ r∗o

T I−1
c jτ

)

Summing over all the bodies in O, we have

j = −
∑

o

jo =

(

∑

o

K−1
o vr

)

−
(

∑

o

K−1
o

)

m−1
c j−

(

∑

o

K−1
o r∗o

T

)

I−1
c jτ

jτ = −
∑

o

r∗ojo =

(

∑

o

r∗oK
−1
o vr

)

−
(

∑

o

r∗oK
−1
o

)

m−1
c j−

(

∑

o

r∗oK
−1
o r∗o

T

)

I−1
c jτ .

Then, we can write the system







mcδ +
∑

o

K−1
o

∑

o

K−1
o r∗o

T

∑

o

r∗oK
−1
o Ic +

∑

o

r∗oK
−1
o r∗o

T







(

∆v

∆ω

)

=







∑

o

K−1
o vr

∑

o

r∗oK
−1
o vr






, (B.2)

where ∆v = m−1
c j and ∆ω = I−1

c jτ . Finally, the impulses of the outer bodies are

obtained by

jo = K−1
o

(

−vr +∆v + r∗o
T∆ω

)

. (B.3)

B.2.1 Applying the push

For static outer bodies s, no push is applied. For each dynamic outer body d, we

apply the push as

xnew
d = xd +∆τm−1

d jd Rnew
d = e∆τ(I−1

d
r∗
d
jd)

∗

Rd.

If the central body is dynamic, the push is applied to the central body as

xnew
c = xc +∆τ∆v Rnew

c = e∆τ∆ω∗

Rc.
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Note that, due to the non-dynamic nature of the interpenetration resolution process,

these equations appear a bit peculiar. The actual velocities of the bodies are never

used.

B.3 Special Configuration Cases

The way in which the impulses are computed differs depending on how many static

bodies are involved. Two cases are straightforward. If the central body and all of

the outer bodies are dynamic, then (B.2) is symmetric positive definite and can be

uniquely solved for j and jτ (or alternatively ∆v and ∆ω). Then, jd is obtained from

(B.3).

A second easy case occurs if the central body is static. That is, m−1
c = 0 and I−1

c = 0.

Then, (B.3) becomes

jd = −K−1
d vd.

Thus we solve for each jd independently and apply it to the body d as in section

B.2.1. Note that no push is applied to the central body as it is static, and ∆xc = 0,

∆Rc = 0. Outer static bodies can be ignored in this case, since it makes no sense to

exchange an impulse between two bodies that will ignore that impulse.

There remaining cases occur when the central body is dynamic but at least one

outer body is static. When this occurs, the constraints involving static bodies are

effectively stronger than those with dynamic bodies. This is because the movement

of the central body may be mostly determined by what is required to resolve the

penetration due to the static body. Constraints with dynamic outer bodies are easier

to resolve, since the outer body may move as well. The character of the interaction

between the constraints imposed by the static bodies is different when there is just

one outer body from when more than one is present.
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B.3.1 One Static Outer Body

When only one outer body is static, its mass can be treated as infinite. Three of

the six total degrees of freedom for the central body are determined by the impulse

required to correct interpenetration with the static outer body. The other three are

determined by the dynamic bodies. Even though half of the degrees of freedom are

effectively dictated by the static outer body, the contribution of both the static and

dynamic bodies to the six degrees of freedom must be distinguished. This makes

static outer body cases more difficult than the purely dynamic cases.

The static outer body s has Ks = 0. Then, (B.1) gives

∆v + r∗s
T∆ω = vs. (B.4)

Starting with the system in (B.2), left multiply the first equation by r∗s and subtract

from the second equation to get

(

∑

o

r∗oK
−1
o −mcr

∗
s −

∑

o

r∗sK
−1
o

)

∆v +

(

Ic +
∑

o

r∗oK
−1
o r∗o

T −
∑

o

r∗sK
−1
o r∗o

T

)

∆ω

=
∑

o

r∗oK
−1
o vo −

∑

o

r∗oK
−1
o vo.

Note that the terms with body s cancel, and we exclude them explicitly. Letting

r̃∗d = r∗d − r∗s and recalling that d indicates outer bodies that are not static, we have

(

∑

d

r̃∗dK
−1
d −mcr

∗
s

)

∆v +

(

Ic +
∑

d

r̃∗dK
−1
d r∗d

T

)

∆ω =
∑

d

r̃∗dK
−1
d vd. (B.5)

Subtracting
∑

d

r̃∗dK
−1
d times equation (B.4) from equation (B.5) gives the system





δ r∗s
T

−mcr
∗
s Ic +

∑

d

r̃∗dK
−1
d r∗d

T −
∑

d

r̃∗dK
−1
d r∗s

T





(

∆v

∆ω

)

=





vs
∑

d

r̃∗dK
−1
d vd −

∑

d

r̃∗dK
−1
d vs
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Substituting ṽd = vd − vs, we have





δ r∗s
T

−mcr
∗
s Ic +

∑

d

r̃∗dK
−1
d r̃∗d

T





(

∆v

∆ω

)

=





vs
∑

d

r̃∗dK
−1
d ṽd





Performing a step of Gaussian elimination and negating the second equation yields





δ r∗s
T

0 Ic +
∑

d

r̃∗dK
−1
d r̃∗d

T +mcr
∗
sr

∗
s
T





(

∆v

∆ω

)

=





vs
∑

d

r̃∗dK
−1
d ṽd +mcr

∗
svs





Observe that both block diagonal terms are strictly positive definite, so that the

matrix equation is nonsingular and possesses a unique solution. In this case, only a

3× 3 system must be solved.

B.3.2 Any Number of Static Bodies

The final case is a degenerate case. When more than one outer body is infinitely

massive, the constraints will compete. We deal with this by considering the bodies to

be finitely massive and consider the limit as their masses increase to infinity together.

As before, the degrees of freedom are partially determined by the static outer bodies,

and the number of degrees of freedom chosen by them depends on how many there

are and what their spatial configuration is.

As before Ks = ǫK̂s where ǫ → 0. Introducing the definitions

Ad =







mcδ +
∑

d

K−1
d

∑

d

K−1
d r∗d

T

∑

d

r∗dK
−1
d Ic +

∑

d

r∗dK
−1
d r∗d

T






bd =







∑

d

K−1
d vd

∑

d

r∗dK
−1
d vd







As =







∑

s

K̂−1
s

∑

s

K̂−1
s r∗s

T

∑

s

r∗sK̂
−1
s

∑

s

r∗sK̂
−1
s r∗s

T






bs =







∑

s

K̂−1
s vs

∑

s

r∗sK̂
−1
s vs
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(B.2) can be rewritten as

(

Ad + ǫ−1As

)

(

∆v

∆ω

)

= bd + ǫ−1bs

Multiplying through by ǫ and taking ǫ → 0, this system becomes

As

(

∆v

∆ω

)

= bs

If As is nonsingular, this system can be solved for the motion of the central body,

which can be substituted into (B.3) to yield the full set of impulses. This corresponds

to the case when there are enough static outer bodies to entirely determine how the

central body must be moved to resolve the interpenetrations. The dynamic outer

bodies do not affect the correction applied to the central body.

Otherwise, we must augment this system to get a full system. Consider that Z is a

matrix whose columns form a basis for the nullspace of the symmetric As. Let Y be

the matrix basic for the column space of As. Consider the products of the full system

by these two matrices. Multiplying first by ZT and using ZTAs = 0 yields

ZTAd

(

∆v

∆ω

)

= ZT (bd + ǫ−1bs)

The rest comes from the static bodies by instead multiplying by ǫYT and taking the

limit ǫ→ 0 and is

YTAs

(

∆v

∆ω

)

= YTbs

This results in the full-rank 6× 6 (3× 3 in 2D) system

(

YTAs

ZTAd

)(

∆v

∆ω

)

=

(

YTbs

ZT (bd + ǫ−1bs)

)
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This right hand side is somewhat problematic, since it contains ǫ−1. In the next

section, we will show that ZTbs = 0, so that our system reduces to

(

YTAs

ZTAd

)(

∆v

∆ω

)

=

(

YTbs

ZTbd

)

B.3.3 Nullspace Computation

What remains is to find Z (from which Y is the complement). This can be computed

directly, since the matrix is only 6 × 6. Being required only in the degenerate case

of two or more outer bodies, this may be acceptable. However, it is also possible to

deduce the nullspace directly at the cost of a bit more logic. To do this, it is helpful

to consider more carefully the physical layout of the static bodies. The cases that

are important are if all static bodies intersect the central body at the same point,

all intersection points with static bodies are in a straight line, and the general case

where they are not collinear. We begin with the collinear case.

Recall that rs are the locations of the collision points with the s static bodies. Let c

be the centroid and u a unit vector parallel to the line of the collision points so that

c =
1

s

∑

s

rs, rs = c+ αsu

If C is the matrix whose columns are the vectors rs − c, then the value u can be

determined as the eigenvector corresponding to the only nonzero (to within some

tolerance) eigenvalue of the 3×3 matrix CCT . (In the case of all eigenvalues roughly

zero, all of the collision points coincide. In the case of two or more nonzero eigenvalues,

we are in the general case.) If we assume collinearity, we can express

CCT =
∑

s

(rs − c)(rs − c)T =
∑

s

α2
suu

T
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It is clear that this has rank one. Furthermore,

CCTu =
∑

s

α2
suu

Tu =
∑

s

α2
su, λ =

∑

s

α2
s

Then It follows that the coincident case corresponds to the third eigenvalue being

zero as well.

Next, we compute the nullspace Z of As for the collinear case. This case is only

applicable in 3D.

As =







∑

s

K−1
s

∑

s

K−1
s r∗s

T

∑

s

r∗sK
−1
s

∑

s

r∗sK
−1
s r∗s

T







Substituting in rs = c+ αsu

As =







∑

s

K−1
s

∑

s

K−1
s (c∗ + αsu

⋆)T

∑

s

(c∗ + αsu
⋆)K−1

s

∑

s

(c∗ + αsu
⋆)K−1

s (c∗ + αsu
⋆)T







Expanding this out with the definitions

L =
∑

s

K−1
s , P =

∑

s

αsK
−1
s , Q =

∑

s

α2
sK

−1
s

gives

As =

(

L Lc∗T +Pu⋆T

c∗L + u⋆P c∗Lc∗T + c∗Pu⋆T + u⋆Pc∗T + u⋆Qu⋆T

)

.

Computing the nullspace of this is aided by the observation that this factors very

conveniently as

As =

(

δ 0

c∗ δ

)(

δ 0

0 u⋆

)(

L P

P Q

)(

δ 0

0 u⋆

)T (

δ 0

c∗ δ

)T

. (B.6)

The first and last factors are always invertible and thus do not contribute to the

nullspace. The second and fourth terms, however, are singular, since the matrix 3×3
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matrix u⋆ will always have rank two. This leads to the nullspace (in 3D)

Z =

(

δ 0

c∗ δ

)−T (

0

u

)

=

(

c∗u

u

)

.

We claim that the nullspace of (B.6) has dimension one. First, we must demonstrate

that the middle factor of (B.6) is symmetric and positive definite. Note that

(

L P

P Q

)

=







∑

s

K−1
s

∑

s

αsK
−1
s

∑

s

αsK
−1
s

∑

s

α2
sK

−1
s







=
∑

s

(

K−1
s αsK

−1
s

αsK
−1
s α2

sK
−1
s

)

=
∑

s

(

δ

αsδ

)

K−1
s

(

δ

αsδ

)T

Since K−1
s is SPD, the middle factor of (B.6) is the summation of symmetric positive

semidefinite matrices and thus symmetric positive semidefinite itself. It remains only

to show that it is nonsingular. A vector lies in the nullspace of a sum of symmetric

positive semidefinite matrices if and only if it lies in the nullspace of each summand.

Consider one of the summands

(

K−1
s αsK

−1
s

αsK
−1
s α2

sK
−1
s

)

=

(

δ

αsδ

)

K−1
s

(

δ

αsδ

)T

.

Since the first matrix contains the 3× 3 submatrix K−1
s with full rank, it has rank at

least three. The factorization shows that the rank cannot exceed three, so that the

matrix has rank exactly three. The vectors of this three dimensional nullspace take

the form
(

αsw

−w

)

for any vector w. Consider another summand (using t as the index to distinguish it
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from s) multiplied by this vector

(

δ

αtδ

)

K−1
s

(

δ

αtδ

)T (

αsw

−w

)

=

(

δ

αtδ

)

K−1
s (αsw − αtw) = (αs − αt)

(

K−1
s w

αtK
−1
s w

)

.

Since K−1
s is SPD, K−1

s w 6= 0. Thus, the resulting vector can be zero only if αs = αt.

In particular, this must hold for all choices t. Since rs = c+αsu, this implies that the

intersection points are all coincident, which is not the case being considered. Thus,

the middle factor of (B.6) is SPD. Finally it suffices to show that if B is an SPD

matrix and A is square, then D = ABAT has the same rank as A. Indeed, let w

be a nullspace vector of AT , so that ATw = 0. Then, Dw = ABATw = 0. Thus,

the rank of D is no greater than the rank of A. Consider now that w is a nullspace

vector of D. Then, 0 = wTDw = wTABATw = (ATw)B(ATw). Since B is SPD,

this implies ATw = 0, so that the rank of D must be exactly the rank of A. Finally,

As has exactly one nullspace direction, and this direction is Z. The matrix Y can be

assembled by enumerating vectors orthogonal to Z, using the remaining eigenvectors

already computed to provide vectors orthogonal to u.

In the case of all collision points being coincident, αs = 0, and then P = Q = 0. This

simplifies (B.6) to

As =

(

δ 0

c∗ δ

)(

L 0

0 0

)(

δ 0

c∗ δ

)T

.

From this we obtain the nullspace (in 3D)

Z =

(

δ 0

c∗ δ

)−T (

0

δ

)

=

(

−c∗T

δ

)

This corresponds to As having rank three, which is clear from (B.3.3). In this case,

the complement is very easy to write down. It is just

Y =

(

δ

c∗

)

.
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In 2D, the outer matrices are not square and thus not invertible. However, we can

observe that the same solutions Z and Y apply. Indeed, YTZ = 0, so that they are

complementary. Z is 3× 1 and Y is 3× 2 (recall that c∗ is 1× 2). Further,

AsZ =

(

δ 0

c∗ δ

)(

L 0

0 0

)(

δ 0

c∗ δ

)T (

−c∗T

δ

)

=

(

δ 0

c∗ δ

)(

L 0

0 0

)(

0

δ

)

= 0

so that Z is indeed the nullspace. Since

As =

(

L Lc∗T

c∗L c∗Lc∗T

)

.

and L is a nonsingular 2 × 2 submatrix of As, As has rank at least two. Then, Z is

the entire nullspace so that Y must be the orthogonal complement to the nullspace

as desired.

The case of no static outer bodies is equivalent to Z = δ and Y = 0. The case

where there are more than two bodies and their collision points are not collinear is

just Z = 0 and Y = δ.

Next, consider the right hand side corresponding to the static bodies

bs =







∑

s

K−1
s vs

∑

s

r∗sK
−1
s vs






.

In the collinear case this becomes

bs =







∑

s

K−1
s vs

∑

s

c∗K−1
s vs +

∑

s

αsu
⋆K−1

s vs






.

This factors as

bs =

(

δ 0

c∗ δ

)(

δ 0

0 u⋆

)







∑

s

K−1
s vs

∑

s

αsK
−1
s vs






.
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From this factorization it is evident that ZTbs = 0.

The result is simplified for the coincident case

bs =

(

δ 0

c∗ δ

)





∑

s

K−1
s vs

0





This in turn leads to a simpler system for the coincident case

As =
(

L 0
)

(

δ c∗T

0 δ

)(

∆v

∆ω

)

=

(

∑

s

K−1
s vs

)

From which it is also evident that ZTbs = 0.



Appendix C

Global Articulation

In this appendix we consider a globally alternative to the pairwise pre-stabilization

and post-stabilization of [169]. Post-stabilization is the process by which the com-

ponents of relative velocity that violate joint constraints are projected out. The

operation has very nice properties, as it is a mass-symmetric projection matrix. In-

deed, all physically meaningful projections are mass-symmetric. Indeed, if this were

not the case, then the projection would be capable of increasing the kinetic energy of

the system. Pre-stabilization is a process that is used to correct small errors that ac-

cumulate as joints drift apart over time. This process is nonlinear and has a tendency

to be tricky to solve well in practice.

If we formulated our articulated rigid bodies based on a reduced set of degrees of

freedom, both processes could be avoided most of the time. They would still be

required when joint loops are present, though in this case they would only need to

be applied to a few joints. If no joint loops exist, then neither process is required.

A reduced coordinate representation has the unfortunate side effect of making the

representation very complicated. In the maximal coordinate approach taken, all rigid

bodies have a uniform representation, which makes processes like collisions relatively

simple.

177
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There are two motivations for changing the way in which these problems are solved.

The first potential benefit is that the implicit Gauss Seidel solver can be replaced

with a solver of choice, which leaves open the possibility of choosing a solver that has

better convergence properties. The second reason is one of quality. Solving a global

system using an algorithm like conjugate gradient will not show any particular biasing

among the joints, so that errors that cannot be resolved will tend to be spread out.

By contrast, the pairwise approach tends to be biased by the order in which bodies

are treated, and iterative pre-stabilization has poor failure properties. In the case

that errors cannot be resolved, most of the error will be concentrated at a few joints.

Further, when no solution can be found each iteration continues to make a significant

change, leading to additional accumulating errors in the simulation. Note that if the

pairwise post-stabilization algorithm is iterated to convergence no biasing will result

since it always converges to the unique solution.

C.1 Global Post-stabilization

The globally coupled post-stabilization algorithm is constructed in [168], though it is

formulated in a way that may require forming a dense matrix. Further, the solution

methods suggested are direct methods, even though the system will often be sparse.

The formulation below constructs the system in a way that is factored. This is

advantageous since the factors are always sparse, even when the final result would be

dense. This factored form is particularly efficient for procedural application of the

linear system. It is also convenient since the factors each occur in two different places

and can be reused. The global post-stabilization formulation is directly applicable to

its intended application in [168]. We also use global post-stabilization as a building

block to solve pre-stabilization globally and efficiently.
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raj
rbj

xa

xb

xj

Figure C.1: Two rigid bodies with centers of mass xa and xb are connected by a joint
at xj .

C.1.1 One Joint

First, we consider the case with two rigid bodies a and b connected by a joint j as

shown in Figure C.1. The joint located at xj, and the centers of mass of the two rigid

bodies are at xa and xb. The vectors indicating the displacement of the joint from the

centers of mass are raj = xj−xa and rbj = xj−xb. One of the rigid bodies is taken to

be the parent body, and the other body is taken to be the child body. When impulses

are applied, the parent body receives the impulse and the child receives the equal

and opposite impulse. Similarly, when a relative velocity is computed, the velocity

of the child body is subtracted from that of the parent. This distinction is assisted

by letting saj = 1 if a is the parent body of joint j, saj = −1 if a is the child body

of joint j, and saj = 0 if body a is not connected to joint j (this convention will be

convenient later when considering more than two rigid bodies).

Let

jj =

(

̂j

̂
τ j

)

pa =

(

p̂a

L̂a

)

va =

(

v̂a

ω̂a

)

be the generalized impulse (impulse and torque) applied by joint j, generalized mo-

mentum (momentum and angular momentum) of body a, and generalized velocity

(velocity and angular velocity) of body a. The impulse from joint j experienced by

body a is then sajjj . The change in angular momentum of body a due to this impulse
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is

∆pa =

(

∆p̂a

∆L̂a

)

=

(

saj ̂j

saj ̂τ a + raj × saj ̂j

)

= saj

(

δ 0

r∗aj δ

)(

̂j

̂
τ j

)

= Ĝajjj

where

Ĝaj = saj

(

δ 0

r∗aj δ

)

is that matrix that gathers joint impulses to rigid bodies. The velocity change pro-

duced by this momentum change is

∆va =

(

∆v̂a

∆ω̂a

)

=

(

m−1
a ∆p̂a

I−1
a ∆L̂a

)

= M−1
a ∆pa Ma =

(

maδ 0

0 Ia

)

.

Finally, this produces a change in the relative body velocity at the joint location

∆vj =
∑

a

saj

(

∆v̂a +∆ω̂a × raj

∆ω̂a

)

=
∑

a

saj

(

δ r∗Taj

0 δ

)(

∆v̂a

∆ω̂a

)

=
∑

a

ĜT
aj∆va.

The operator ĜT
aj then scatters the rigid body velocity changes to joints. Note the

transpose relationship between the impulse gather and velocity scatter. This is a

recurring theme in this thesis and in mechanics more generally. Assembling these

steps together results in

∆vj = (ĜT
ajM

−1
a Ĝaj + ĜT

bjM
−1
b Ĝbj)jj

being the relative velocity change at the location of joint j resulting from an impulse

jj applied at that location. This is the same form that was obtained in [168]. This

equation shows how to choose an impulse such that a desired relative joint velocity

is obtained. For a fully constrained joint (two rigid bodies fused together), it should

be the case that

vj +∆vj =
∑

a

ĜT
aj(va +∆va) = 0,

where vj is the relative velocity of the parent and child bodies at the location of joint
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j. That is, the desired relative velocity is zero. This statement is not true for more

general joints, since relative motion in some directions is unconstrained. The velocity

constraint leads to

∑

a

ĜT
aj(va +∆va) = 0

∑

a

ĜT
aj∆va = −

∑

a

ĜT
ajva

∑

a

ĜT
ajM

−1
a Ĝajjj = −

∑

a

ĜT
ajva

(ĜT
ajM

−1
a Ĝaj + ĜT

bjM
−1
b Ĝbj)jj = −ĜT

ajva − ĜT
bjvb

The final body velocities are obtained as

vn+1
a = va +∆va = va +M−1

a Ĝajjj .

Next, we turn to the velocity change that is desired. Let Pj be the projection that

removes degrees of freedom that the joint j does not constrain. For a rigid joint, for

instance, Pj = δ. For a joint that permits arbitrary rotation but prevents translation,

Pj =

(

δ 0

0 0

)

. Note that this is not the convention taken in [168], which defines Pj

such that it removes degrees of freedom rather than simply projecting them out.

While it is advantageous to implement this operator by removing degrees of freedom,

thus removing the nullspace from the system and making it smaller, we retain the

degrees of freedom for convenience. In our case, P2
j = Pj = PT

j . Following [168]

we project the torque to avoid applying torque in free directions, and we project the

relative joint velocity to ignore relative velocity in directions that are unconstrained

and should therefore not be eliminated by the impulse. The new system and update

rule are

∑

a

PjĜ
T
ajM

−1
a ĜajPjjj = −

∑

a

PjĜ
T
ajva vn+1

a = va +M−1
a ĜajPjjj
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Finally, let Gaj = ĜajPj for convenience. Then, system and update rule are

∑

a

GT
ajM

−1
a Gajjj = −

∑

a

GT
ajva vn+1

a = va +M−1
a Gajjj .

C.1.2 Linear System

For multiple joints and bodies, (C.1) must be changed slightly. Rigid bodies move in

response to the net torque applied to them, so that

∆pa =
∑

j

Ĝajjj.

Then, (C.1) becomes

∑

a

GT
ajM

−1
a

∑

g

Gagjg = −
∑

a

GT
ajva vn+1

a = va +M−1
a Gajjj,

where f and g both represent joints.

Next we extend this to a full system of rigid bodies and joints. Let v be the vector

of generalized velocities with an entry va for each body a. Let j be the vector of

generalized impulses with one entry jj for each joint j. Let G be the block matrix

whose blocks are Gaj . Finally, let M be the block diagonal matrix whose diagonal

blocks are given by Ma. (C.1) now takes the elegant form

GTM−1Gj = −GTv vn+1 = v +M−1Gj.

Note that this is almost identical to the pressure projection for fluids, which took the

form

GTM−1Gp̂ = GTu∗ un+1 = u∗ −M−1Gp̂.

Besides the use of G for the gather matrix, this similarity is not coincidental. Both

systems represent a velocity projection to satisfy a linear velocity constraint.
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C.1.3 Early Termination

The similarity of the post-stabilization system and the fluids pressure system is conve-

nient for another reason. The pressure system can be formulated as choosing impulses

j to minimize the kinetic energy of the system (See [16] and Section 5.9). That is,

KE =
1

2
((vn+1)TMvn+1

=
1

2
(v +M−1Gj)TM(v +M−1Gj)

=
1

2
vTMv + vTGj +

1

2
jTGTM−1Gj

0 =
∂KE

∂j

=
∂

∂j

(

1

2
vTMv + vTGj+

1

2
jTGTM−1Gj

)

= GTv +GTM−1Gj

GTM−1Gj = −GTv

This is just (C.1). The conjugate gradient solver has the property that chooses its

iterates within each Krylov subspace to minimize the quantity GTv + GTM−1Gj

(and thus the kinetic energy, since 1
2
vTMv does not depend on j). This is interesting

because it tells us that if (unpreconditioned) conjugate gradient is used to solve this

system, then the total kinetic energy of the system will not increase, even if the

conjugate gradient solver is terminated early.

Unfortunately, this property is unlikely to be retained if preconditioning is used.

Indeed, if S is the preconditioner, a symmetric and positive definite operator typically

chosen such that S(GTM−1G) ≈ δ, then the quantity being minimized at every

iteration is

S
1
2GTv + S

1
2GTM−1GS

1
2 j.

This is unfortunate, as convergence with conjugate gradient can be quite poor in

practice. Note that a similar argument can be made for the pressure solve in a

typical Navier-Stokes solver.
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C.2 Global Pre-stabilization

Let φ be the function that maps from generalized velocities to frames,

φ(v) = φ

(

v̂

ω̂

)

=

(

v̂

eω̂
∗

)

.

Note that in last expression, the “vector” really contains a vector v̂ and a matrix

eω̂
∗

. The block vector notation is only used for convenience. The frame that this

“vector” represents is described by its effect on a vector z. In particular, a frame has

the affect of transforming a vector z according to

Fz =

(

x

R

)

z = Rz+ x,

where it is assumed that R is a rotation matrix. Let ψ be a suitable inverse function

(ignoring branches) such that φ(ψ(F)) = F. This function is given by

ψ(F) = ψ

(

x

R

)

=

(

x

[lnR]

)

,

where [lnR] is meant to indicate that the vector u is chosen, where u∗ = lnR, or

alternatively R = eu
∗

.

Consider two rigid bodies with frames Fa and Fb. Ignoring the usage of higher

order orientation evolution, the desired frames to which the bodies will evolve are

Fa⋆ = φ(∆tva)Fa and Fb⋆ = φ(∆tvb)Fb. Let the joint to parent (body a) and

child (body b) frames be Fp and Fc. The frame from joint-parent to joint-child is

Fj = Fc
−1Fb

−1FaFp (see [169]). Evolving Fa and Fb to Fa⋆ and Fb⋆ results in the

modified joint frame F̂j = Fc
−1Fb⋆

−1Fa⋆Fp. Since the goal is to fix the joint frames

to respect the joint constraints, the frame F̂j is corrected by projecting out invalid

displacements. Pre-stabilization is supposed to choose impulses to target these new
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joint frames. Then,

F̂j = Fc
−1Fb⋆

−1Fa⋆Fp

Fb⋆
−1Fa⋆ = FcF̂jFp

−1

FcF̂jFp
−1 = (φ(∆tvb)Fb)

−1φ(∆tva)Fa

FbFcF̂jFp
−1Fa

−1 = φ(∆tvb)
−1φ(∆tva)

≈ φ(∆tva −∆tvb)

vrel ≈ ∆t−1ψ(FbFcF̂jFp
−1Fa

−1)

This is the desired relative joint velocity for one joint. These form the right hand side

of a coupled solve for pre-stabilization. The system is otherwise formed as described

in Section C.1.2. This still leaves the question of whether the projections P should be

included in pre-stabilization. Since impulses along free directions, though small, will

likely cause longterm noticeable effects, the projections should probably be included

P as they are for pre-stabilization. Note that the pairwise algorithm of [169] does not

consider the possibility of projecting during pre-stabilization in this way.

There are two sources of error in this pre-stabilization formulation. The first is in

the assumption of first order evolution rather than the second order evolution that

will actually be used. This approximation is reasonable since it is a second order

error, and there is a second source of error anyway. This second error comes from

the approximation φ(∆tvb)
−1φ(∆tva) ≈ φ(∆tva − ∆tvb). It remains to show that

this error is also second order. First, it is useful to recall two algebraic properties of

frames, which can be derived by noting their operation on a vector z

(

xa

Ra

)(

xb

Rb

)

=

(

xa +Raxb

RaRb

) (

x

R

)−1

=

(

−R−1x

R−1

)

.

Then,

(

xa

Ra

)−1(

xb

Rb

)

=

(

−R−1
a xa

R−1
a

)(

xb

Rb

)

=

(

−R−1
a xa +R−1

a xb

R−1
a Rb

)

=

(

R−1
a (−xa + xb)

R−1
a Rb

)
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Next, we compute a Taylor expansion of φ(∆tva −∆tvb).

φ(∆tva −∆tvb) = φ

(

∆tv̂a −∆tv̂b

∆tω̂a −∆tω̂b

)

=

(

∆tv̂a −∆tv̂b

e∆tω̂∗

a−∆tω̂∗

b

)

≈
(

∆tv̂a −∆tv̂b

δ +∆t(ω̂∗
a − ω̂∗

b)

)

This is followed by the Taylor expansion of φ(∆tvb)
−1φ(∆tva).

φ(∆tvb)
−1φ(∆tva) = φ

(

∆tv̂b

∆tω̂b

)−1

φ

(

∆tv̂a

∆tω̂a

)

=

(

∆tv̂b

e∆tω̂∗

b

)−1(

∆tv̂a

e∆tω̂∗

a

)

=

(

e−∆tω̂∗

b (∆tv̂a −∆tv̂b)

e−∆tω̂∗

be∆tω̂∗

a

)

≈
(

∆tv̂a −∆tv̂b

δ +∆t(ω̂∗
a − ω̂∗

b)

)

where second and higher order terms have been dropped. We see that the two ex-

pansions agree to first order.

The resulting global pre-stabilization scheme produces only a first order correction

to the positional error and must be iterated to convergence. In practice, a few it-

erations of this procedure typically suffice, since it tends to converge rapidly. Note

that unlike the pairwise approach, this global approach does not utilize limiters and

may therefore diverge. Though it may (and occasionally will) diverge if very large

errors are present, the method seems to be fairly robust in practice, even when large

numbers of bodies, loops, and joints are present and the rigid bodies are started in a

scrambled configuration.
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