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Abstract

We present a method for applying implicit forces on a Lagrangian mesh to an Eulerian discretization
of the Navier Stokes equations in a way that produces a sparse symmetric positive definite system. The
resulting method has implicit and fully coupled viscosity, pressure, and Lagrangian forces. We apply our
new framework for forces on a Lagrangian mesh to the case of surface tension force, which when treated
explicitly leads to a tight ∆t = O(∆x3/2) time step restriction. By applying surface tension as an implicit
Lagrangian force, the resulting method benefits from improved stability and the ability to take larger time
steps. The resulting discretization is also able to maintain parasitic currents at low levels.

1. Introduction

Surface tension is a significant force in many phenomena, generally becoming more significant as features
decrease in size. It plays a vital role in the dynamics of water droplets and bubbles, where the shape becomes
increasingly dominated by surface tension forces as the size decreases. The foundations of surface tension
simulation began with smeared δ-functions applied to interface maintained by front tracking [53], volume of
fluid [4], and level sets [5, 46]. Another interesting early work on surface tension is [24]. Since then, a wide
variety of different formulations have been investigated, and the difficulties posed by surface tension have
been studied and increasingly understood.

Surface tension is subject to a tight ∆t = O(∆x3/2) time step step restriction, and a significant number
number of approaches have been considered for alleviating it. The early approach of [23] started from a
CSF formulation and worked out how the curvature changes in time to derive an implicit formulation of
surface tension. This was followed up by [25], which used a simplified formulation that also added additional
damping along the interface. The approaches of [43, 55, 56] (see also [10]) improve stability by adding and
subtracting a Laplacian, effectively introducing additional viscosity to the fluid. There has also been work
on improving stability with VOF-based surface tension schemes [45, 33].

The tendency for surface tension to produce parasitic currents is well known in the literature. [27] aimed
to eliminate parasitic currents in the second gradient formulation of surface tension at the cost of momentum
conservation. Methods based on delta-function require careful attention to produce accurate results, as even
O(1) errors may result if not implemented carefully, a point which has been noted for example in the context
of length computation [44, 11, 49]. In [28], it was noted that parasitic currents when using a regularized
delta function formulation were found to be three orders of higher than were obtained from a formulation
handling surface tension as pressure jump across a sharp interface using the ghost fluid method. [15] showed
that enforcing a balance between the pressure and the surface tension in a manner similar to the ghost fluid
method was important. [16] also found that balancing the pressure with surface tension forces resulted in a
more accurate formulation. [18], based on [19], proposed using XFEM to formulate a discontinuous pressure
jump as well. See also [6, 7, 14]. Following these observations, we take a sharp-interface approach to applying
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surface tension, addressing accuracy through careful attention to the force balance between surface tension
and pressure.

We develop a method for implicit surface tension based on a discretizing the Laplace Beltrami operator
on a Lagrangian mesh, which we couple it to an otherwise Eulerian discretization. The resulting scheme is
very similar in form to CSF schemes, but we are able to take advantage of the flexibility in mapping between
degrees of freedom to reduce the severity of parasitic currents to levels comparable to those in [28]. While we
formulate surface tension as a force, our surface tension discretization can also be formulated as a pressure
jump.

We explore two approaches to maintaining our interface: level sets and front tracking. For a good review
on front tracking, see [50]. Front tracking has the advantage that it is relatively easy to treat implicitly and
is conveniently compatible with our treatment of surface tension through a Lagrangian surface mesh. See
for other examples of implicit front tracking [32], which evolves an elastic membrane implicitly using and
Jacobian-free Newton Krylov method solver, and [47], which uses the Jacobian-free Newton Krylov method
to implicitly update control points.

2. Eulerian Navier Stokes Equations with Forces on a Lagrangian Mesh

2.1. Navier Stokes Equations

In this paper, we consider the Eulerian form of the incompressible Navier Stokes equations,

ρ

(

∂~u

∂t
+ (~u · ∇)~u

)

= −∇p+ µ∇2~u+ ~fρ (1)

subject to the incompressibility constraint

∇ · ~u = 0. (2)

Here, ~u is the fluid velocity, p is the pressure, µ is the dynamic viscosity, ρ is the density, and fρ is an
additional force density. Later, fρ will be a surface tension force.

Our spatial discretization is based on a standard Marker and Cell (MAC, [20]) grid discretization. Chorin
splitting [9] is used to separate the advection term and explicit forces from the pressure and implicit forces.
We apply advection to obtain an intermediate velocity

ρ~u⋆ = ρ~un −∆tρ(~u · ∇)~u+∆t ~fρ1, (3)

which is applied with 3rd order Runge Kutta [40] and 3rd order Hamilton Jacobi ENO [36]. The pressure
and implicit forces are discretized as

ρ~un+1 = ρ~u⋆ −∆t∇p+∆tµ∇2~un+1 +∆t ~fρ2. (4)

It will be convenient to work in a fully-discretized and volume-weighted form, which is accomplished by first
multiplying through by the cell volume V . The equations now take the form

βun+1 = βu⋆ −∆tGp−∆tV −1µG̃T
µ G̃µu

n+1 +∆tf . (5)

Here, u represents a vector of velocity degrees of freedom, β = V ρ is a diagonal matrix whose entries are the
lumped fluid masses at faces, G = V∇ is the discretized, volume-weighted pressure gradient, G̃µ = V∇ is
the discretized, volume-weighted velocity gradient, p the vector of pressures, and f is the vector of implicit
forces V ~fρ2 an additional force. Finally, dividing by β and letting Gµ =

√

∆tV −1µG̃µ and p̃ = ∆tp for
notational convenience,

un+1 = u⋆ − β−1
Gp̃− β−1

GT
µGµu

n+1 +∆tβ−1
f . (6)

The corresponding incompressibility constraint is

GTun+1 = 0. (7)
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2.2. Structure Equations

Although an Eulerian framework is used for evolution, occasional references will be made of the evolution
equations for structure as well. We use a traditional Lagrangian approach is used for structures, where we
solve the equations ˙̂x = v̂ and M̂ ˙̂v = f̂ . Here, the quantities x̂ and v̂ are the vectors containing the position
and velocity degrees of freedom for all of the Lagrangian particles, and M̂ is the mass matrix. It suffices for
our purposes to consider elastic forces, where the force f̂ is defined in terms of a potential energy as f̂ = −∂φ

∂x̂ ,
where φ is a potential energy function that is a function of only the positions x̂.

One particularly simple and stable way of evolving these equations is via backward Euler. In this case,
one solves

x̂n+1 = x̂n +∆tv̂n+1, (8)

v̂n+1 = v̂n +∆tM̂−1f̂n+1. (9)

Taking the first order approximation f̂n+1 = f̂n + ∂ f̂n

∂x̂ (x̂n+1 − x̂n) + ∂ f̂n

∂v̂ (v̂n+1 − v̂n) = f̂n +∆t ∂ f̂
n

∂x̂ v̂n+1 =

f̂e + D̂v̂n+1, since f̂n+1 does not have explicit velocity dependence. fe and D̂v̂n+1 represent the explicit and
implicit portions of the force, respectively. The backward Euler update now takes the form

x̂n+1 = x̂n +∆tv̂n+1, (10)

v̂n+1 = v̂n +∆tM̂−1(f̂e + D̂v̂n+1). (11)

D̂ = ∆t∂ f̂
n

∂x̂ = − ∂2φ
∂x̂∂x̂ is symmetric since it is a second derivative. In practice, D̂ will often be negative

definite. This is the case for the surface tension force considered in this paper. Note that D̂ contains the
factor ∆t, so that the damping forces due to the implicit force treatment vanish under temporal refinement.

2.3. Framework for Forces Discretized on a Lagrangian Mesh

Consider a single particle whose motion is computed from the velocities stored on an Eulerian grid. This
particle does not have any real degrees of freedom, and they do not have mass. In general, these particles
may be on the surface of a fluid region or in the interior. The Lagrangian velocities v̂, a vector containing
the velocities for all Lagrangian particles, are defined in terms of the vector of all Eulerian velocities u by
the relation

v̂ = Hu, (12)

where H is some linear operator that interpolates Eulerian velocities to Lagrangian velocities. For clarity,
use hats through this paper to indicate that quantities are defined on the Lagrangian degrees of freedom.

The force f in Eq. (6) is discretized over the Eulerian degrees of freedom. We would like to instead add a

force f̂ which is discretized over the new Lagrangian degrees of freedom. Let P be the power (work per unit
time) performed by applying a force f to fluid moving with velocity u. That is, P = fTu. In this case, we
computed the power using the Lagrangian degrees of freedom. Computing it instead from the Lagrangian
degrees of freedom produces P = f̂T v̂ = f̂THu = fTu. Since v̂ and f could have been arbitrary, it follows
that

f = HT f̂ . (13)

Two variables whose inner product produces the work (or a related quantity like power) are said to be work
conjugates. The above derivation can be considered an application of the principle of virtual work, a powerful
tool that is describe in more detail in [3]. The operator HT is a conservative force distribution operator. In
general, whenever H is an interpolation operator from one set of degrees of freedom to another, the operator
H can be used to distribute forces from the second set of degrees of freedom to the first.

Since the motion of the Lagrangian degrees of freedom is dictated by fluid motion, one could compute an
effective mass for the Lagrangian particles. Observe that the velocity change of Eulerian degrees of freedom
∆u due to force defined in terms of Lagrangian degrees of freedom is ∆u = ∆tβ−1f = ∆tβ−1HT f̂ . The
velocity change of Lagrangian degrees of freedom ∆v̂ due to force defined in terms of Lagrangian degrees of
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freedom is ∆v̂ = H∆u = ∆tHβ−1HT f̂ = ∆tM̂−1f̂ , so that M̂−1 = Hβ−1HT is the effective mass of the
Lagrangian degrees of freedom.

In constitutive mechanics, Lagrangian forces for constitutive models have elastic and damping compo-
nents. These components are typically assumed to take the form f̂ = f̂e + D̂v̂ [3]. Here, f̂e is the explicit

force and D̂ is the symmetric negative semidefinite damping matrix. The non-advective portion of the Navier
Stokes equations now takes on the form

un+1 = u⋆ − β−1
Gp̃− β−1

GT
µGµu

n+1 +∆tβ−1
HT f̂e +∆tβ−1

HT D̂Hun+1. (14)

Observe that the implicit component of the additional force has the same form as the viscosity term. The
explicit portion of the surface tension force goes in ~fρ1, and the implicit part goes in ~fρ1. Eq. (3) and Eq. (4)
can be written (in fully discretized form) as

u⋆ = un −∆tA(u) + ∆tβ−1HT f̂e (15)

and

un+1 = u⋆ − β−1Gp̃− β−1GT
µGµu

n+1 +∆tβ−1HT D̂Hun+1, (16)

where A(u) is the discretized advective term. We have effectively constructed a methodology for formulating
arbitrary forces on a set of Lagrangian degrees of freedom in a way that results in a purely Eulerian problem
and such that the linearized force terms take on the form as the viscosity term. The framework of [37] allows
one to construct a symmetric and positive definite system where viscosity is applied implicitly and coupled
to the pressure projection. Since we have expressed the implicit portion of the Lagrangian forces in the same
form, we can implicitly compute the pressure, viscosity, and Lagrangian forces in a way that is fully coupled
and produces a symmetric and positive definite system. We assemble this system in Section 2.6.

This combination is particularly appealing in the case of surface tension. Both surface tension forces
and pressure forces are stiff, and they are frequently in a delicate balance. This point is exemplified by the
classical and important situation of a stationary circle, which is considered in Section 4.2. If surface tension
is treated explicitly or in an implicit step separate from pressure, the surface tension force and the pressure
force will be only weak coupling. The proposed method, by contrast, produces strong coupling between
surface tension and pressure.

2.4. Fluid-Structure Interaction Equations

The derivation in Section 2.3 for applying forces on a Lagrangian mesh to an Eulerian simulation can
also be obtained directly by considering the case of fluid-structure interaction where the Lagrangian forces
are applied to a Lagrangian structure which is in turn coupled to an Eulerian fluid. The equations for fluid-
structure interaction are constructed from the equations of fluid dynamics and structure mechanics by the
addition of a contact constraint, which is enforced through a momentum exchange. The contact constraint
ensures that the relative velocity between fluid and structure is zero at a set of constraint locations. In [37]
these constraint locations were placed at fluid faces near the fluid-structure interface. The contact constraint
can be written Ĵv̂n+1 = Wun+1, where Ĵ is the matrix that interpolates structure velocities to constraint
locations and W is the matrix that interpolates fluid velocities to constraint locations. The constraint is
enforced by exchanging impulses λ between the structure and the fluid at the constraint locations. As noted
in Section 2.3, since fluid velocities are interpolated to the constraint locations with W, the impulses λ
should be applied back to the fluid using WT . This produces the modified fluid equation,

βun+1 = βu⋆ −Gp̃+WTλ, (17)

Where for simplicity the viscosity term is ignored. An equal and opposite impulse is applied to structure
similarly using ĴT . The modified structure equation is

M̂v̂n+1 = M̂v̂⋆ +∆tf̂e +∆tD̂v̂n+1 − ĴTλ. (18)
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Finally the fluid-structure interaction equations are

βun+1 = βu⋆ −Gp̃+WTλ (19)

M̂v̂n+1 = M̂v̂⋆ +∆tf̂ +∆tD̂v̂n+1 − ĴTλ (20)

GTun+1 = 0 (21)

Ĵv̂n+1 = Wun+1 (22)

For more details see [37], noting that our definition of Ĵ corresponds to their WĴ.

2.5. Derivation from Fluid Structure Interaction

Consider the FSI coupling equations in Section 2.4, if Ĵ was an invertible matrix, it would be possible
to eliminate v̂n+1 from Eq. (20) by solving Eq. (22). Normally, however, Ĵ will not be an invertible matrix.

In this case, it is still possible to express v̂n+1 as the sum of two vectors, one (ĴTψ) in the range of ĴT

and one (v̂′) orthogonal to it. There will in general be many suitable choices for ψ, since ψ could contain

components in the nullspace of ĴT . The vector ψ is selected to be the unique solution with minimum norm.
The quantity ψ is defined at the constraint degrees of freedom. With this, v̂n+1 can be written as

v̂n+1 = ĴTψ + v̂′ Ĵv̂′ = 0, (23)

The vector ψ can now be eliminated. Substituting Eq. (23) into Eq. (22) produces ĴĴTψ + Ĵv̂′ = Wun+1,
which simplifies to

ĴĴTψ = Wun+1 (24)

using Eq. (23). The minimum norm solution to Eq. (24) is obtained by taking the pseudoinverse, denoted
by ·+.

ψ = (ĴĴT )+Wun+1 (25)

Substituting Eq. (25) into Eq. (23) produces

v̂n+1 = ĴT (ĴĴT )+Wun+1 + v̂′ = Hun+1 + v̂′, (26)

where the definition
H = ĴT (ĴĴT )+W (27)

has been used. The operator H maps fluid velocities to solid velocities and behaves as an interpolation oper-
ator. The operator W interpolates fluid velocities to constraint degrees of freedom, and Ĵ interpolates solid
velocities to constraint degrees of freedom. The operator ĴT (ĴĴT )+ is almost the inverse of the interpolation

operator Ĵ. Indeed, (ĴĴT )(ĴĴT )+ is as nearly an identity matrix as is possible.
Next, decompose λ using a similar orthogonal decomposition

λ = Ĵξ̂ + λ′ ĴTλ′ = 0, (28)

where this time ξ̂ is located at Lagrangian velocity degrees of freedom. As before, ξ̂ is taken to be of
minimum norm, so that it is uniquely determined. Next, ξ̂ is eliminated. Substituting Eq. (28) into Eq. (20)
produces

ĴT Ĵξ̂ + ĴTλ′ = (∆tf̂ + M̂v̂⋆) + (∆tD̂− M̂)v̂n+1, (29)

which can be further simplified and solved using the pseudoinverse to produce

ξ̂ = (ĴT Ĵ)+((∆tf̂ + M̂v̂⋆) + (∆tD̂− M̂)v̂n+1). (30)

Substituting Eq. (30) into Eq. (28) produces

λ = Ĵ(ĴT Ĵ)+((∆tf̂ + M̂v̂⋆) + (∆tD̂− M̂)v̂n+1) + λ′. (31)
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Applying the identity Ĵ(ĴT Ĵ)+ = (ĴĴT )+Ĵ produces

λ = (ĴĴT )+Ĵ((∆tf̂ + M̂v̂⋆) + (∆tD̂− M̂)v̂n+1) + λ′. (32)

Finally, substituting Eq. (32) into WTλ and simplifying with the definition Eq. (27) produces

WTλ = HT ((∆tf̂ + M̂v̂⋆) + (∆tD̂− M̂)v̂n+1) +WTλ′ (33)

Finally, substitute Eq. (33) into Eq. (19),

βun+1 = βu⋆ −Gp̃+HT ((∆tf̂ + M̂v̂⋆) + (∆tD̂− M̂)v̂n+1) +WTλ′ (34)

Rearranging and converting from Lagrangian degrees of freedom to the Eulerian degrees of freedom using
Eq. (26) produces

βun+1 = βu⋆ −Gp̃+HT (∆tD̂− M̂)Hun+1 +HT (∆tf̂ + M̂v̂⋆) +HT (∆tD̂− M̂)v̂′ +WTλ′ (35)

The quantities v̂′ and λ′ are problematic, and it is desirable to choose a discretization so that they vanish.
One way of doing this is to introduce one (independent) coupling constraint per solid degree of freedom.

Then Ĵ is an invertible matrix, and v̂′ and λ′ vanish. This produces the lumped mass formulation

βun+1 = βu⋆ −Gp̃+HT (∆tD̂− M̂)Hun+1 +HT (∆tf̂ + M̂v̂⋆) (36)

This can be placed into a particularly appealing form using the simplifying assumption v̂⋆ = Hu⋆ and the
lumped mass β̃ = β +HTM̂H

β̃un+1 = βu⋆ +HTM̂v̂⋆ −Gp̃+HT∆tf̂ +∆tHT D̂Hun+1 (37)

In the limit of a massless structure, M̂ = 0, and β̃ = β, so that what remains is left with a massless
formulation

βun+1 = βu⋆ −Gp̃+∆tHT f̂ +∆tHT D̂Hun+1. (38)

This massless equation depends only on the ability to eliminate the velocity degrees of freedom using the
contact constraints.

In summary, we have shown that if one there is one constraint per Lagrangian degree of freedom, so that
Ĵ is invertible, then the FSI problem in Eq. (19) through Eq. (22) can be entirely written in terms of the
Eulerian degrees of freedom on the Eulerian mesh with the momentum in v̂⋆ transfered to fluid with HT .
What remains is an Eulerian problem to solve. Eq. (22) is unchanged, but the other three FSI equations
are replaced with Eq. (37). In the event that the Lagrangian mesh is massless, as we propose, then we are
left with Eq. (22) and Eq. (38). This provides legitimacy to the the last two terms in Eq. (14). We can now
revert back to Eq. (7), Eq. (15), and Eq. (16), which also include viscosity, advection, and other forces.

2.6. SPD Linear System

A symmetric positive definite (SPD) system is formed from Eq. (16) and Eq. (7) following the approach

of [37]. If D̂ is symmetric negative semidefinite, there will exist a matrix Ĉ such that ĈT Ĉ = −∆tD̂.

un+1 = u⋆ − β−1Gp̃− β−1GT
µGµu

n+1 − β−1HT ĈT ĈHun+1. (39)

Rewriting this using block matrices produces

un+1 = u⋆ − β−1





GT

Gµ

ĈH





T 



p̃

Gµu
n+1

ĈHun+1



 . (40)
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Eq. (40) can be written more concisely as

un+1 = u⋆ − β−1KT z, (41)

where

K =





GT

Gµ

ĈH



 z =





p̃

Gµu
n+1

ĈHun+1



 . (42)

Left multiplying Eq. (41) by K and rearranging produces

Kun+1 +Kβ−1KT z = Ku⋆. (43)

This can be simplified by using Eq. (7) and noting that

Kun+1 =





GT

Gµ

ĈH



un+1 =





0

Gµu
n+1

ĈHun+1



 =





0 0 0

0 I 0

0 0 I









p̃

Gµu
n+1

ĈHun+1



 = Pz, (44)

where

P =





0 0 0

0 I 0

0 0 I



 (45)

and I is the identity matrix. Substituting Eq. (44) into Eq. (43) produces the final SPD system

(P+Kβ
−1

KT )z = Ku⋆. (46)

This system is symmetric positive semidefinite since it is the sum of two symmetric positive semidefinite
matrices. Note that to make this system SPD, the unknowns must be changed, and this requires that the
damping forces factor. The viscosity factors in a straightforward way. For many force models, including the
surface tension model proposed in this paper, the matrix D̂ factors in a straightforward way as well. Solving
this system produces z, and the desired result un+1 can be obtained by substituting into Eq. (41).

It is possible to characterize its possible nullspace. To do this, assume (P +Kβ−1KT )z = 0. Semidefi-
niteness of each part implies Pz = 0 andKβ−1KT z = 0. Since β−1 is nonsingular, it must be that KT z = 0.
The requirement Pz = 0 leads to

z =





p̃

0

0



 . (47)

The second requirement implies that Gp̃ = 0, which may occur when all Neumann boundary conditions
are imposed. That is, our new system will have a nullspace under the same circumstances as a one-phase
incompressible simulation. Note that if z is a nullspace vector, then zTKu⋆ = 0, so that Eq. (46) remains
consistent even when the system is singular. That is, the right hand side is in the range of the system, so
no projection of the right hand side is required.

2.7. Comments on Extensions to Hybrid Solids

The framework of [42] provides a means of applying forces at locations other than the locations of the
actual degrees of freedom. It does this by introducing a notion of a hard bound particle, which is a particle
whose position and velocity are defined implicitly as a linear combination of the actual degrees of freedom.
This makes it possible, for example, to embed a detailed mesh for resolving collisions inside a coarser and
better-conditioned simulation mesh. If H is the operator that interpolates from velocity degrees of freedom
to the hard bound velocities then the force felt at velocity degrees of freedom due to forces on the hard bound
particles is HT f̂ + HT D̂Hv̂, where v̂ are their Lagrangian velocity degrees of freedom. In each case, the
force is applied by interpolating velocities from real degrees of freedom to extra degrees of freedom using H,
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computing the force over the extra degrees of freedom, and then distributing forces back to the real degrees
of freedom using H. What is different in this case is that our real degrees of freedom are Eulerian rather
than Lagrangian.

There is nothing special about defining Lagrangian degrees of freedom in terms of other degrees of
freedom. Indeed, one could also define Eulerian velocity degrees of freedom in terms of other Eulerian
degrees of freedom or in terms of Lagrangian degrees of freedom. One of the applications proposed in [42] for
the purely Lagrangian form is to stitch together meshes with T-junctions. In the context of a purely Eulerian
simulation, one could use it, for example, to simplify the discretization of adaptive methods. Thus, for an
octree discretization, each refinement level could be discretized independently. Then, where different levels
meet, the coarse face velocities can be defined implicitly in terms of the fine velocity degrees of freedom.
The interpolation in this case can simply be chosen so that the flux measured by the coarse or fine degrees
of freedom agree. This effectively decouples the problem of operator discretization from that of managing
degrees of freedom. Symmetry and definiteness are obtained very easily.

Similarly, one might consider defining Eulerian degrees of freedom implicitly in terms of Lagrangian
degrees of freedom. One might, for example, treat the particles of a fluid implicit particle (FLIP) scheme as
being the real degrees of freedom, with the Eulerian velocities required by the pressure projection step defined
implicitly in terms of the particle degrees of freedom. In this way, the composition of the fluid interpolation
operator and the divergence operator effectively defines a discretization of a Lagrangian divergence operator
over the particle degrees of freedom.

3. Spatial Discretization

Up to this point, we have been working in discrete form but have only described the temporal discretiza-
tion. In this section, we address our spatial discretization. Evolving the proposed scheme requires the
discretization of β, G, H, Ĉ, and G̃µ. We consider both one-phase and two-phase discretizations. Because
the extension to two-phase is straightforward, the one-phase case is considered, and differences in the two-
phase case are discussed as appropriate. In the one-phase case, the fluid region is bounded by a free surface
with a constant exterior Dirichlet pressure boundary condition and a stress-free Neumann velocity boundary
condition.

In the two-phase case, the velocity field is assumed to be continuous across the interface. This simplifies
advection and the discretization of G̃µ, neither of which are the focus of this paper. This assumption is
not a limitation of the proposed technique, as the discretization of G very naturally handles a discontinuous
velocity field, and the remaining operators do not depend on the velocity discretization.

Neither advection nor viscosity play an important role in the proposed algorithm, so their discretizations
are not particularly important. Our advective term is discretized using 3rd order Hamilton Jacobi ENO
[21, 40, 41]. For viscosity in the one-phase case, a standard central differencing discretization of G̃µ is applied
with a simple first order treatment of the Neumann boundary condition at the interface. In the two-phase
case, the velocity field is continuous and standard central differencing is used throughout. The operators
that remain to be discretized are β (Section 3.4), G (Section 3.4), H (Section 3.5), and Ĉ (Section 3.2).

3.1. Lagrangian Degrees of Freedom

In this paper a Lagrangian discretization is used for the purpose of computing surface tension, and
therefore require a discretization of the surface. The details of the surface mesh are not very important,
though for simplicity in discretization both the fluid grid and surface mesh are assumed to be fine enough
to resolve the interface. Two different approaches to maintaining this surface discretization are considered,
each suited to a different underlying interface representation.

3.1.1. Front Tracking

The first approach is to use a front tracking surface mesh [50]. The positions of the interface particles are
evolved using x̂n+1 = x̂n +∆tv̂n+1, where v̂n+1 = Hun+1. In this case, the time evolution of the interface

8



closely resembles backward Euler. If advection and forces on the Eulerian degrees of freedom are ignored,
the fluid update looks like

un+1 = un +∆tβ−1HT f̂e +∆tβ−1HT D̂Hun+1. (48)

Multiplying by H produces

Hun+1 = Hun +∆tHβ−1
HT f̂e +∆tHβ−1

HT D̂Hun+1. (49)

Let M̂−1 = Hβ
−1

HT be the effective mass (inverse) of the structure. Making the approximation v̂n = Hun

(this is not strictly true since H changes each time step as the structure moves through the Eulerian grid)
produces

v̂n+1 = v̂n +∆tM̂−1(f̂e + D̂v̂n+1) = v̂n +∆tM̂−1f̂n+1. (50)

This, along with x̂n+1 = x̂n +∆tv̂n+1, is a backward Euler update for a structure which has surface tension
forces and an effective mass.

A level set is rebuilt from the front tracked surface mesh after each time step to simplify the discretization
of other operators. Since only inside-outside tests will be required of the level set in this case, the signed
distance is computed from the surface mesh exactly for the band |φ| < ∆x to ensure consistency between the
two representations. The remainder of the level set is computed using fast marching [51, 52, 38, 22, 39, 8].

In order to maintain a valid and good quality surface mesh, remeshing is performed whenever necessary.
The remeshing in triggered when any segment has length bigger than 1.5∆x or smaller than .5∆x, where
∆x is the size of an Eulerian grid cell. Then a long segment will be split into two segments by adding a new
point through a third order stencil, − 1

16
X−1+

9

16
X0+

9

16
X1−

1

16
X2. And short segments will be merged into

adjacent segments by deleting points in between until the resulting length is larger than the lower bound.

3.1.2. Level Set Tracked

The second approach considered for maintaining the surface mesh is to compute it from a level set
representation of the interface at each time step. In this case, the particle level set method [12] is used to
evolve the level set. The method used to compute the surface mesh from the level set is similar to marching
cubes [34], but with careful attention paid to accuracy and surface mesh quality. Variations for computing
surface meshes whose nodes are third and fourth order accurate are described. Since the surface mesh will
be used to compute curvature, which is a second derivative, third order accuracy is required to obtain a first
order accurate curvature. We use the fourth order discretization in all of our examples, but we demonstrate
the accuracy of both variations in Section 4.1.

It is convenient to perform marching cubes such that the squares coincide with the fluid grid cells, since
this will produce a mesh that is very convenient for the discretization of G. Unfortunately, the fluid level set
lives at cell centers and must be averaged to nodes. We use the standard fourth order stencil in Figure 1(a),

φj+ 1
2
,k+ 1

2
= −

1

32
(φj−1,k + φj+2,k + φj−1,k+1 + φj+2,k+1 + φj,k−1 + φj+1,k−1 + φj,k+2 + φj+1,k+2)

+
5

16
(φj,k + φj+1,k + φj,k+1 + φj+1,k+1). (51)

These node-centered level set values are used to determine the location of level set crossings and also as part
of the computation of the location of those crossings.

The location of the level set crossing could be computed by constructing an interpolating polynomial
from the node-centered level set. This results in an unnecessarily large stencil, which we would like to avoid.
Instead one can interpolate the cell-centered level set to grid faces using the stencil in Figure 1(b)

φj+ 1
2
,k = −

1

16
(φj−1,k + φj+2,k) +

9

16
(φj,k + φj+1,k). (52)

to provide additional samples for computing an interpolation polynomial.
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− 1

32
− 1

32

(a) Node stencil

− 1

16

9

16

9

16

− 1

16

(b) Face Stencil (c) Third order stencil (d) Fourth order stencil

Figure 1: Level set samples are located at cell centers. These stencils are used to interpolate the level set to nodes (indicated
with circles) and faces (indicated with squares) with the weights shown in the first two diagrams. The other two diagrams
show stencils suitable for computing the location of a level set crossing along a face. The signs at the circled nodes are used to
determine whether a crossing exists. The level set values averaged to the circled and squared locations are used to construct an
interpolating polynomial. The level set crossing is taken to be the zero of this polynomial. The dashed lines and dashed circles
indicate the cells used to compute each interpolated value.

We provide an interpolating polynomial for third order and fourth order. The third order accurate
crossing is obtained from the quadratic formed by interpolating the three points shown in Figure 1(c)

(

0, φj+ 1
2
,k− 1

2

)

(

1

2
, φj+ 1

2
,k

)

(

1, φj+ 1
2
,k+ 1

2

)

. (53)

The third order crossing is obtained by locating a root θ of the interpolating polynomial in the interval [0, 1].
The crossing occurs at the position (1 − θ)x̂j+ 1

2
,k− 1

2
+ θx̂j+ 1

2
,k+ 1

2
. The fourth order accurate crossing is a

obtained from the cubic formed by interpolating the four points shown in Figure 1(d)

(

−
1

2
, φj+ 1

2
,k−1

)

(

0, φj+ 1
2
,k− 1

2

) (

1, φj+ 1
2
,k+ 1

2

)

(

3

2
, φj+ 1

2
,k+1

)

. (54)

The location of the crossing is similarly obtained by locating a root of the interpolating polynomial.
Although two node-centered and three face-centered level set values are available, they cannot be used to

construct a fifth order accurate estimate of the level set crossing since the interpolation of the cell-centered
level set to nodes and faces is only fourth order accurate. There are more face-centered, interpolated level
set values available than are needed, so the stencils are chosen to be symmetric for simplicity and to avoid
possible biasing. Note that using the two averaged node values in constructing the interpolating polynomial
guarantees that a polynomial root will be found whenever the sign tests indicate that a face is crossed by
the interface. A bracketed secant method was used to compute the interpolating polynomial roots.

The resulting mesh is not quite suitable for use with our curvature discretization. The surface may
contain sliver elements, which the curvature discretization is sensitive to, a point which is discussed in more
detail in Section 3.2.1. This is handled by eliminating surface elements whose length is less than 0.1∆x.
Such elements are merged with a neighboring element by removing an endpoint.

3.2. Lagrangian Surface Tension

Let x̂k−1, x̂k, and x̂k+1 be three consecutive vertices on the Lagrangian surface mesh. These points
conceptually lie on a smooth curve γ(s). The curvature of this curve is then given by γ′′ = κn. Let
ℓk− 1

2
= ‖x̂k − x̂k−1‖ and ℓk+ 1

2
= ‖x̂k+1 − x̂k‖ be the lengths of the edges adjacent to x̂k. It will also be

convenient to associate some portion of the surface with each of the vertices on the Lagrangian surface mesh.
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We adopt the convention that a length ℓk =
ℓ
k−

1
2

+ℓ
k+1

2

2
of the surface mesh is associated with point x̂k.

With these definitions, the curvature can be discretized using

(κ̂n)k = (γ′′)k =

x̂k+1−x̂k

ℓ
k+1

2

−
x̂k−x̂k−1

ℓ
k−

1
2

ℓk
(55)

This quantity is also known as the surface Laplacian. Since surface tension results in a pressure jump [p] = σκ

across the interface, the force due to surface tension will be the pressure times the surface area, or

f̂k = σℓk(κ̂n)k = σ

(

x̂k+1 − x̂k

ℓk+ 1
2

−
x̂k − x̂k−1

ℓk− 1
2

)

(56)

Let f̂ = D̂x̂, where f̂ and x̂ are the vectors of forces and positions and D̂ is the matrix given by

D̂k,k = −σ
(

ℓ−1

k+ 1
2

+ ℓ−1

k+ 1
2

)

I D̂k,k+1 = D̂k+1,k = σℓ−1

k+ 1
2

I (57)

with D̂i,j = 0 otherwise. Note that D̂ depends on x̂ through edge lengths. The matrix D̂ is a symmetric,

and one can see that D̂ is in fact negative semidefinite by noting that it can be written as the sum of force
contributions from individual segments,

(

f̂k

f̂k+1

)

= −σℓ−1

k+ 1
2

(

I −I

−I I

)(

x̂k

x̂k+1

)

. (58)

These matrices are symmetric negative semidefinite, so their sum D̂ must also be.
This per-element form of the force is particularly convenient. In the remainder of this section, we focus

on a single surface segment and drop indices where no confusion will result. Let φ be the potential energy
due to surface tension for the element. Recalling that ℓ = ‖x̂k+1− x̂k‖, one may define a tangential direction

for the element t = ℓ−1(x̂k+1− x̂k). The forces due to this segment are related to the potential by f̂k = − ∂φ
∂x̂k

and f̂k+1 = − ∂φ
∂x̂k

. Finally, the potential energy and forces can be written and computed very concisely as

φ = σℓ f̂k+1 = −f̂k = −σt (59)

That is, the potential energy due to surface tension is just a constant times the surface area. As one would
expect, this potential energy is bounded from below. It is interesting to note that the 2D surface tension
force has a form very similar to that of a zero-rest-length spring, whose potential energy is proportional to
its length squared. The force derivatives are given by

∂ f̂k

∂x̂k
=

∂ f̂k+1

∂x̂k+1

= −
∂ f̂k+1

∂x̂k
= −

∂ f̂k

∂x̂k+1

= −
σ

ℓ
(I− ttT ) = −

σ

ℓ
nnT , (60)

where n is the normal vector defined to be orthogonal to t. This resulting system is symmetric and negative
definite. The force derivatives project out and tangential velocity component before computing damping,
and the resulting force acts only in the normal direction. Interestingly, a frozen-coefficient treatment of
edge lengths threats D̂ as constant. This leads to D̂ as an approximation to the force derivatives, which
will damp motion in the tangential direction and apply forces with both normal and tangential components.
Though not the correct force derivatives, this extra damping may actually be desirable in practice. Since
our scheme for handling surface tension uses pressures (see Section 3.5 for more details on why this is so)
and thus effectively discards tangential velocity. This prevents the Lagrangian surface from experiencing
tangential velocity, so tangential damping is unnecessary. As such, the correct force derivatives are used in
our discretization.
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To summarize, a fully implicit treatment and a fully explicit treatment would both compute f̂e from
Eq. (15) as

(f̂e)k = σtk+ 1
2
− σtk− 1

2
ℓk+ 1

2
= ‖x̂k+1 − x̂k‖ tk+ 1

2
=

x̂k+1 − x̂k

ℓk+ 1
2

. (61)

A fully implicit treatment would compute D̂ from Eq. (16) as

D̂k,k = −
∆tσ

ℓk− 1
2

nk− 1
2
nT
k− 1

2

−
∆tσ

ℓk+ 1
2

nk+ 1
2
nT
k+ 1

2

D̂k,k+1 = D̂k+1,k =
∆tσ

ℓk+ 1
2

nk+ 1
2
nT
k+ 1

2

(62)

where

nk+ 1
2
=

(

0 1
−1 0

)

tk+ 1
2
. (63)

A fully implicit treatment would compute Ĉ from Section 2.6 as

Ĉk,k = −Ĉk,k+1 = ∆t

√

σ

ℓk+ 1
2

nT
k+ 1

2

(64)

A fully explicit treatment would compute D̂ = 0 and Ĉ = 0, making it less stable.

3.2.1. Discretization Accuracy

Consider again the three points on the smooth curve γ(s), where s is taken to be the arc length parameter.
Then, ‖γ′‖ = 1 and κ = |γ ′′|. Assume that x̂k−1 = γ(−δ), x̂k = γ(0), and x̂k+1 = γ(βδ). Here, β is fixed
and the refinement δ → 0 is considered. This corresponds roughly to choosing edge lengths which differ by
a factor of β. The first few terms of the Taylor series expansion of the discretization in Eq. (55) are

(κ̂n)k ≈ κn+
β − 1

12
(4κ̇n+ 3κ2t)δ +

β2 − β + 1

12
(2κ̇κt− κ̈n)δ2

+

(

β − 1

576

(

3(β − 1)2κ4 + 8(β2 + 1)(3κκ̈+ 2κ̇2)
)

t−
β − 1

360

(

(4β2 − 5β + 4)κ̇κ+ 6(β2 + 1)
...
κ
)

n

)

δ3,

where that n and t are the normal and tangential directions. There are a few useful observations to make
from this Taylor series. The discretization is first order accurate. When β = 1, so that the surface mesh is
uniformly spaced, the first and third order terms vanish, and the discretization is second order accurate. In
particular, the error coefficient will be reduced if the discretization is approximately uniform.

The special case of a circle is quite interesting. In that case, κ is constant, so that κ̇ = κ̈ =
...
κ = 0. The

series simplifies significantly to

(κ̂n)k ≈ κn+
β − 1

4
κ2δt+

(β − 1)3

192
κ4δ3t. (65)

If the discretization is uniform, these error terms vanish. What is more, the errors are purely in the tangential
direction. Since our discretization of H does not transmit (discretized) tangential impulses, the resulting
tangential force errors do not feed significantly into the rest of the simulation. This additional accuracy in
the case of a circle is observed numerically, and our curvature estimates for a circle correct to roundoff error
for a completely uniform discretization whose vertices lie exactly on the circle.

Next the sensitivity of the proposed discretization to errors in particle locations is considered. Errors
made along the surface mesh correspond approximately to choosing a different β. Since no attempt is made
to keep β = 1, such errors are not a significant problem. This leaves only the sensitivity of the curvature
computation to errors in the normal direction. Consider that three points are chosen on a circle, but the
middle point is displaced slightly in the normal direction. That is

x̂k−1 =

(

r cos θ
−r sin θ

)

x̂k =

(

r(1 + ǫ)
0

)

x̂k+1 =

(

r cosφ
r sinφ

)

. (66)
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Figure 2: Two cells cut by a Lagrangian surface mesh. A face is constructed in each cut cell (shown as a dashed line) connecting
the point where the surface mesh enters the cell and the point where it leaves. These two faces are referred to as coupling faces
and have lengths ℓ5 and ℓ6. There are three cut faces with lengths ℓ2, ℓ3, and ℓ4. Finally, there is one interior face with length
ℓ1 = ∆x. Each cut cell has a pressure, which in this case are labeled pa and pb. In the one phase case, there are Dirichlet
pressure boundary conditions paira and pair

b
outside the coupling faces. In the two phase case, there are additional pressure

degrees of freedom in the outside portion of each cut cell instead, labelled pc and pd, and there are additionally three exterior
faces with lengths ℓ′

7
= ℓ′

8
= ℓ′

9
= ∆x.

As before, it is assume that φ = βθ, where β is held fixed and θ and ǫ are both very small. Then

(κ̂n)k ≈

(

1

r
+

ǫ

βr

(

2

θ2
+

β2 − 12β + 1

12
+

(7β4 + 10β2 + 7)θ2

2880

))

n+
(1− β)(1 − ǫ)θ

192r

(

48 + (1− β)2θ2
)

t

Of particular importance is the term 2ǫ
βrθ2 . Convergence is only possible if this term vanishes under refine-

ment. Since the surface is a circle of radius r, the angle θ is related to the Eulerian grid spacing ∆x by
rθ ≈ ∆x. Then, the error term takes the form 2ǫr

β∆x2 . Since we require the error to be of order O(∆x) or

better for convergence, it is necessary for ǫ = O(β∆x3). This is the level of sensitivity to ∆x that one would
expect from a second derivative. The tolerable error is also sensitive to the irregularity β of the discretization,
and very small elements will result in poor accuracy. For this reason, it is important to avoid sliver elements
in our boundary mesh.

Our discretization of curvature can be obtained from the potential energy in Eq. (59). The Taylor series
expansion of the potential energy discretization along the portion of the curve between γ(0) and γ(s) is

φ ≈ σs−
1

24
σκ2s3 −

1

24
σκκ̇s4. (67)

Since γ(s) is assumed to be parameterized in terms of its arc length, the exact length of this portion of the
curve is s. Thus, the estimate of surface area is second order accurate, which leads to a first order curvature
force. This suggests that if a more accurate curvature force computation is desired, a third or higher order
approximation of the surface area should be sought.

3.3. Eulerian Degrees of Freedom

Our Eulerian discretization is based on a standard MAC grid discretization, but it is altered slightly near
the interface. We refer to any cell through which the interface passes as a cut cell, and we refer to any face
through which the interface passes as a cut face. We refer to cells/faces entirely inside/outside the fluid
as interior/exterior cells/faces. In addition to this, additional fluid degrees of freedom are defined that lie
approximately on the interface, and we will refer to these as coupling faces. These degrees of freedom are
illustrated in Figure 2.

One Phase. In the one phase case, each interior cell and each cut cell contains a pressure degree of freedom,
and each interior face (Figure 2, ℓ1), cut face (Figure 2, ℓ2, ℓ3, and ℓ4), and coupling face (Figure 2, ℓ5 and ℓ6)
contain one velocity degree of freedom. In the case of coupling faces, the velocity degree of freedom is taken
to be directed in the outward normal direction. Outside the coupling faces, there is a Dirichlet pressure.
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Two Phase. In the two phase case, each cut cell contains an inside pressure and an outside pressure. All
other cells contain one pressure degree of freedom. Every grid face and every coupling face contains one
velocity degree of freedom. Note that one may allow the velocity field to support a discontinuity in tangential
velocity by simply providing each cut face with an inside velocity and an outside velocity in much the same
way as is done for pressure. Since surface tension will be applied to the coupling faces, there will be a
pressure jump across this face. Thus, one cannot assume a continuous pressure field, and cut cells must
contain separate inside and outside pressures. As in the one phase case, the velocity degree of freedom for a
coupling face is taken to be directed in the outward normal direction.

3.4. Gradient and Fluid Mass

The volume weighted gradient G and the fluid mass β are required for our discretization. First consider
the two phase case. The mass for a interior or exterior faces is just ρV , where V is the cell volume and ρ is
the density at that face. For a cut face with inside length and density ℓ and ρ and outside length and density
ℓ′ and ρ′ the mass is β = (ρℓ+ρ′ℓ′)∆x. For a coupling face with length ℓ, the mass will be β = 1

2
ℓ∆x(ρ+ρ′).

The one phase case is obtained by letting the exterior be massless, so that ρ′ = 0. Intuitively, each face has
a dual cell associated with it. Some portion of that dual cell may be in the inside region, and some portion
may be in the outside region. The masses above correspond to dividing the dual cell up into inside and
outside portions, simplifying things by making all the pieces rectangular. This discretization of mass is only
first order accurate, since it double-counts mass on the boundary and treats the boundary as linear rather
than computing the mass based on the curvature. A higher order discretization of mass will require a more
detailed and careful treatment.

The weights on the volume-weighted gradient stencil are just the lengths of the faces. The stencil entry
Gfc is positive if the velocity uf represents flow into cell c and negative otherwise. One can think of this as
corresponding to a constant pressure in each (possibly cut) cell. Alternatively, one can think of this instead
in terms of the divergence operator, where the faces are now used to compute the flux into the (possibly cut)
cell.

As an example in the one-phase case, consider the discretization in Figure 2(a), where faces and cells
are labeled with the index of the length or pressure at that location in the figure. Then, β55 = 1

2
ℓ5ρ5∆x,

β66 = 1

2
ℓ6ρ6∆x, and βkk = ℓkρk∆x for 1 ≤ k ≤ 4. The volume-weighted gradient stencil entries are

G1a = ℓ1 = ∆x, G3a = ℓ3, G4a = −ℓ4, G5a = −ℓ5, G2b = ℓ2, G4b = ℓ4, and G6b = −ℓ6.
As a two-phase example, consider the discretization in Figure 2(b). Here, primes indicate quantities

corresponding to the outside phase and subscripts indicate velocity or pressure degrees of freedom. Then,
β55 = 1

2
ℓ5(ρ5 + ρ′5)∆x, β66 = 1

2
ℓ6(ρ6 + ρ′6)∆x, β11 = ℓ1ρ1∆x, βkk = (ℓkρk + ℓ′kρ

′

k)∆x for 2 ≤ k ≤ 4, and
βkk = ℓ′kρ

′

k∆x for 7 ≤ k ≤ 9. The gradient stencil entries are G1a = ℓ1 = ∆x, G3a = ℓ3, G4a = −ℓ4,
G5a = −ℓ5, G2b = ℓ2, G4b = ℓ4, G6b = −ℓ6, G3c = ℓ′3, G4c = −ℓ′4, G5c = ℓ′5, G7c = −ℓ′7 = −∆x, G2d = ℓ′2,
G4d = ℓ′4, G6d = ℓ′6, G8d = −ℓ′8 = −∆x, and G9d = −ℓ′9 = −∆x.

3.5. Eulerian-Lagrangian Interpolation

The role of the velocity interpolation operator H is to interpolate Eulerian velocity degrees of freedom
to Lagrangian degrees of freedom, nothing that HT serves the complementary role of distributing force from
the Lagrangian degrees of freedom back to the Eulerian degrees of freedom. In principle, any interpolation
operator could be used for this purpose, such as one constructed from delta functions. In practice, using
such a discretization with surface tension produces large parasitic currents, and we are lead to formulate H

with the special needs of surface tension in mind. If there are multiple forces on a Lagrangian mesh, each
force can utilize its own discretization of H, so formulating H specifically for one force is not problematic.

Formulating a discretization of surface tension that eliminates parasitic currents entirely is quite difficult.
This task is well beyond the scope of interest, as acceptable results can be obtained even with parasitic
currents, provided their magnitude is kept at a manageable level. There are many sources for parasitic
currents. One source of parasitic currents is simply an inaccurate curvature computation [15]. While our
curvature computation is in general only first order accurate, we have found it to produce acceptable results.
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A more serious source of parasitic currents is related to the ability of the pressure to discretely balance
out surface tension, and this is the issue we seek to address. Consider the case of a static circle, where a
force HT f̂ is produced by surface tension, and a force −Gp̃ is produced by the resulting pressure field to
resist it. The net force on the fluid is HT f̂ −Gp̃. Since the pressure projection step can be formulated as
a kinetic energy minimization problem [1], if the fluid is at rest and a suitable pressure field p̃ exists such

that HT f̂ = Gp̃, then the result of the pressure projection will be to choose such a pressure. The result
would be to produce a zero velocity field. Such a p̃ exists precisely when HT f̂ lies in the column space of
G. This suggests a formulation of the form HT = GH̃T , for some operator H̃, and this is the approach
that was taken. In particular, the force distribution operator HT is formulated directly, leaving the velocity
interpolation operator to be defined by its transpose.

Since the Lagrangian force will be applied to the Eulerian degrees of freedom using the volume-weighted
gradient operator G, the Lagrangian force must be translated to a pseudo-pressure via H̃T . In fact, it is
more straightforward to construct the gradient times pseudo-pressure directly on coupling faces. Our first
step, then, is to define a force density everywhere on the surface. In Section 3.2, the particle x̂k is associated
with a length of the surface equal to half its neighboring segments, so that the force density at the surface
can be defined by

f̂
ρ
k =

f̂k

ℓk
= σ(κ̂n)k, (68)

where as before

ℓk =
ℓk− 1

2
+ ℓk+ 1

2

2
=

‖x̂k+1 − x̂k‖+ ‖x̂k − x̂k−1‖

2
. (69)

The force f̂k was defined in Eq. (56) and (κ̂n)k was defined in Eq. (55). Note that f̂ρk is a vectorial quantity

rather than a pseudo-pressure. This force density f̂ρ is extended from the Lagrangian degrees of freedom to
the entire surface mesh by linear interpolation.

The next step requires the per-cell coupling faces illustrated in Figure 2 as ℓ5 and ℓ6. Let ni be the
area-weighted surface normal for the coupling face in cell i. For cell i, let Si be the list of segments k

of the Lagrangian mesh (with endpoints x̂k and x̂k+1) that intersect cell i, and let αk,i and βk,i, where
0 ≤ αk,i ≤ βk,i ≤ 1, be the barycentric coordinates on the segment k indicating the portion of the segment
contained within the cell i. That is, if αk,i = 0, then x̂k is inside cell i. Otherwise, x̂k+αk,i(x̂k+1− x̂k) is on
the boundary of cell i. Similarly, if βk,i = 1, then x̂k is inside cell i. Otherwise, x̂k+1 + βk,i(x̂k − x̂k+1) is on
the boundary of cell i. With these barycentric weights, the coupling face normal ni and its unit normal are
easily computed as the sum of a subset of the individual area weighted normals from the Lagrangian mesh
as

ni =
∑

k∈Si

(βk,i − αk,i)R(x̂k+1 − x̂k) R =

(

0 1
−1 0

)

ñi =
ni

‖ni‖
. (70)

Next, a force f̂i is computed for the cell by integrating the surface force density over the portion of the
surface in the cell i

f̂i =
∑

k∈Si

∫ βk,i

αk,i

f̂ρ dA. (71)

The volume-weighted gradient of pseudo-pressure Gkcpi in cell i would then be

Gkcpi = ñi · f̂i. (72)

Here, the dot product with ñi removes the tangential components of the force.
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Figure 3: Interpolation from Lagrangian mesh to Eulerian mesh. Force defined on particle p is first distributed onto half length
of its neighboring segments (a). Then the force density will be integrated over every cut segment given relative length ratio, α
and β, of its two cut locations (b). Finally, the integrated force on segments s1, s2 and s3 within a cut cell will be projected
onto the coupling face c given its unit normal nc, and get summed up (c).

For convenience, the explicit form of (HT )i,k, the operator such that (HT )i,k f̂k is the force at the coupling
face in cell i from particle k, is provided as

Hk,i =

(

βk−1,i + αk−1,i

2

)

(βk−1,i − αk−1,i)ℓk
ℓk− 1

2

ñi +

(

1−
βk,i + αk,i

2

)

(βk,i − αk,i)ℓk
ℓk+ 1

2

ñi, (73)

where the convention that αk,i = βk,i = 0 for k 6∈ Si has been used. The first term in Eq. (73) is the
contribution from the edge between x̂k−1 and x̂k, and the second term is the contribution from the edge
between x̂k and x̂k+1. This formula can be interpreted more intuitively. The first term corresponds to a
segment that touches the cell i over some fraction of its length. The vector ñi is the direction over which
the force is applied, and it is determined by the orientation of the Eulerian coupling face. The average
βk−1,i+αk−1,i

2
is the location of the middle of this partial segment. If the portion of the segment in cell i is

near the node k, then βk−1,i and αk−1,i will be larger. If the portion in cell i is closer to the other endpoint,
then the average will be smaller. This distributes more of the pressure force to the segment onto the endpoint
of the segment that is closer. The factor βk−1,i − αk−1,i scales down the area over which the pressure is
applied, and thus the magnitude of the final force, based on the fraction of the segment over which the
pressure from cell i applies. The remaining term is the ratio ℓk

ℓ
k−

1
2

, which is effectively a correction for when

the segments adjacent to particle k are not the same length.
Note that ñi · f̂i guarantees that only the normal component of the force from the Lagrangian mesh will be

transfered back to the fluid, a property entirely consistent with a description of surface tension as a pressure
jump. Substituting HT = GH̃T into Eq. (14) produces

un+1 = u⋆ − β−1G(p̃−∆tH̃f̂e −∆tH̃D̂Hun+1)− β−1GT
µGµu

n+1. (74)

Written in this way, the surface tension force takes the form of a jump in pressure near the interface. Since
HT does not transfer tangential forces, the interpolation operator H will not transfer tangential velocities.
This property is also consistent with surface tension, which is sensitive to the interface location but not
motion tangential to the interface.

3.6. Note on Second Order Neumann Poisson Discretization

Our discretization of gradient and mass in the one phase case is very closely related to the Neumann
Poisson discretization of [35]. Let ℓf be the length of face f and sfc = 1 if the velocity uf represents flow
into cell c, sfc = −1 if the velocity uf represents flow out of cell c, and sfc = 0 otherwise. Let rf = 1

2

if f is a coupling face and rf = 1 otherwise. With these, our gradient is Gfc = ℓfsfc, and our mass is
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βff = rf ℓfρf∆x. In the absence of surface tension or viscosity, the system that must be solved and the
subsequent pressure application are

−GTβ−1Gp̃ = −GTu⋆ un+1 = u⋆ − β−1Gp̃ (75)

In terms of components, this is

−
∑

f,c

Gfc′β
−1

ff Gfcp̂c = −
∑

f

Gfc′u
⋆
f un+1

f = u⋆
f −

∑

c

β−1

ff Gfcp̂c (76)

Substituting in the discretization produces

−
∑

f,c

sfc′sfc
ℓf

ρfrf

p̂c

∆x
= −

∑

f

sfc′ℓfu
⋆
f un+1

f = u⋆
f −

∑

c

sfc

ρfrf

p̂c

∆x
(77)

Our discretization corresponds to a Dirichlet boundary condition. The boundary condition can be converted
into a Neumann condition by prescribing fixed values for the coupling faces, so that those values move to
the right hand side. Assume for simplicity that these velocities are zero. Since only cut and interior faces
remain, rf = 1, and the discretization simplifies to

−
∑

f,c

sfc′
ℓf

ρf

∑

c sfcp̂c

∆x
= −

∑

f

sfc′ℓfu
⋆
f un+1

f = u⋆
f −

∑

c

sfc

ρf

p̂c

∆x
(78)

The Poisson discretization is the same as equation (2) in [35]. The pressure application equation is the same
as that used by [35]. In some sense, our Dirichlet pressure discretization is compatible with the Neumann
pressure discretization in [35]. This also demonstrates that the Neumann discretization can be written in
the form of Eq. (75). This form is particularly useful, since it allows the discretization of [35] to be used with
the FSI formulations of [37]. Given our rather simple choice of the mass at coupling faces, our discretization
will only be first order accurate as mentioned in Section 3.4. We leave it for future work to try to extend
our Dirichlet discretization to second order.

3.7. Note on Second Order Dirichlet Poisson Discretization

The second order Dirichlet Poisson discretization of [17] is used for the sake of comparison. As with with
the proposed scheme, it is implemented within the framework of [37], which requires the discretization to
factor as in Eq. (75). It also requires the application of nonzero Dirichlet boundary conditions, a task not
addressed in [37]. The omission is straightforward to address by adding −β−1Gbcp̃bc to u⋆. Here Gbc is
a continuation of the gradient stencil to include pressures other than the degrees of freedom, and p̃bc are
the corresponding Dirichlet pressures. One may obtain this result by replacing the gradient and pressure
with extended versions that include both degrees of freedom and ghost pressures. Then, the ghost pressure
terms are moved to the right hand side, where it is found that they can be folded into u⋆ as described. It is
important to note that this correction to u⋆ occurs on the system right hand side as well as in the pressure
update equation. The next issue to address is that the pressure jump conditions are not imposed at cells
but rather at the interface location. This is addressed by simply multiplying the appropriate pressure jump
by each entry in Gbc rather than using the same pressure jump for all faces adjacent to the Dirichlet cell as
would occur if ghost pressure jumps were computed, followed by a matrix vector multiply.

The final issue to address is the factorization of the second order Dirichlet Poisson operator. The appro-
priate discretizations are Gfc = sfc∆x and βff = ℓfρf∆x, where ℓ = θ∆x. Indeed, the Poisson operator
GTβ−1G simplifies to

∑

f

sfc′sfc

θfρf
, which is just equation (21) in [17], except that our discretization is volume

weighted and thus scaled by ∆x2.
Implementing this discretization in the context of [37] has an interesting additional benefit. This frame-

work allows us to couple the pressure and viscosity systems, something that could not be done by [28].
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Third Order Interface
N L∞(ǫΓ) order L1(ǫΓ) order L∞(ǫκ) order L1(ǫκ) order
40 1.299 · 10−5 - 3.214 · 10−6 - 3.375 · 10−2 - 9.626 · 10−3 -
80 1.478 · 10−6 3.14 2.838 · 10−7 3.50 2.063 · 10−2 0.71 4.931 · 10−3 0.97
160 1.783 · 10−7 3.05 2.637 · 10−8 3.43 1.065 · 10−2 0.95 2.350 · 10−3 1.07
320 2.230 · 10−8 3.00 2.827 · 10−9 3.22 5.258 · 10−3 1.02 1.127 · 10−3 1.06

Fourth Order Interface
N L∞(ǫΓ) order L1(ǫΓ) order L∞(ǫκ) order L1(ǫκ) order
40 1.295 · 10−5 - 3.012 · 10−6 - 2.876 · 10−2 - 8.497 · 10−3 -
80 8.227 · 10−7 3.98 1.848 · 10−7 4.03 1.425 · 10−2 1.01 4.318 · 10−3 0.98
160 5.179 · 10−8 3.99 1.166 · 10−8 3.99 7.636 · 10−3 0.90 2.043 · 10−3 1.08
320 3.431 · 10−9 3.92 7.468 · 10−10 3.96 3.788 · 10−3 1.01 9.842 · 10−4 1.05

Figure 4: Interface error ǫΓ and curvature error ǫκ for third and fourth order interfaces computed from the function y = sinx.

4. Examples

4.1. Interface and Curvature Accuracy

The purpose of this example is to demonstrate the accuracy of our method for computing the interface
location and for computing the curvature. We use a dimensionless domain [0, 8] × [−2, 2] with resolution
2N ×N . The fluid region is taken to be the portion of the domain such that y ≥ sin(x). We only consider
the portion of the fluid interface that is at least 8∆x from the domain boundary to avoid boundary artifacts.
The initial level set is computed computed numerically to be exactly a signed distance function. Then, the
interface is computed as in Section 3.1.2. In doing so, a number of points (x, y) are for the Lagrangian
surface approximation. We compute the error for each of these points as ǫΓ = |y− sinx|. Then, we compute
the curvature times normal (κ̂n)k from the resulting Lagrangian mesh using Eq. (55). We compute the

error estimate as ǫκ =
∣

∣

∣‖(κ̂n)k‖ − | sinx|(1 + cos2 x)−
3
2

∣

∣

∣. The L∞ and L1 errors for ǫΓ and ǫκ are shown in

Figure 4 for both the third and fourth order interface computations.

4.2. Stationary Circle

Perhaps the most important analytic test that exists for surface tension is that of a sphere in equilibrium.
This example is considered in [25, 27, 45, 28], and we use the parameters of [25]. Our domain is [0, 1]× [0, 1].
Our fluid has the unitless parameters ρ = 104, µ = 1, σ = 1. The circle radius is r = 0.25. The analytic
solution is to have a constant pressure p = σ

r , where the outside pressure is taken to be zero. The velocity
should be zero everywhere, but in practice numerical methods generate nonzero parasitic currents. Both the
L1 and L∞ norms of the velocity error are shown. The L1 error is defined to be 1

N

∑

f |uf |, where f runs
over all faces, uf is the velocity component stored at that face, and N =

∑

f 1. The L∞ error is defined
to be maxf |uf |. In each case, the simulation is run until time t = 5 using a time step ∆t = 0.2∆x, and
all errors are computed at the final time. The results are shown in Figure 5 along with convergence order
estimates. Note that the pressure jump scheme that we have chosen for comparison is known to produce
parasitic currents as much as three orders of magnitude lower than would be achieved from a delta function
formulation [28].

4.3. Oscillating Circle

In this example we consider the problem of a deformed circle oscillating under surface tension. This
problem has been considered elsewhere [45, 13]. The initial configuration consists of a deformed circle
described in polar coordinates by r = s(1 + ǫ cosmθ), where m ≥ 2 is an integer indicating the oscillation
mode, s is the unperturbed radius, and ǫ is the magnitude of the initial perturbation. The approximate
frequency and velocity field in the absence of viscosity (see [31]) are

ω2 =
σ(m2 − 1)m

ρs3
u = −ǫωs

(r

s

)m−1

sinωt

(

cos(1 −m)θ
sin(1−m)θ

)

. (79)
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One Phase Two Phase
Pressure Jump Level Set Front Tracking Level Set Front Tracking

∆x−1 L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞

20 9.40·10−5
3.20·10−4

1.07·10−4
3.70·10−4

1.83·10−7
9.59·10−7

8.57·10−5
2.48·10−4

2.76·10−7
8.32·10−7

40 5.66·10−6
4.73·10−5

5.39·10−6
2.64·10−5

4.41·10−8
3.28·10−7

7.56·10−6
3.33·10−5

3.72·10−8
1.60·10−7

80 4.39·10−7
6.56·10−6

2.38·10−7
2.37·10−6

4.16·10−9
3.11·10−8

1.15·10−7
1.31·10−6

4.90·10−9
1.54·10−8

160 1.58·10−7
1.76·10−6

1.74·10−8
2.71·10−7

5.20·10−10
5.54·10−9

1.04·10−8
1.58·10−7

1.25·10−10
1.33·10−9

Order 3.1 2.5 4.2 3.5 2.9 2.6 4.5 3.6 3.6 3.1

Figure 5: Parasitic current magnitudes for a stationary circle.

We note that this is only an approximate solution, and its accuracy improves as ǫ → 0. Following [13], we
use a dimensionless [0, 1]× [0, 1] domain with dimensionless parameters s = 1

3
, m = 2, ρ = 27, σ = 2

3
, and

µ = 0. Several choices of ǫ are considered. The (approximate) analytic period with these parameters is
π. The first test was run with ǫ = 0.05, where the period of the first oscillation and the x component of
the fluid velocity were determined at the location (0.75, 0.5) at time t = 0.5 to establish convergence. In
the second test, we consider the refinement of ǫ with the resolution fixed to demonstrate convergence to the
analytic analytic solution the solution itself becomes more accurate. Here we determine the period of the first
oscillation, which does not depend on ǫ, and the relative error at time t = 0.5. The relative error is taken to
be the velocity error, computed for each velocity degree of freedom, divided by the (approximate) maximum
analytic velocity magnitude ǫωs| sinωt|. Note that the solution scales down with ǫ, but the relative velocity
does not, so that a decreasing relative velocity error indicates actual convergence.

The results of both tests are shown in Figure 6. The first simulation is a pressure jump formulation
of surface tension applied using a second order accurate Dirichlet boundary condition which we use for
comparison purposes. The second scheme is the proposed method with a surface mesh constructed from the
level set, and the third scheme is the proposed method with a front tracked surface mesh. In the refinement
test, the velocities in all three cases appear to be converging first order to a value around −2.063 · 10−2.
Thus, the three methods are all consistent, at least with each other. Moreover, the pressure jump scheme
is consistently more accurate. This is not particularly surprising, since it uses a second order curvature and
applies it with a second order boundary condition. This test does not indicate convergence to the analytic
solution, as the analytic solution is only approximate. Note that the periods of all three methods are near
the (approximate) analytic value of π, but these values appear to be noisy in all three schemes and no clear
order of convergence can be deduced in any of the schemes. The periods produced for the pressure jump
scheme are very close to the values predicted in [13], which uses essentially the same scheme.

The second test effectively refines the analytic solution to make it more accurate. This allows us to test
that the schemes are converging to the correct results. The decreasing velocity errors indicate that the ana-
lytic solution and the numerical solutions are approaching each other. The velocity errors are approximately
first order for the pressure jump formulation but appear to be less than first order for the proposed method,
suggesting that the proposed schemes are not yet fully in the convergence regime. This fact is even more
evident from the periods. The periods for the pressure jump are converging first order, but they remain noisy
in the proposed schemes. We also observed noisy periods when we tested the pressure jump formulation
with a first order accurate discretization of the irregular Dirichlet boundary condition.

4.4. Rising Bubble–Stability

In this example, we test the stability of our method concerning a rising bubble in a heavier fluid, as
also considered in [25]. We use the same setting as in [25]. The domain sizes [0m, 1m] × [0m, 2m]. The
bubble is given an initial radius of r = 0.2 and is placed at [0.5m, 0.5m]. The density of heavier fluid is
ρwater = 104 kgm−2, and the density of the lighter fluid is ρair = 103 kg m−2. The viscosity of both fluids
is µ = 1 kg s−1. The surface tension coefficient is σ = 0.5 kg s−2. We use a gravity of g = −8× 10−4ms−2.
And we perform computations on a single 80 × 160 mesh. As discussed in [25], the capillary time step
restriction is ∆t = 0.056 s, and they achieved stable results up to ∆t = 2.0 s. We run the same test for both
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Refinement Test
Pressure Jump Level Set Front Tracking

N T u T u T u

50 3.188 −2.074 · 10−2 3.277 −1.916 · 10−2 3.222 −1.945 · 10−2

100 3.192 −2.069 · 10−2 3.289 −1.992 · 10−2 3.224 −2.002 · 10−2

200 3.185 −2.066 · 10−2 3.171 −2.027 · 10−2 3.198 −2.032 · 10−2

Epsilon Test
Pressure Jump Level Set Front Tracking

ǫ T L∞(u) T L∞(u) T L∞(u)
0.05 3.185 5.487 · 10−3 3.171 1.021 · 10−2 3.198 9.712 · 10−3

0.025 3.162 2.277 · 10−3 3.166 5.718 · 10−3 3.180 6.412 · 10−3

0.0125 3.152 8.749 · 10−4 3.203 4.697 · 10−3 3.168 5.532 · 10−3

Figure 6: A deformed circle oscillates under surface tension. The maximum deformation as a fraction of the radius is ǫ. In
the refinement test, the spatial and temporal resolution are increased while ǫ is held fixed to demonstrate convergence of the
numerical methods. In the epsilon test, the deformation is decreased, demonstrating that as the approximate analytic solution
becomes more accurate it approaches the numerical results. The analytic period T in all cases is π.

the level set version and the front tracking version of our method. The results demonstrate good stability
up to ∆t = 3.0 s for both the level set version and the front tracking version. We note that the stability we
attained here is not just limited by our surface tension model but also by the CFL condition imposed by
advection. To demonstrate that, we ran another set of tests using the semi-Lagrangian advection, and we
attain stable results up to ∆t = 7.0 s for both the level set version and the front tracking version.

4.5. Rising Bubble–Convergence

This example tests the convergence behavior under grid refinement concerning a rising bubble. We use
a similar setting as in [28]. The [−.01m, .01m]× [−.02m, .01m] domain is initially filled with water except
for a circular air bubble of radius 1

300
m centered at the origin. The parameters are: g = −9.8ms−2,

σ = .0728 kg s−2, ρwater = 1000 kgm−2, ρair = 1.226 kgm−2. We set the viscosity of both water and air
to be µ = 1.78 × 10−5 kg s−1, since the method presented in this paper cannot handle various viscosity or
viscosity jump in an implicit manner, and also the viscosity plays a negligible role in affecting the dynamics
of this example. The computation was carried out on meshes of size 40 × 60, 80 × 120, 160 × 240 and
320 × 480. Figure 7 and Figure 8 show snapshot results at different times for the level set version and the
front tracking version respectively. We tested the convergence of the interface location at the top middle
and bottom middle and in each case observed convergence consistent with first order.

4.6. Stability

In this example, we probe the stability characteristics of different integration schemes to determine
the effectiveness of our formulation for implicit surface tension at improving stability. In each case, a
[0m, 0.04m]× [0m, 0.04m] domain was used. The fluid of density is 1000 kgm−2, and the surface tension
coefficient is .0728 kgms−2. Since the purpose of this test is to stress the stability of each scheme, we do
not use viscosity. The fluid starts in a circle of radius 0.01m centered within the domain. We test five
schemes. The first scheme is a pressure jump scheme based on [28] which we use for comparison purposes.
The other four are variants on the schemes proposed here. Two have a front tracked interface, and the other
two have a level set interface. Each interface type is run explicitly (without force derivatives) and implicitly
as discussed in Section 3.2. Each scheme is run with a wide range of ∆x and ∆t choices, and in each case it
was noted whether the resulting simulation was stable or unstable when run for 500 time steps. The results
are shown in Figure 9. The pressure jump scheme and the explicit versions of the proposed scheme have
similar stability characteristics. The implicit level set version is noticeably more stable than the explicit
schemes allowing a ∆t approximately 2-3 times larger. The implicit front tracked version is far more stable,
allowing a ∆t approximately an order of magnitude larger. Unlike the implicit level set scheme, the position
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(a) t=0 (b) t=.02

(c) t=.035 (d) t=.05

Figure 7: Rising bubble tests for convergence under grid refinement using the level set method. Grid resolutions: solid line:
40× 60; dash line: 80 × 120; dash-dot line: 160 × 240; dash-dot-dot line: 320 × 480.
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(a) t=0 (b) t=.02

(c) t=.035 (d) t=.05

Figure 8: Rising bubble tests for convergence under grid refinement using the front tracking method. Grid resolutions: solid
line: 40× 60; dash line: 80× 120; dash-dot line: 160 × 240; dash-dot-dot line: 320× 480.
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(e) Front track, implicit

Figure 9: Stability tests for five schemes on stationary circle. The x axis indicates the ∆x used, with more refined simulations
on the right. The y axis indicates the ∆t used, with smaller time steps at the top. A circle indicates a stable simulation, and
an X indicates an unstable simulation.

update used on the front tracked interface corresponds to a backward Euler update, whereas the level set
version has a level set update that differs significantly from the update suggested by the force derivatives.
Thus, it is not surprising to see better stability from the front tracked scheme. This opens up an avenue of
research to produce an implicit level set scheme, which may be used to improve the stability of the proposed
method when the interface is tracked with a level set.

We repeated this on a dynamic configuration. This setup is identical to the first, except that the initial
fluid configuration is an ellipse with major axis 0.011m and minor axis 0.009m. The results are shown in
Figure 10. The results are quite similar to the stationary circle case, though the dynamic nature of the
simulation and the special circle configuration do appear to make a noticeable difference for the implicit
front tracking scheme. Since this example has a nonzero velocity as part of its correct behavior, there will
be a CFL restriction for advection, but all of the methods became unstable before this CFL restriction was
reached.

5. Conclusions and Future Work

We have presented a method for applying implicit forces on a Lagrangian mesh to an Eulerian discretiza-
tion of the Navier Stokes equations. The method leverages the SPD FSI framework of [37] to produce a
sparse symmetric positive definite system. The resulting method has implicit and fully coupled viscosity,
pressure, and Lagrangian forces.

We apply our new framework for forces on a Lagrangian mesh to the case of surface tension force. We
describe two approaches for constructing and maintaining a suitable Lagrangian surface mesh with sufficient
accuracy for accurate second derivatives at the surface. We construct a discretization that is able to reduce
the magnitude of surface tension parasitic currents down to levels comparable to other state of the art
schemes. Finally, we demonstrate the accuracy and enhanced stability of our new method.

Our surface tension discretization is only first order. Nevertheless, many parts are already at second order,
and other parts share many attributes with second order methods, including the use of subcell information.
We leave it for future work to construct a fully second order accurate discretization.

23



 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 5  6  7  8

-l
g

(d
t)

-lg(dx)

unstable
stable

(a) Pressure jump

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 5  6  7  8

-l
g

(d
t)

-lg(dx)

unstable
stable
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(c) Level set, implicit
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Figure 10: Stability tests for five schemes on an ellipse. The x axis indicates the ∆x used, with more refined simulations on
the right. The y axis indicates the ∆t used, with smaller time steps at the top. A circle indicates a stable simulation, and an
X indicates an unstable simulation.

The stability results in Section 4.6 demonstrate drastic improvement in stability for the front tracking
interface but only modest improvement for the level set based interface. This is likely because we update
the front tracked interface in a way that is implicit and similar to backward Euler, whereas the level set
version is updated instead using an explicit particle level set evolution. This suggests that significant stability
improvements could be made by making the level set update implicit in a way compatible with the Lagrangian
surface velocities obtained from the coupled system, and we leave this for future work.

There are many interesting avenues for extending the proposed method, which we leave for future work.
One may extend the method to treat surfactants [48, 30, 26] and foam [29]. Another potential extension is
to problems where a jump in pressure is caused by phenomena other than surface tension, such as an electric
potential [54]. Another potential application is to solving partial differential equations on a surfaces as in
[2].
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