
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2009), pp. 1–10
E. Grinspun and J. Hodgins (Editors)

Energy Stability and Fracture for Frame Rate Rigid Body
Simulations

Jonathan Su† Craig Schroeder† Ronald Fedkiw†

Stanford University Stanford University Stanford University
Intel Corporation Pixar Animation Studios Industrial Light + Magic

Abstract
Our goal is to design robust algorithms that can be used for building real-time systems, but rather than starting
with overly simplistic particle-based methods, we aim to modify higher-end visual effects algorithms. A major
stumbling block in utilizing these visual effects algorithms for real-time simulation is their computational intensity.
Physics engines struggle to fully exploit available resources to handle high scene complexity due to their need to
divide those resources among many smaller time steps, and thus to obtain the maximum spatial complexity we
design our algorithms to take only one time step per frame. This requires addressing both accuracy and stability
issues for collisions, contact, and evolution in a manner significantly different from a typical simulation in which
one can rely on shrinking the time step to ameliorate accuracy and stability issues. In this paper we present a
novel algorithm for conserving both energy and momentum when advancing rigid body orientations, as well as
a novel technique for clamping energy gain during contact and collisions. We also introduce a technique for fast
and realistic fracture of rigid bodies using a novel collision-centered prescoring algorithm.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—, Physically Based Modeling

1. Introduction

Rigid body dynamics have been of great interest to the
graphics community beginning with the early work of
[Hah88, MW88, Bar89, Bar90, Bar91], and optimizing these
algorithms to be more efficient was also of early interest,
see e.g. [Bar94]. More recently, various authors have revis-
ited rigid body simulation, focusing on a variety of phenom-
ena [GBF03, KEP05, KSJP08]. There has also been inter-
est in fracture [BHTF07] and magnetism [TGPS08]. Though
all these rigid body techniques have been highly success-
ful in the visual effects industry, the amount of computa-
tional power they require has prevented their use in real-
time applications. However, when one examines today’s
real-time rendering systems it is clear that modern and next-
generation hardware provides for the rendering of incredibly
complex and detailed scenes in real-time, implying that sig-
nificant computational resources are available. While real-
time rendering systems must only compute once per frame—
making all resources available for handling higher scene
complexity—physics engines typically perform many small
time steps per frame, trading spatial complexity for tempo-
ral complexity. Our stated goal is to simulate rigid bodies
at the frame rate, taking one time step per frame so that we

† e-mail: {jonsu|cas43|fedkiw}@cs.stanford.edu

can simulate as detailed a scene as possible. While any basic
simulation engine could be used as a starting point for this,
we chose [GBF03], emphasizing that many of our ideas for
robustly handling contacts, collisions, rigid body evolution,
etc. could be adapted to other algorithmic frameworks with
relatively little effort.

Numerical simulations are typically designed to converge to
the correct solution as the time step goes to zero. Moreover,
shrinking the time step improves stability, robustness, and
accuracy. Therefore, constraining our simulations to go at
the frame rate will pose problems for almost every part of
the algorithm. [CR98] discusses some known flaws in state
of the art collision models including common misconcep-
tions, mentioning for example that the coefficient of restitu-
tion can be greater than one in frictional collisions. [ST00]
discusses non-unique solutions and the impossibility of pre-
dicting which solution occurs in practice. We further illus-
trate that the standard evolution equations can lead to over-
all energy gain. Obviously, energy should be conserved if
not dissipated due to damage and heat, and since this ef-
fect is highly exacerbated using large time steps (i.e. the
30 Hz frame rate), we propose a novel method for clamp-
ing collisions in order to guarantee that energy does not in-
crease. We note there has been work on energy conservation
with respect to collisions and contact in deforming bodies, as
in [AP98]. Whereas one might debate the correct behavior,

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2009)

2 Su et al. / Energy Stability and Fracture for Frame Rate Rigid Body Simulations

Figure 1: The images above show a prescored pillar being dropped onto the ground with (left) a small time step, (center) a
frame rate time step with no energy conservation, (right) a frame rate time step with energy conservation. During both the small
time step simulation and the frame rate simulation with energy conservation, the small shards highlighted in green behave as
expected. However, in the frame rate simulation with no energy conservation, the green shards bounce non-physically high into
the air.

it is pretty clear from the aforementioned references that this
is not yet understood, and clamping the energy at least leads
towards better plausibility in the sense of [BHW96]. Similar
ideas are needed for processing contact.

Besides the known problems with contact and collision, rigid
body simulations are prone to accuracy errors during evolu-
tion such as energy increase. These errors can be quite un-
acceptable for bodies that are rotating quickly or have ill-
conditioned inertia tensors, such as those often introduced
during simulations of fracturing bodies. These problems are
well known and have been addressed by several authors, in-
cluding [vZS07], who propose a rather complicated analytic
solution to the problem which is still susceptible to instabil-
ity due to round-off errors. [Vil08] instead focused on the
conservation of the first integrals of the system. In the me-
chanics literature, there has been work on energy and mo-
mentum conserving rigid body dynamics, such as one of the
algorithms in [SW91], but this algorithm requires the itera-
tive solution of a fully nonlinear equation and therefore does
not fit well with our goal of efficient simulation. In the same
vein we propose a novel algorithm for conserving kinetic
energy as rigid bodies rotate. In some sense this focus on en-
ergy conservation to provide better stability is analogous to
variational integration, see e.g. [KYT∗06,BRM09,KCD09].

Both virtual environments and video games have found that
their users desire dynamic environments, and one of the
simplest to provide is that governed by rigid body simu-
lation. Whereas a number of systems provide basic rigid
simulation in real time, much of the recent interest is fo-
cused on destruction scenarios. In fact, fracture has been
of great interest to the graphics community for some time
[NTB∗91], and has regained recent popularity via [OH99,
YOH00,OBH02]. Other notable works include the real time
work of [MMDJ01], the virtual node algorithm for decom-
posing meshes [MBF04], and the fracturing of rigid bod-
ies [BHTF07]. One can envision fracturing an object in two
specific ways. The object can be prescored and subsequently
broken apart based on a variety of rules, or one can com-

pute the fracture dynamically using finite element analy-
sis to determine internal stress. Prescoring the material is
faster and thus desirable for real time simulations; however,
a great deal of realism is lost because the object does not
fracture based on the point of impact. We propose a novel
method to prescore all of space, and then subsequently ap-
ply this prescoring in the specific location of impact to gen-
erate the fracture. This avoids the need for expensive al-
gorithms that compute the stress and fracture dynamically
while still breaking the objects based on the point of im-
pact with the efficiency of prescoring. A further benefit of
our approach is that it gives the artist more control over the
fracture patterns without constraining where the fracture is
initiated, i.e. where the collision takes place. (We refer the
reader to a rather interesting paper on generating fracture
patterns [IO06].)

2. Rigid Body Evolution

Simple translation through space is trivially integrated ac-
curately at any time step, whereas orientation is non-linear
and more complex. Typically one solves an ordinary dif-
ferential equation using a scheme written to conserve an-
gular momentum exactly, but kinetic energy is not neces-
sarily conserved. In certain scenarios, a small time step is
needed to guarantee accuracy, and a time step equal to the
frame rate can cause an unacceptable gain in energy. For
well-conditioned bodies with well-behaved inertia tensors
and relatively slow rotations, the second order evolution
suggested in [SSF08] adequately prevents energy growth.
However, for poorly conditioned and rapidly rotating bod-
ies evolved at the frame rate, we have observed energy in-
creases of over an order of magnitude in a single time step
even with higher order evolution. This can lead to significant
and noticeable artifacts, such as those seen in Figure 1.

In order to properly conserve kinetic energy during evolution
one must adjust the angular momentum or the orientation of
the body. Since we desire to conserve momentum as well, we

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2009)

Su et al. / Energy Stability and Fracture for Frame Rate Rigid Body Simulations 3

adjust the orientation. That is, the ordinary differential equa-
tion solver produces errors in kinetic energy and orientation,
and our aim is to adjust those errors in orientation to con-
serve kinetic energy. We do this by analytically rotating the
body to an orientation that has the same kinetic energy as the
initial state. Since we do not change the angular momentum
of the body, it is trivially conserved. Note that while this con-
serves angular momentum and energy, we do not properly
resolve rotation, so the resulting orientations may still be in-
accurate. If objects are moving very rapidly a large time step
may cause collisions to be missed or resolved poorly. That
said, the user is unlikely to notice that a collision occurred a
frame too early or that the body had a slightly incorrect ori-
entation when the collision normal was computed, nor is the
user likely to notice that the body’s orientation is inaccurate.
Errors in momentum and energy, however, tend to produce
noticeable artifacts.

2.1. Energy and Momentum Conserving Orientation

First, we show that there exist many nearby states that have
the same kinetic energy and angular momentum. Consider
the rotational kinetic energy of a body

KE =
1
2

LT I−1L

where L is the angular momentum and I is the inertia ten-
sor. If we change KE over time while keeping the angular
momentum fixed, we have

�
KE=

1
2

LT
�

I−1 L =−1
2

LT I−1 �
I I−1L (1)

Using the orientation R and object space inertia tensor I0,

where I = RI0RT , we can expand
�
I to

�
I=

�
R I0RT +RI0

�
R T =

�
R RT I+ IR

�
R T = u∗I+(u∗I)T

where we defined u∗ =
�

R RT as the cross product matrix for
the vector u which represents our desired change in orienta-
tion. Substituting into (1),

�
KE=− 1

2
LT I−1(u∗I+(u∗I)T)I−1L

=−LT I−1(u∗I)I−1L =−ω
T u∗L =−uT L∗

ω

Since KE is to be conserved,
�

KE= 0 and therefore uT L∗
ω =

0. Thus u must lie in the space spanned by L and ω, or

u = c1ω+ c2L,

where c1 and c2 are constants. Note that in the special case
when L and ω are parallel, u can actually be any vector. In
this case there will be no errors in the trivial integration of
orientation. However, in general we have a two parameter-
family of equations that conserve both angular momentum
and kinetic energy. This suggests that there are many nearby
states (i.e. orientations) that have both the same kinetic en-
ergy and angular momentum.

2.2. Computing the Energy Fix

Let KE be the kinetic energy obtained after evolution

KE =
1
2

LT I−1L =
1
2

LT RI−1
0 RT L

and let KE0 be the kinetic energy that should have been ob-
tained by energy conservation. We would like to adjust the
orientation obtained from evolution to fix the kinetic energy
by replacing R with eu∗R. Let u = εs, with the unit vector s
being the axis of rotation and ε being the amount to rotate.
We set the kinetic energy of the modified post-evolution state
equal to KE0

KE0 =
1
2

LT (eu∗R)I−1
0 (eu∗R)T L

=
1
2
((eu∗)T L)T I−1((eu∗)T L) (2)

Expanding eu∗ where δ is the identity matrix, we get

eu∗ =eεs∗ = δcosε+ s∗ sinε+ ssT (1− cosε)

(eu∗)T L =Lcosε− s∗Lsinε+ ssT L(1− cosε)

=Lcosε− s∗Lsinε

which we can then substitute back into (2) to get

KE0 =
1
2
(Lcosε− s∗Lsinε)T I−1(Lcosε− s∗Lsinε) (3)

=KE cos2
ε−asinεcosε+bsin2

ε

where we have defined a = (s∗L)T
ω and b =

1
2 (s∗L)T I−1s∗L. Note that ε is never used directly but
instead appears only as sinε and cosε. Letting x = cosε and
y = sinε,

KE0 =KEx2−axy+ y2b (4)

Letting c = KE−b and k = KE−KE0, we obtain

axy =k− cy2 (5)

a2(1− y2)y2 =(k− cy2)2

0 =k2− (2kc+a2)y2 + r2y4

where r =
√

c2 +a2. Solving for y2 we get

y2 =
2kc+a2±

√
(2kc+a2)2−4r2k2

2r2

=
1
r2

(
kc+

1
2

a2±a

√
1
4

a2 + k(c− k)

)

=
1

2r2

(
r2− cn±a

√
r2−n2

)
where n = c−2k. Finally, if we let q = a

√
r2−n2, then

y =
ps

r

√
r2− cn+ pbq

2
x =

pc

r

√
r2 + cn− pbq

2
(6)

where we have used ps, pc, and pb (all equal to ± 1) to
indicate signs that must be chosen.

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2009)

4 Su et al. / Energy Stability and Fracture for Frame Rate Rigid Body Simulations

From (4) we note that only the sign of xy, that is ps pc, is
significant. For small angles of rotation, cosε > 0, so we
choose pc = 1. From (5) we choose ps = sgn(k− cy2). In
the limit of very small errors in kinetic energy, the correction
should also be very small, leading to the final sign choice
pb =−sgn(a).

2.3. Numerical Considerations

Direct use of (6) is not recommended. If |k| is near floating
point precision, then no significant error has been made and
no correction is required. Similarly, if the kinetic energy is
sufficiently small, then any energy increase that may have
occurred is irrelevant to the simulation. Let g = a2 +4k(c−
k). If a/KE is very small (not robust), or g < 0 (infeasible
search direction), then a fallback search direction should be
used. Let p = a2 +g+2|a|√g.

x =

√
p+(c+n)2

2r
ŷ =

2|k|√
p+(c−n)2

where y = sgn(k− cŷ2)ŷ.

2.4. Choosing a Rotation Axis

The previous section describes how to compute ε in a way
that conserves the kinetic energy once a direction s is cho-
sen. As discussed in section 2.1, if u is chosen as a lin-
ear combination of ω and L, then kinetic energy is con-
served. The locally optimal direction to choose is orthog-
onal to both, s = L∗

ω/‖L∗
ω‖. This can be seen formally

by noting that the Taylor series expansion of (3) is KE0 =
KE−LT I−1s∗Lε = KE− sT (L∗

ω)ε. The magnitude of the
linear term is optimized by choosing s to be in the direction
of L∗

ω.

One issue with choosing s = L∗
ω is that only the angular

momentum L remains constant as the object is rotated, and
the angular velocity ω changes. Therefore, while s = L∗

ω

was a good choice for an instantaneous and small rotation,
L∗

ω starts changing as the rotation is applied, and the best
choice changes as well. Though locally optimal, this choice
can fail for larger errors, in which case we simply choose a
different s.

At this point we fall back to using s = L∗r, where r is ei-
ther the maximum or minimum principal inertial direction,
depending on the whether the current KE is greater than or
less than KE0. If KE > KE0, then we want to rotate such as
to align L and the largest principal inertial direction, rmax.
In this state, the body has the lowest KE it could possibly
have, so s = L∗rmax. If KE < KE0, then we want to align
L and the smallest principal inertial direction, rmin, and so
s = L∗rmin. Note that since we conserve angular momentum
exactly, and the maximum and minimum possible kinetic en-
ergy with this angular momentum is obtained by rotating in
this way, this method of choosing directions is fail safe.

Figure 2: Collisions and contact behave correctly using our
energy clamping. In this example, we drop several boxes to
form a stack. A larger box then disrupts this stack and scat-
ters the objects.

3. Collision and Contact Clamping

Contact and collision processing with Coulomb friction can
also lead to energy gain, even in the otherwise very well-
behaved example of a cube falling on the ground with a rela-
tively small time step. Of course, taking a large time step ex-
acerbates this problem. This limitation of the Coulomb fric-
tion model is also recognized and addressed in the literature,
such as by replacing the Coulomb friction model with one
that cannot increase energy [CR98]. However, this is insuf-
ficient in the case of collision or contact algorithms such as
that of [GBF03], since position and velocity live at different
points in time when the collision impulse is computed and
applied.

3.1. Clamping in Split States

Many time integration schemes include states where veloc-
ities and positions live at different times, a condition we re-
fer to as a split state. Clamping energy while in a split state
can lead to very bad simulation artifacts. Consider the for-
ward Euler scheme with gravity as the sole force, xn+1 =
xn + ∆tvn, followed by vn+1 = vn + ∆tM−1g. Between the
two updates lies a split state with position ahead of velocity.
If the object is rising, so that xn+1 > xn, one would calculate
an increased potential energy and thus increased total energy
in this split state. Clamping xn+1 to xn removes this energy
gain, but prevents the objects from rising under gravity. Sim-
ilarly, if we consider the same forward Euler scheme com-
puted in the reverse order, vn+1 = vn +∆tM−1g followed by
xn+1 = xn + ∆tvn, we have a similar problem when falling
under gravity. In the split state, we observe an increase in
kinetic energy from gravity and clamp vn+1 to vn, prevent-
ing the object from falling correctly. From these examples,
it is clear that conserving total energy is only meaningful
when comparing non-split states, as momentary changes in

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2009)

Su et al. / Energy Stability and Fracture for Frame Rate Rigid Body Simulations 5

Figure 3: A rigid cube sliding down an inclined plane and
eventually stopping with friction, where the half sphere rep-
resents the analytic solution.
total energy in split states are an inherent property of time
integration schemes that utilize split states.

3.2. Clamping Impulses

In the case of both contact and collision processing, it is im-
portant to note that we do not modify positions. Therefore,
potential energy is left unchanged, and preventing an in-
crease in total energy is equivalent to preventing an increase
in kinetic energy. First, we outline our general strategy for
clamping in a split state, and subsequently explain how it is
applied to both collisions and contact.

Consider two bodies A and B to which an impulse j and an-
gular impulse jτ are to be applied to body A with the nega-
tions applied to body B to conserve momentum. We clamp
the linear and angular impulses by scaling them by ε. Since
kinetic energy is quadratic in velocity and the trivial solution
ε = 0 results in an energy conserving impulse, there will al-
ways exist another real solution ε that can be found as fol-
lows. First, we write the kinetic energy of body A before and
after the impulse is applied, KEa and KE′

a respectively, in
the non-split state.

KEa =
1
2

pT
a m−1

a pa +
1
2

LT
a I−1

a La

KE′
a =

1
2
(pa + εj)T m−1

a (pa + εj)+

1
2
(La + εjτa)T I−1

a (La + εjτa)

where p is the linear momentum, m is the mass, and jτa =
r∗a j + jτ. Note that both j and jτ will be computed in a split
state, and in particular ra will also be computed in that split
state. This simply means that the impulses used to compute
KE′

a will come from a split state computation, but as long as
equal and opposite impulses are applied to each body we will
conserve linear and angular momentum. That is, split state
impulses have no effect on conservation of momentum and
are fairly standard in the literature. However in our kinetic

energy calculation, it is important to view every term in KEa
and KE′

a as existing at a non-split state.

The change in kinetic energy of body A is given by

KE′
a−KEa =ε(jT m−1

a pa + jT
τaI−1

a La)+
1
2

ε
2(jT m−1

a j+ jT
τaI−1

a jτa)

and the total change in kinetic energy including both bodies
is

KE′−KE =ε(jT m−1
a pa + jT

τaI−1
a La− jT m−1

b pb− jT
τbI−1

b Lb)

+
1
2

ε
2(jT m−1

a j+ jT
τaI−1

a jτa + jT m−1
b j+ jT

τbI−1
b jτb)

Setting KE′−KE = 0 to preserve the kinetic energy results
in the trivial solution of ε = 0, as well as the nontrivial solu-
tion

ε =
2(jT m−1

b pb + jT
τbI−1

b Lb− jT m−1
a pa− jT

τaI−1
a La)

jT m−1
b j+ jT

τbI−1
b jτb + jT m−1

a j+ jT
τaI−1

a jτa
.

If ε > 1, then the impulse required to conserve kinetic en-
ergy is larger than the impulse we are applying. This simply
means that Coulomb friction is reducing the kinetic energy
and nothing need be done. If 0 < ε < 1, this means that the
proposed impulse is erroneously increasing the kinetic en-
ergy and thus we scale the impulses by epsilon in order to
prevent any energy increase. Note that ε < 0 is impossible in
a non-split state but can occur in a split state, representing an
infeasible direction. In this case, we choose ε = 0, meaning
that we discard the impulse altogether. Note that discarding
the impulse leads to loss of friction, but in practice this case
is very rare.

When one of the two bodies has infinite mass, such as the
static ground plane or a moving kinematic body (consider
for example an elevator), the above equations need a slight
modification. For the case of a static body, all the terms per-
taining to the body vanish as m−1 and I−1 are 0. One might
assume the same applies to a kinematic body with non-trivial
velocity, however this would preclude an object body from
being lifted with an elevator. In particular, the terms relating
to the infinite mass body only cancel in the sense of rela-
tive velocities. Thus, for a collision with a kinematic object
we rewrite the velocities of the dynamic body in the relative
frame of the kinematic object based on its pointwise veloc-
ity at the point of collision. Then the clamping can be done
computing ε in the same manner as for a static body. Af-
ter applying the impulse, the velocity of the dynamic body
is scaled back, adding back the relative velocities. This pre-
serves kinetic energy in the moving reference frame, giving
the desired effect.

Collision Clamping The collision algorithm of [GBF03]
applies collisions to the split state xn+1, vn. However, we
have a valid non-split state to clamp against, since we can
clamp the impulses applied to vn in the state xn, vn. This

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2009)

6 Su et al. / Energy Stability and Fracture for Frame Rate Rigid Body Simulations

Figure 4: Our algorithm for prescoring all of space allows us to center a fracture pattern around the point of impact. The
above series of images shows a wall being fractured at 3 separate locations, with all the fractures being generated from the
same fracture pattern. Finally, a sphere fractures as it hits the wall using the same fracture pattern. The level set resolution of
all the walls used in our examples is 150x10x100.

means that KE is computed using entirely time n quanti-
ties, as are all terms in KE′ except those relating to j and
jτ. Instead, j and jτ are computed using the split state, just
as in [GBF03] where in particular ra (and jτa) are also com-
puted using that split state.

Contact Clamping The contact algorithm of [GBF03] also
involves a split state. We use a Newmark variant of this
scheme introduced by [SSF08], which performs two slightly
different contact steps, the first as part of a position update
and the second as part of a velocity update, rather than one
as in [GBF03]. The second contact step involves the split
state xn+2, vn+1, but we observe that we can clamp against
the non-split state xn+1, vn+1 using the method described
above. This is identical to the treatment of collisions, where
the split state was formed by updating the position one time
step while leaving the velocity the same.

The first contact step involves the split state xn+1, vn+1/2.
Since the only available non-split state at that point in the in-
tegration is at xn, vn, we tried clamping there. Unfortunately,
clamping against that state leads to problems. For example,
if bodies are initially at rest and in contact, any impulse will
change vn away from zero and increase energy, resulting in
the impulse being clamped to zero. This prevents contacting
bodies at rest from applying contact impulses and leads to
jittering. Therefore, we do not clamp during the first con-
tact step, and we have not observed any ill effects from this
omission. This may be partially due to the fact that this first
contact step is only used to update the position and its ef-
fects on the velocity are removed. Therefore, energy gain
here may be less detrimental than during the second con-
tact step or during the collision processing where the results
are used to directly modify the velocity. However, in spite
of our ability to obtain stable and accurate simulations at the
frame rate, we do think that clamping the first contact step
should be addressed as future work. That is, while the energy
behavior of the scheme is highly improved by limiting any
kinetic energy growth during evolution, collisions, and the
contact phase of the velocity update, there may be scenarios
where the kinetic energy growth during the contact phase of
the position update could have adverse effects.

Observe that this approach to clamping does not rely on any

of the details of the collision or contact algorithms being em-
ployed, beyond the relatively simple assumption that it will
result in an impulse to be applied. It can be applied when
the state is non-split, or when the state is split but a suitable
non-split state is available. It is equally suitable for clamping
the impulses obtained from any other process that affects the
state only through the impulse computed.

4. Fracture

Fracture of rigid bodies has typically been achieved through
prescoring methods or by dynamically computing the
stresses of the object to determine how to fracture it. Prescor-
ing is fast, but constrains the artist’s control over the look of
the fracture. The artist could make a realistic fracture pattern
emanating from a particular point on the object and hope that
the point of impact is close to the fracture center or make a
somewhat uniform fracture pattern that is not centered about
any point and is not very realistic. Computing fracture dy-
namically from the internal stresses of an object produces
realistic, point-of-impact-centered patterns, but requires sig-
nificantly more computation time and is therefore imprac-

Figure 5: A cylinder (level set resolution of 55x105x55) is
shattered into 25 pieces by a sphere. This simulation aver-
aged 22 frames/sec on a single 3.00GHz Xeon core using
only algorithmic optimizations.
submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2009)

Su et al. / Energy Stability and Fracture for Frame Rate Rigid Body Simulations 7

Figure 6: A complex bunny model with a level set resolution
of 70x60x45 is shattered into 35 pieces.

tical for real-time applications. The goal of our method is
to combine the speed of a prescoring technique with the
point-of-impact-centered realism of stress-computing meth-
ods. We achieve this by prescoring all of space generating a
fracture pattern that emanates from a fracture center which
can then be aligned on-the-fly with the collision location
on the object we wish to fracture. This approach provides
artists with the ability to more precisely control how an ob-
ject breaks around a collision point, while still being feasible
for real-time applications.

4.1. Framework

Rigid Body Representation As we will be implementing
our fracture algorithm in the context of [GBF03], it is impor-
tant to note that for their implementation, they represented
rigid bodies with a triangulated surface mesh and a volumet-
ric level set. Contact and collisions are both detected and
processed by computing level set data from one object at
the positions of the surface particles of the other object. We
note that these algorithms do not require the surface trian-
gles but rather only the surface particles. Thus, each of our
rigid bodies will contain a position, orientation, velocity, an-
gular velocity, mass, inertia tensor, list of surface particles,
and volumetric level set function. Any standard fast dual-
contouring [JLSW02] or marching cubes method [LC87]
can be used to triangulate the level set for rendering.

Fracture Patterns The goal is to fracture all of space, and
this is easily accomplished by fracturing any piece of geom-
etry that can subsequently be translated and rescaled to en-
close the dynamically simulated object to be fractured. For
our examples we simply used the bounding box of the ob-
ject and fractured this box into a number of regions. A sin-
gle point in this cube is defined as the point of impact for
the fracture, and a coordinate system is attached to that point
to represent the collision normal. When an object fractures,
this box will be translated and rotated to align with the colli-

sion, and scaled to enclose the object, both important for the
artist to keep in mind when sculpting the pieces. Each of the
fracture regions represents a fragment of the fractured space
and stores a list of surface particles, a volumetric level set
function, and the location of the fracture center with respect
to the region.

4.2. Fracturing a Rigid Body

Each rigid body in our simulation is assigned a fracture
threshold, which represents the magnitude of the collision
impulse the body must feel before it will fracture. When a
pair of rigid bodies is processed for collision, we compute
the impulse that would be applied due to the collision, and if
it is above the fracture threshold of the body, we proceed to
fracture the body. The result of this fracture will be a set of
fragment bodies, each of which is the result of intersecting
the original body, which we refer to as the parent body, with
one of the regions of the fracture pattern.

Level Set To generate the level set of a fragment, we will
merge the level sets of the fracture region and parent body
that intersect to form the fragment. The level set of the frag-
ment is computed at each point as the maximum of the frac-
ture region’s and parent body’s level set values at that point.
This algorithm will produce a level set function that repre-
sents the correct signed distance value within the fragment
body but may underestimate the signed distance outside the
fragment body. This does not cause problems, since we still
correctly answer inside/outside queries, and such queries are
the only usage of level set values outside a body by the colli-
sion and contact algorithms of [GBF03]. The level set of the
intersection could be disconnected, so we flood fill the level
set, giving each connected component a unique color and a
separate fragment.

Besides this basic algorithm, we propose an aggressive opti-
mization. If one disregards the notion of a collision normal
when aligning the prescored fracture pattern and the parent
body and allows up to a half-grid cell perturbation of the
point of collision when aligning the parent body and the frac-
ture pattern, it is possible to overlay the prescored level set
and the parent body’s level set in the material space of the
parent body. This means that one can avoid all interpolation

Figure 7: A wall is fractured in the lower right corner with
a sphere, creating large pieces away from the fracture loca-
tion (left). Then, a second sphere fractures one of the large
fragments (right).

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2009)

8 Su et al. / Energy Stability and Fracture for Frame Rate Rigid Body Simulations

Figure 8: 1000 small spheres are dropped onto a table and then a larger sphere is dropped to fracture the table, resulting in
8992 rigid body fragments. The small spheres have a level set resolution of 55x55x55, and the table top has a resolution of
150x10x100.

when computing level set values and simply visit each grid
point, comparing the two level set values that exist there. In
fact we use this optimization in all of our examples.

Surface Particles When constructing a new dynamic frag-
ment of the subsequently fractured parent body, one must
find all the particles on the fragment’s surface. Those parti-
cles come from the surfaces of the fracture region in question
and the parent body we are fracturing, and we just need to
determine which particles are retained and which particles
are discarded. The most straightforward way to test a par-
ticle from one object against the other object is to compute
its level set value on the other object and see if it inside or
outside that object. Particles outside the other object are dis-
carded, and those inside the other object are will help form
the new surface and are retained. After doing this for each
object against the other, one obtains the final set of all sur-
face particles. However if a single fracture region results in
two or more separate disconnected pieces when intersected
with the parent body, then we have not properly divided the
particles between these pieces. This is easily remedied dur-
ing the flood fill stage that identifies these connected com-
ponents as the particles lie closer to the zero contour of one
level set than the other, and they are simply assigned to the
fragment to which they are closer, i.e. the one that has a
smaller level set value at the location.

When using the optimization mentioned above that was used
to exactly align a fracture pattern’s level set with that of the
parent body’s in material space, a further optimization can be
done for assigning particles to each region. One can simply
assign particles to voxels, both for the parent rigid body and
for each fracture region. Then when the flood fill process
determines which fragment a voxel belongs to, the particles
contained in that voxel are simply assigned to it.

Inertial Properties Once we have the level set and particles
for a fragment, we need to compute the inertial properties
of the fragment. Since we do not store a surface mesh for
the fragments, we instead observe that we can compute the
desired inertial properties from the level set. The volume of
the parent Vp can be computed from its level set region P
as Vp =

R
P

dx. The density of the parent is given by ρp =
mp/Vp. The density of a subsequent fragment ρ f is set equal
to that of the parent. Then, we compute a few more quantities
from the fragment’s level set region F,

V f =
Z
F

dx, C f = V−1
f

Z
F

xdx, Σ f =
Z
F

xxT dx,

where V f and C f are the volume and center of mass of the
fragment. Finally, the mass is m f = ρ f V f , and the inertia ten-
sor is I f = ρ f (tr(Σ f)δ−Σ f). We can simplify these compu-
tations by treating a level set cell as entirely inside or outside
the fragment based on the sign of its center.

Position and Orientation We choose the position of the
fragment to be its center of mass, and we diagonalize the
inertia tensor to obtain the orientation of the fragment. We
are careful to transform the surface particles of the fragment
into the new coordinate system, as well as storing this same
transform along with the level set.

Velocity and Angular Velocity We compute velocity and
angular velocity to conserve both momentum and angular
momentum, as in [MMDJ01]. That is, ω f = ωp and v f =
vp +ωp×r f , where r f points from the center of mass of the
parent to the center of mass of the fragment.

4.3. Generating Fracture Patterns

We do not propose any particular method for fracture pattern
generation, though we explore a few possibilities for doing
so. The most straightforward is for an artist to design the

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2009)

Su et al. / Energy Stability and Fracture for Frame Rate Rigid Body Simulations 9

Figure 9: A wall is fractured using a realistic fracture pattern.

fracture regions in the form of surface meshes for those re-
gions using existing tools in much the same way that they
prescore models today; the main difference is that the artist
would prescore a large cube rather than prescoring individ-
ual models. Alternatively, these surfaces may be computed
using offline finite element analysis in which some portion
of space is fractured. From the surface meshes, the level sets
can be calculated using a standard algorithm such as the fast
marching method. The surface particles might be the ver-
tices of the surface mesh, vertices of a refined surface mesh,
or even simply particles sampled on the mesh depending on
the quality and refinement of the sculpted mesh.

4.4. Alternatives to Level Sets

We chose to use level sets for our fracturing implemen-
tation because we need level sets for our collision algo-
rithms already, and implementing the proposed fracturing al-
gorithm is particularly straightforward to do using level sets.
It should be noted, however, that level sets have a number
of limitations. Level sets tend to be memory intensive, and
it is difficult to properly resolve thin geometry or shards at a
reasonably coarse resolution. Due to the level set based col-
lisions, the fractured pieces do not fit snugly together after
fracture, but since fracturing tends to be energetic, we have
not found this to be a problem. The same high level fractur-
ing algorithm can be performed using only surface meshes
by performing Boolean operations of the meshes against the
fracture patterns. We note that while such Boolean opera-
tions are complicated to implement robustly, implementa-
tions are available. In this case, the inertial properties of the
fragments should be computed from their surface meshes.

5. Examples

We ran all of our simulations on a single 3.00GHz Xeon core
using only the algorithmic optimizations proposed in this pa-
per, i.e. no aggressive hardcoding, special libraries, or other
hardware tricks were used. In Figure 4, we show a sphere
fracturing a wall at different locations, all using a single ra-
dial fracture pattern. We then lower the fracture threshold
of the ball and increase the threshold of the wall, allowing
the ball to shatter while the wall does not. These examples
show that our method can use a single fracture pattern to
generate point-of-impact-centered fracture of any object in
the scene. Figure 9 shows the same scenario, but with a more

realistic fracture pattern. All of these simulations ran at 15
frames/second or faster.

In Figure 5, we show that we can handle the fracture of
other objects, simulating a sphere fracturing a tall cylinder
at 22 frames/second. Figure 6 illustrates that we can handle
more complicated geometry, simulating a sphere fracturing
a bunny into 35 fragments at 4 frames/second. Figure 7 il-
lustrates that the fragments produced by our fracture algo-
rithm are just normal rigid bodies, and can themselves be
fractured.

Finally, Figure 8 shows that our algorithms scale to a
large number of rigid bodies, shattering 1000 spheres on
a table top and finally shattering the table itself. After
the table top fractures, there are 8992 rigid bodies in the
scene. We also ran the same example with 25 and 100
spheres. For the 25 sphere drop, the early frames aver-
aged 25 frames/second while the later frames averaged 3
frames/second. For the 100 sphere drop, the early frames av-
eraged 25 frames/second while the later frames averaged .26
frames/second. For the 1000 sphere drop, the early frames
averaged 25 frames/second while the later frames averaged
5 minutes/frame with 8992 fragment bodies in contact on the
ground.

6. Conclusion

We present a method for conserving both kinetic energy and
angular momentum during rigid body evolution as well as
a method for clamping kinetic energy during contact and
collision processing. These methods allow for stable rigid
body simulations at the frame rate. Moreover, we introduce a
method for prescoring all of space, allowing realistic point-
of-impact-centered fracture of rigid bodies that runs effi-
ciently on modern machines.

Though our methods for mitigating energy gain allow us
to achieve stable simulations while taking time steps at the
frame rate, there may still be situations in which energy can
increase, as we do not clamp kinetic energy during the con-
tact phase of the position update. Although we did not notice
any visual artifacts, we believe that this should be addressed
as future work.

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2009)

10 Su et al. / Energy Stability and Fracture for Frame Rate Rigid Body Simulations

Acknowledgements

Research supported in part by a Packard Foundation Fellow-
ship, an Okawa Foundation Research Grant, ONR N0014-
06-1-0393, ONR N00014-05-1-0479 for a computing clus-
ter, NIH U54-GM072970, and NSF CCF-0541148. J.S. was
supported in part by an NSF Graduate Research Fellow-
ship and C.S. was supported in part by a Stanford Graduate
Fellowship. We would like to thank Bill Dally and Chris-
tos Kozyrakis as well as Charbel Farhat for computing re-
sources, and Jacob Leverich for helping us use those re-
sources.

References

[AP98] ARMERO F., PETOCZ E.: Formulation and analysis of
conserving algorithms for frictionless dynamic contact/impact
problems. Computer methods in applied mechanics and engi-
neering 158, 3 (1998), 269–300.

[Bar89] BARAFF D.: Analytical methods for dynamic simulation
of non-penetrating rigid bodies. Comput. Graph. (Proc. SIG-
GRAPH 89) 23, 3 (1989), 223–232.

[Bar90] BARAFF D.: Curved surfaces and coherence for non-
penetrating rigid body simulation. Comput. Graph. (Proc. SIG-
GRAPH 90) 24, 4 (1990), 19–28.

[Bar91] BARAFF D.: Coping with friction for non-penetrating
rigid body simulation. Comput. Graph. (Proc. SIGGRAPH 91)
25, 4 (1991), 31–40.

[Bar94] BARAFF D.: Fast contact force computation for nonpen-
etrating rigid bodies. In Proc. SIGGRAPH 94 (1994), pp. 23–34.

[BHTF07] BAO Z., HONG J., TERAN J., FEDKIW R.: Fractur-
ing rigid materials. IEEE Trans. Viz. Comput. Graph. 13 (2007),
370–378.

[BHW96] BARZEL R., HUGHES J., WOOD D.: Plausible motion
simulation for computer graphics animation. In Comput. Anim.
and Sim. ’96 (1996), Proc. Eurographics Wrkshp., pp. 183–197.

[BRM09] BOU-RABEE N., MARSDEN J.: Hamilton-pontryagin
integrators on lie groups part i: Introduction and structure-
preserving properties. Foundations of Computational Mathemat-
ics 9, 2 (2009), 1615–3375.

[CR98] CHATTERJEE A., RUINA A.: A new algebraic rigid body
collision law based on impulse space considerations. ASME J.
Appl. Mech. 65, 4 (1998), 939–951.

[GBF03] GUENDELMAN E., BRIDSON R., FEDKIW R.: Non-
convex rigid bodies with stacking. ACM Trans. Graph. (SIG-
GRAPH Proc.) 22, 3 (2003), 871–878.

[Hah88] HAHN J.: Realistic animation of rigid bodies. Comput.
Graph. (Proc. SIGGRAPH 88) 22, 4 (1988), 299–308.

[IO06] IBEN H. N., O’BRIEN J. F.: Generating surface crack
patterns. 177–185.

[JLSW02] JU T., LOSASSO F., SCHAEFER S., WARREN J.: Dual
contouring of Hermite data. ACM Trans. Graph. (SIGGRAPH
Proc.) 21, 3 (2002), 339–346.

[KCD09] KOBILAROV M., CRANE K., DESBRUN M.: Lie group
integrators for animation and control of vehicles. ACM Transac-
tions on Graphics 28, 2 (Apr. 2009).

[KEP05] KAUFMAN D., EDMUNDS T., PAI D.: Fast frictional
dynamics for rigid bodies. ACM Trans. Graph. (SIGGRAPH
Proc.) 24, 3 (2005), 946–956.

[KSJP08] KAUFMAN D., SUEDA S., JAMES D., PAI D.: Stag-
gered projections for frictional contact in multibody systems.
ACM Transactions on Graphics (SIGGRAPH Asia 2008) 27, 5
(2008), 164:1–164:11.

[KYT∗06] KHAREVYCH L., YANG W., TONG Y., KANSO E.,
MARSDEN J., SCHRÖDER P., DESBRUN M.: Geometric
variational integrators for computer animation. ACM SIG-
GRAPH/Eurographics Symp. on Comput. Anim. (2006), 43–51.

[LC87] LORENSEN W., CLINE H.: Marching cubes: A high-
resolution 3D surface construction algorithm. Comput. Graph.
(SIGGRAPH Proc.) 21 (1987), 163–169.

[MBF04] MOLINO N., BAO Z., FEDKIW R.: A virtual node al-
gorithm for changing mesh topology during simulation. ACM
Trans. Graph. (SIGGRAPH Proc.) 23 (2004), 385–392.

[MMDJ01] MÜLLER M., MCMILLAN L., DORSEY J., JAGNOW
R.: Real-time simulation of deformation and fracture of stiff ma-
terials. In Comput. Anim. and Sim. ’01 (2001), Proc. Eurograph-
ics Wrkshp., Eurographics Assoc., pp. 99–111.

[MW88] MOORE M., WILHELMS J.: Collision detection and
response for computer animation. Comput. Graph. (Proc. SIG-
GRAPH 88) 22, 4 (1988), 289–298.

[NTB∗91] NORTON A., TURK G., BACON B., GERTH J.,
SWEENEY P.: Animation of fracture by physical modeling. Vis.
Comput. 7, 4 (1991), 210–219.

[OBH02] O’BRIEN J., BARGTEIL A., HODGINS J.: Graphical
modeling of ductile fracture. ACM Trans. Graph. (SIGGRAPH
Proc.) 21 (2002), 291–294.

[OH99] O’BRIEN J., HODGINS J.: Graphical modeling and an-
imation of brittle fracture. In Proc. of SIGGRAPH 1999 (1999),
pp. 137–146.

[SSF08] SHINAR T., SCHROEDER C., FEDKIW R.: Two-way
coupling of rigid and deformable bodies. In SCA ’08: Proceed-
ings of the 2008 ACM SIGGRAPH/Eurographics symposium on
Computer animation (2008), pp. 95–103.

[ST00] STEWART D. E., TRINKLE J. C.: An implicit time-
stepping scheme for rigid body dynamics with Coulomb friction.
In IEEE Int. Conf. on Robotics and Automation (2000), pp. 162–
169.

[SW91] SIMO J., WONG K.: Unconditionally stable algorithms
for rigid body dynamics that exactly preserve energy and mo-
mentum. International Journal for Numerical Methods in Engi-
neering 31, 1 (1991), 19–52.

[TGPS08] THOMASZEWSKI B., GUMANN A., PABST S.,
STRASSER W.: Magnets in motion. ACM Trans. Graphics (Proc.
SIGGRAPH Asia) 27, 5 (2008), 162:1–162:9.

[Vil08] VILMART G.: Reducing round-off errors in rigid body
dynamics. J. Comput. Phys. 227 (2008), 7083–7088.

[vZS07] VAN ZON R., SCHOFIELD J.: Numerical implementa-
tion of the exact dynamics of free rigid bodies. J. Comput. Phys.
225 (2007), 145–164.

[YOH00] YNGVE G., O’BRIEN J., HODGINS J.: Animating ex-
plosions. In Proc. SIGGRAPH 2000 (2000), vol. 19, pp. 29–36.

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2009)

