
Volume xx (200y), Number z, pp. 1–11

Asynchronous Evolution for Fully-Implicit and Semi-Implicit
Time Integration

Craig Schroeder1, Nipun Kwatra1, Wen Zheng1, Ron Fedkiw1,2

1Stanford University
2Industrial Light+Magic

Figure 1: Twenty-four deformable objects fall into a bowl. Each body is evolved asynchronously with ε = .5.

Abstract
We propose a series of techniques for hybridizing implicit and semi-implicit time integration methods in a manner
that retains much of the speed of the implicit method without sacrificing all of the higher quality vibrations one
obtains with methods that handle elastic forces explicitly. We propose our scheme in the context of asynchronous
methods, where different parts of the mesh are evolved at different time steps. Whereas traditional asynchronous
methods evolve each element independently, we partition all of our elements into two groups: one group evolved at
the frame rate using a fully implicit scheme, and another group which takes a number of substeps per frame using
a scheme that is implicit on damping forces and explicit on the elastic forces. This allows for a straightforward
coupling between the implicit and semi-implicit methods at frame boundaries for added stability. As has been
stressed by various authors, asynchronous schemes take some of the pressure off of mesh generation, allowing time
evolution to remain efficient even in the face of sliver elements. Finally, we propose a force distributing projection
method which allows one to redistribute the forces felt on boundaries between implicit and semi-implicit regions
of the mesh in a manner that yields improved visual fidelity.

Categories and Subject Descriptors (according to ACM CCS): I.6.8 [Simulation and Modeling]: Types of Simulation
—Animation

1. Introduction

Physically based simulation of deformable bodies has a long
history in computer graphics. Since its early days, physical

submitted to COMPUTER GRAPHICS Forum (7/2011).



2 Shroeder et al. / Implicit Asynchronous Evolution

simulation has generally been limited by the small time step
sizes required for stability and the resulting computational
intensity of achieving realistic simulation. The early work
of [BW98] changed this by popularizing implicit integra-
tion and the conjugate gradient method within the commu-
nity. This made it possible to take much larger time steps,
making cloth simulation on reasonable mesh sizes practi-
cal. With implicit integration techniques, stringent stability
restrictions were largely eliminated, and time steps of arbi-
trary sizes could, in principle, be taken. In fact, one could
envision taking time steps at the frame rate, which provides
the greatest opportunity for efficiency. This approach has al-
ready received some attention, such as its recent successful
application to rigid bodies [SSF09].

Taking large time steps, however, has some significant
shortcomings. Large time steps tend to introduce large
amounts of artificial damping into the simulation, and they
complicate the problem of providing a robust collision re-
sponse. The problem of artificial damping from large time
steps could in principle be overcome with with the use
of symplectic integrators [], which can limit energy loss
through the preservation of invariants. In practice, however,
symplectic integrators require the solution of a nonlinear
system. Unfortunately, this system might not converge if
large time steps are taken, thus limiting its suitability to the
problem at hand.

The other complication, collision between bodies, tends
to be localized within a simulation. The rest of the simu-
lation mesh is not limited by the small time steps required
to provide a robust collision response. This suggests that a
technique based on asynchronous integration, where differ-
ent parts of the mesh are permitted to take different time step
sizes, may be a promising compromise.

Asynchronous time integration has traditionally proven to
be most useful when the underlying method is fully explicit,
where the size of the time step is stability limited (as opposed
to accuracy limited) by both physical properties and mesh
quality. Although some attention has been paid to asyn-
chronous schemes with implicit regions in other domains
[GC01,GC03], previous asynchronous time integration tech-
niques have tended to focus on explicit schemes, since it
has mainly been seen as a way of alleviating time step re-
strictions due to numerical stability. We refer the reader to a
few standard papers on the topic [Dan03,LMOW04,FDL08,
HVS∗09]. The main idea of asynchronous integration is to
evolve time forward, calculating forces in isolation on an
element-by-element basis, where each element is evaluated
at some future time based on its stability time step restric-
tion. To make the determination of which element should be
evaluated next more efficient, one typically uses a priority
queue. Fully explicit methods and even semi-implicit meth-
ods, where elastic forces are treated explicitly, such as that
of [BFA02, BMF03], which requires a time step restriction
for elastic but not damping forces, both benefit from this sort

of time evolution model, since not all elements are subject to
taking time steps at the frequency of the worst element in the
mesh. Larger, well-conditioned elements are allowed to take
fewer time steps per frame.

When using a fully implicit method such as that of
[BW98], one may take as big of a time step as visual fidelity
will allow (accuracy limited), without worrying about nu-
merical stability. Therefore, an asynchronous priority queue
based on stability criteria no longer applies. However, this
notion of visual fidelity does essentially bound the size of
the time step. Although one might shrink the time step to
increase the accuracy, in turn increasing visual fidelity, this
leads to diminishing gains, because the implicit time steps
are more expensive than explicit ones. Therefore, making
the implicit scheme computationally efficient usually means
losing some accuracy. In a typical cloth simulation, loss of
accuracy would lead to a loss of folds and wrinkles, see for
example [CK02] for a discussion of how buckling instabil-
ities can be overdamped by numerical inaccuracies in im-
plicit methods. We also refer the interested reader to [TPS08]
for discussion of asynchronous integration in the context of
cloth simulation. Note that the amount at which one need
to reduce the time step size to get sufficient accuracy de-
pends a lot on the possible nonlinearity of the system. In this
sense, cloth usually requires smaller time steps than solid
objects. Whereas the buckling instability makes things a bit
more complicated, we focus on the more direct problem of
the loss of high frequency motion due to large time steps.
We propose using asynchronous time integration in order
to alleviate this difficulty, evolving a portion of the mesh
at higher frequency in order to capture elastic vibrational
modes while still treating the bulk of the mesh implicitly
for the sake of computational efficiency. We also note that
computation efficiency of physics based simulations is of
general interest to the graphics community, as can be seen
by the interest that the problem of efficiency has received
recently [MTS07, Dru08, WST09].

Although [Dan03] does not address implicit asynchronous
time integration, they do advocate its use (as we do) for the
sake of capturing high-frequency detail, even though it is
not needed for stability concerns. We further stress a sec-
ond and very important application of asynchronous time
integration for any method, which is collisions. Large time
steps can be problematic for any collision method and even
worse for self-collisions as in [BFA02], whereas smaller
time steps ameliorate a large number of difficulties. Thus,
regardless of whether time integration is treated explicitly,
fully-implicitly, or semi-implicitly (where elastic forces are
treated explicitly and damping forces are treated implicitly),
it can be quite important to treat elements undergoing colli-
sions with smaller time steps.

Fully explicit schemes suffer from extremely small time
step restrictions from damping forces. These can be allevi-
ated in a straightforward and efficient manner with a semi-

submitted to COMPUTER GRAPHICS Forum (7/2011).



Shroeder et al. / Implicit Asynchronous Evolution 3

Semi-implicit Fully-implicit Asynchronous
Efficiency Small time steps Large time steps Small time steps only where needed
Accuracy Preserves high-frequency details Large damping, loss of details Preserves important details

Table 1: Comparison of the semi-implicit method, the fully implicit method and the asynchronous method.

implicit method which is explicit for nonlinear elastic forces
and implicit for linear and damping forces. We choose the
method of [SSIF09] (a small perturbation of [BMF03]) as
our method of higher quality but smaller time step integra-
tion scheme. This method produces high quality results at
the cost of adding computation time. We note that any other
semi-implicit or implicit scheme which treats the damping
forces implicitly could also be used. We use the method of
[SLF08] for our fully-implicit scheme, as it is very similar to
our semi-implicit scheme. As one would expect, greater nu-
merical stability can be obtained by synchronizing the linear
systems for the damping in the semi-implicit scheme with
the linear system for the fully-implicit scheme. Therefore,
we propose a bi-synchronous integration strategy, where the
fully implicit scheme takes large time steps, while the semi-
implicit scheme takes many smaller time steps which exactly
equal one time step of the fully implicit scheme. To stress
efficiency and also to address problems that arise more gen-
erally when transitioning to simulating with larger time step
sizes, we have decided to do our numerical experimentation
and to present our examples with our implicit scheme taking
time steps at the frame rate. By doing this we are using the
implicit method in a way that uses the least computational
resources but also suffers greatly in in visual fidelity. This
highlights the need for an method integrated with smaller
time steps, which can capture the high frequency missing de-
tails, making our proposed line of research more challenging
but also more effective. To help readers understand the con-
tribution, a brief comparison between different methods has
been shown in Table 1.

We show examples that highlight basic collisions and
self-collisions, complex geometry, and poor mesh quality.
For each of these, we report on the results using the semi-
implicit method along with its higher computational costs
but improved accuracy, the implicit method highlighting its
efficiency at the sake of extreme damping, and our newly-
proposed bi-synchronous integration strategy. We highlight
one of the drawbacks of asynchronous integration, which is
that larger elements have to wait longer for their forces to be
felt, while smaller elements can push the mesh around freely
while ignoring the forces from larger elements. There are
ways of ameliorating this to some extent using extrapolation
of forces and other techniques, and we propose a scheme that
uses a projection method in the conjugate gradient solver in
order to distribute the forces from the nodes being evolved
at higher frequency to the nodes being evolved at lower fre-
quency. Whereas this method does touch all particles at the
frequency of the explicit or semi-implicitly evolved parts of

the mesh, most particles are only touched with a simple pro-
jection, saving on force evaluations and making the method
more efficient. In the limit, (which we do not use) this is a
type of rigidification of the fully-implicitly evolved nodes
into a kinematically deforming body - its frame is still fully
two-way coupled and free to move unlike a traditional kine-
matic body. We use this method away from the limit where
it helps to increase visual fidelity without adverse rigidifica-
tion artifacts.

2. Related Work

Explicit asynchronous time integration has interested re-
searchers for over three decades, beginning with [BM76,
BYM79, Bel81], and continues to draw interest from the
community (see e.g. [CH08, Dan03] and the references
therein). Asynchronous integrators have also been the sub-
ject of stability and accuracy analysis (see e.g. [BS93,
LMOW04, FDL08]). Asynchronous integration in the pres-
ence of collisions has also received recent attention (see e.g.
[TPS08, HVS∗09]).

There has also been work on explicit-implicit asyn-
chronous evolution (see e.g. [GC01,GC03]). Unlike the con-
text of explicit asynchronous integration, where stability
considerations permit performance improvements for asyn-
chronous evolution, the benefits sought from mixed explicit-
implicit approaches are different. In the context of explicit-
implicit integration, localized, highly nonlinear forces en-
able efficiency gains to be achieved, since heavily nonlinear
forces can be quite expensive to treat implicitly.

3. Synchronous Methods

3.1. Semi-Implicit Scheme

Our semi-implicit time integration scheme is based on that
of [SSIF09], which uses separate position and velocity up-
dates to evolve bodies forward in time and takes the follow-
ing basic form.

• vn+ 1
2 = vn + ∆t

2 a(tn+ 1
2 ,xn,vn+ 1

2 )

• xn+1 = xn +∆tvn+ 1
2

• vn+1 = vn +∆t a(tn+1,xn+1,vn+1)

The first step uses explicit evaluation of the elastic forces
given the current positions xn along with an implicit back-
ward Euler update of the velocity component of the damp-
ing forces. The second step uses this temporary velocity to

submitted to COMPUTER GRAPHICS Forum (7/2011).



4 Shroeder et al. / Implicit Asynchronous Evolution

evolve the positions forward in time before the final step re-
computes the velocity update, this time using the new posi-
tions xn+1.

3.2. Fully-Implicit Scheme

Our fully-implicit scheme is based on that proposed in
[SLF08], which is given by the scheme

• vn+ 1
2 = vn + ∆t

2 a(tn+ 1
2 ,xn + ∆t

2 vn+ 1
2 ,vn+ 1

2 )

• xn+1 = xn +∆tvn+ 1
2

• vn+1 = vn +∆t a(tn+1,xn+1,vn+1)

The only difference between this and our semi-implicit
scheme is that xn is replaced by xn + ∆t

2 vn+ 1
2 , making that

update fully implicit. While this scheme is appealing since
it is only a small modification to the semi-implicit scheme
above, it differs from that proposed in [SLF08] in that the fi-
nal solution for velocity uses a backward Euler step instead
of a trapezoidal rule step. We note that using trapezoidal rule
for the second solution is not a good option for simulations
with large time step sizes, since it tends to cause period-two
oscillations. Ironically, replacing their trapezoid rule with a
backward Euler solution, a modification that would normally
be expected to enhance stability, makes the scheme only con-
ditionally stable. This can be corrected by modifying the sec-
ond solution to contain a predictive set of positions given by
xn+2 = xn+1 +∆tvn+1, making it unconditionally stable. The
precise scheme we use is

• vn+ 1
2 = vn + ∆t

2 a(tn+ 1
2 ,xn + ∆t

2 vn+ 1
2 ,vn+ 1

2 )

• xn+1 = xn +∆tvn+ 1
2

• vn+1 = vn +∆t a(tn+1,xn+1 +∆tvn+1,vn+1)

4. Asynchronous Methods

We derived and experimented with many implicit asyn-
chronous schemes, and we present the best one along with
some of the more promising alternative approaches we con-
sidered along the way. We also discuss advantages, limita-
tions, and useful properties of each approach.

We divide our forces into two sets. The first set is evolved
semi-implicitly at a smaller time step using the semi-implicit
evolution described above. The second set is evolved fully-
implicitly at the frame rate. In each case, the last semi-
implicit step of each frame is fully coupled to the fully-
implicit time step for that frame. (see Figure 2). The asyn-
chronous scheme, as well as the the semi-implicit and fully-
implicit schemes it is uses, has time time steps that take the
general form

• Compute v?

• Use v? to update positions to xn+1

• Compute vn+1

We consider the first two steps to be the position update and
the third step to be the velocity update.

Outer shell Inner core

Semi-implicit evolution Fully-implicit evolution

∆t = 1

24

Figure 2: Only the outer shell is updated at fine time steps.
The inner core only gets updated at frame boundaries.

4.1. Time Step and Force Scaling

Each fully-coupled step involves two backward Euler linear
systems where forces are being evolved over different time
step sizes. We begin the treatment of this by examining more
carefully the backward Euler update for a synchronized step.
Following the derivation of [BW98] for a fully implicit back-
ward Euler update we arrive at the linear system that must be
solved,(

I−∆tM−1 ∂f
∂v
−∆t2M−1 ∂f

∂x

)
∆v = ∆tM−1

(
f0 + ∆t

∂f
∂x

v0

)
.

(1)
With a coupled system of this form, it is easy to introduce

additional forces to the system–these are simply added to f
alongside the existing forces of the system. The modification
that we would like to make, however, is to change the ∆t over
which some of the forces are evolved. Substituting ∆t = α∆t̂
into (1) yields(

I−∆t̂M−1 ∂f̂
∂v
−∆t̂2M−1 ∂f̂

∂x

)
∆v = ∆t̂M−1

(
f̂0 + ∆t̂

∂f̂
∂x

v0

)
,

(2)

where f̂0 = αf0, ∂f̂
∂v = α

∂f
∂v , and ∂f̂

∂x = α
2 ∂f

∂x . In particular,
an update with a different time step size can be reinterpreted
as scaled force. By reinterpreting a scaled time step size as
a scaled force, we can couple two forces with different time
step sizes by simply adding scaled forces over the same time
step size. We note that this does not itself yield a useful asyn-
chronous time integration scheme, and a consistent means of
coupling the entire time integration is still required.

It is also important to note that backward Euler depends
only on positions and velocities at the end of the time step,
where the two sets of forces will live at the same time. The
velocity update already has the property that all forces in-
volved in the backward Euler solution have their velocities
living at the same time, namely the end of the current frame.
This makes the velocity update relatively easy to couple, and
it suffices to utilize the force scaling observation. For this
reason, we concentrate on the position updates below.

4.2. Position Update and Freefall Considerations

It is important for the efficiency of a practical implicit asyn-
chronous scheme that objects should be able to fall from rest
under gravity without causing spurious internal forces. Oth-
erwise, the spurious forces will dramatically slow down the

submitted to COMPUTER GRAPHICS Forum (7/2011).



Shroeder et al. / Implicit Asynchronous Evolution 5

solver and cause servere instability. One way for spurious
forces to occur is for particles to fall at slightly different
rates under gravity and experience elastic restorative forces,
and the second is for particles to achieve different velocities
in freefall and experience internal damping. Each of these
would result in a significant slow down due to extra con-
jugate gradient iterations during freefall. The force scaling
applies the correct amount of gravity in the velocity update,
so that spurious damping forces are avoided. The position
update, however, requires more consideration.

We consider two approaches for avoiding positional er-
rors in evolving gravity asynchronously. The first approach
we discuss involves making sure that the position update is
second order accurate, so that gravity is always evolved cor-
rectly to floating point precision. We would tend to consider
an approach following these general lines to be the most de-
sirable. In practice, we were unable to overcome the poorer
conditioning that our attempts at this approach produced.
Instead, we present this approach as an example of how a
suitable second order asynchronous position update can be
achieved. That is, this approach works, but we were unable
to make it efficient enough.

The second general approach we discuss is to abandon the
idea of applying gravity asynchronously. This is clearly not a
satisfying route for asynchronous evolution to follow going
forward. Rather, we note that applying gravity does not take
a significant amount of time, and this compromise makes the
resulting time integration scheme more efficient. We leave a
more satisfying resolution of this problem to future work.

4.2.1. Second Order Positions

The first approach to a second order position update begins
with the observation that the position update

xn+1 = xn +∆t

(
vn +vn+1

2

)
(3)

is second order accurate. Let fE and fI be forces evaluated
at the time step size of semi-implicit and fully-implicit inte-
grators, respectively. If we assume both sets of forces lack
position and velocity dependence and p semi-implicit steps
are taken for each fully-implicit step, then vn+1 can be writ-
ten as

vn+1 = vn +M−1
p

∑
i=1

∆t ifE i +∆tM−1fI . (4)

Combining (3) and (4) we obtain

xn+1 = xn +∆tvn +
∆t
2

M−1
p

∑
i=1

∆t ifE i +
∆t2

2
M−1fI . (5)

To determine approximately how much a force that is ap-
plied only every few time steps needs to be scaled for posi-
tions to be evolved correctly, we make the assumption that

fI = 0, fE i = fE , and p∆t i = ∆t, then (see Appendix for de-
tailed derivation)

xn+1 = xn+1− 1
p +

∆t
p

vn−1+ 1
p +

∆t2

2p2 M−1fE

That is, in the last (pth) time step, one would apply the force
fE to the current x̂ = xn+1− 1

p and v̂ = vn−1+ 1
p using the

current substep size. If fE i is not constant or fI 6= 0, taking a
single large step and taking many smaller steps are no longer
equivalent. At this point, we make an approximation and ap-
ply the explicit forces to the evolved state x̂ and v̂. Adding
back our implicit forces and dropping the assumption that
the fE i is constant we obtain

xn+1 =x̂+∆t pv̂+
∆t2

p

2
M−1fE p +

∆t2

2
M−1fI

=x̂+∆t pv̂+
∆t2

p

2
M−1(fE p +α

2fI) (6)

where α = (∆t/∆t p)2 is the correct scale for position update.

Note that (6) leads to a scaling factor of α
2 for the implicit

elastic term rather than α as predicted by (2). That these two
do not match is the primary difficulty in choosing a position
update. Earlier in Section 4.1, we determined that a scaling
factor of α on forces is required to apply the correct amount
of force during the velocity update, but it does not give us
second order accurate positions.

A scheme produced using this position update has two
drawbacks. The first is that this α

2 scaling of the forces will
produce erroneous velocities when used in the first veloc-
ity solution to calculate the velocities used in the position
update (as pointed out in Section 4.1). These erroneous ve-
locities will be subject to other forces such as damping and
thus not yield a correct steady state. The second drawback is
that the backward Euler evaluation is for the full ∆t, result-
ing in a worse-conditioned and thus slower linear solution
(we found the first linear system to require about twice the
number of iterations as it would have had one used ∆t

2 as in
the semi-implicit scheme).

4.2.2. Avoiding Spurious Forces

The position update described above can be modified to
avoid the mismatch in scales. In [BW98, SSIF09, SSF08],
forces are recomputed after the conjugate gradients solution.
In these papers, the results of the conjugate gradients solu-
tion are used to explicitly recompute the forces that were
used in that solution. We utilize the same technique so that
the proper scaling of α can be used inside the conjugate gra-
dients solution while a scaling of α

2 can still be used in the
subsequent position update. The conjugate gradient solver
produces a solution v? to the following equation

v? =vn +∆tM−1 fE(xn,v?)+α∆tM−1 fI(xn +α∆tv?,v?).
(7)

submitted to COMPUTER GRAPHICS Forum (7/2011).



6 Shroeder et al. / Implicit Asynchronous Evolution

Instead of using this velocity in the position update, we use
v? to explicitly re-evaluate fE and fI and then scale fI by α

2

to obtain the following velocity

vn+1 =vn+∆tM−1 fE(xn,v?)+α
2
∆tM−1 fI(xn+α∆tv?,v?).

(8)
The full position update is (7), (8), and (3). This avoids the
problem of spurious forces in the solution in a straightfor-
ward way. It does not address the extra computational cost
of solving the linear system across the full time step.

4.3. Asynchronous Integration Scheme

We can derive a more efficient scheme based on the idea of
evolving the velocity half way through the current time step
as in the semi-implicit case and then using it to update po-
sitions. All positions and velocities are evolved forward in
time even in the absence of forces on them so that positions
can all be updated with the step size ∆t. This amounts to ex-
trapolating the behavior of the nodes that are evolved implic-
itly forward through the time step. In the coupled time steps
that synchronize the two methods, semi-implicit forces need
to be evolved for time ∆t

2 so that the positions can be evolved
in a leap-frog fashion for a time step ∆t. The fully-implicit
forces are evolved to the same point in time, which since
they have been ignored for the entire frame means updating
them for a time equal to ∆t f rame− ∆t

2 . This synchronizes the
velocities at a time that is ∆t

2 before the end of the frame.

This gives us the scaling factor α = 2∆t f rame−∆t
∆t for use in

scaling forces. The computation of the half time velocities
used in the position update becomes

vn+ 1
2 = vn +

∆t
2

(aE(xn,vn+ 1
2 )+αaI(xn +α∆tvn+ 1

2 ,vn+ 1
2 ))

The main drawback of this scheme is that gravity must be
applied to all particles at each step to avoid spurious elastic
forces during freefall. This scheme is what we used in our
examples section. The coupled time steps for this scheme
are

• vn+ 1
2 = vn + ∆t

2 (aE (xn,vn+ 1
2 )+ αaI(xn + α∆tvn+ 1

2 ,vn+ 1
2 ))

• xn+1 = xn +∆tvn+ 1
2

• vn+1 = vn +∆tâ(xn+1 +∆tvn+1,vn+1)

where â indicates that the force scaling from Section 4.1 is
applied to fully implicit forces.

5. Force Distribution

The asynchronous scheme ignores the fully-implicit forces
during most of the simulation and attempts to compensate
for them at frame boundaries. Consider a setup where the
outer layer of tetrahedra have semi-implicit forces to resolve
collisions, and the interior has fully-implicit forces for ef-
ficiency. During the semi-implicit steps, the sphere appears
to be hollow, held up only by the strength of the thin outer
layer of forces. Collisions cause the tetrahedra in contact

with the ground to be pushed into the interior, and the top
of the sphere collapses into the sphere. To overcome this
limitation of asynchronous integration, we propose a novel
means of distributing forces across regions of objects whose
forces are not being applied in the current time step. Note
that the force distribution operator only distributes the semi-
implicit forces through the fully implicit regions when the
fully implicit forces are not being applied. The rigid com-
ponents within the semi-implicit regions are not affected.
During coupled steps, the fully implicit forces are applied
as usual, and the fully-implicit and semi-implicit forces in-
teract normally. Thus, while this approach modifies the ef-
fective constitutive model, it does not override it entirely.

We begin by assuming that some subset of the particles are
part of a rigid body with mass m̂ = ∑i mi and center of mass
c = m̂−1

∑i mixi. The particles can be described relative to
the center of mass by ri = xi−c, and the rigid body’s inertia
tensor can be written as Î = ∑i mir∗i r∗T

i , where r∗ represents
the cross product matrix of r. The total force on the rigid
body is f̂ = ∑i fi, and the net torque is τ̂ = ∑i r∗i fi, where fi
represent forces in individual particles. The force and torque
cause velocity changes per unit time of ∆v̂ = m̂−1 f̂ and
∆ω̂ = Î−1

τ̂, and the corresponding velocity changes per unit
time at a particular particle is ∆vi = ∆v̂+r∗T

∆ω̂. Finally, we
can compute forces that would need to have been applied at
these particles in the absence of the rigid body to produce
the same result, which is fi = mi∆vi. The operator that takes
fi and returns fi (obtained by combining all of these equa-
tions) is a linear operator with very nice properties. It is a
rank-six mass-symmetric projection operator that preserves
net force and net torque, which is required for linear and an-
gular momentum conservation. The six degrees of freedom
not projected out correspond to the three translational and
three rotational degrees of freedom of the rigid body.

This operator satisfies all of the properties necessary to be
used as a projection in a conjugate gradient solver. As shown
in the far right image in Figure 3 where the sphere has 21,528
tetrahedra, this method constrains the particles subject to
fully implicit forces to behave as a rigid body, except for the
temporary drift afforded by the fully coupled steps. This pro-
vides an alternative method for simulating deformable bod-
ies with rigid cores as proposed in [GOM∗06]. However,
our aim is to simulate fully deformable bodies, not those
with rigid cores, and thus we modify this method as follows.
The first modification is that we apply the projections to the
forces only, and not the velocities, which allows the particles
to retain relative motion. The second modification is that we
do not fully project the forces, as that would remove all of
the non-bulk force and instead only partially project. This
can be accomplished by interpolating between the original
forces and the projected forces using a scalar ε, where ε = 0
corresponds to doing nothing at all, and ε = 1 corresponds
to using only the projected forces. Note that a more formal
approach to force distribution would be to model the whole
interior of the body by a single coarse element of by a small

submitted to COMPUTER GRAPHICS Forum (7/2011).



Shroeder et al. / Implicit Asynchronous Evolution 7

(a) ε = 0 (b) ε = .25 (c) ε = .5 (d) ε = .75 (e) ε = 1

Figure 3: An elastic sphere dropped on the ground using asynchronous time integration with varying ε. One obtains less
deformation as ε increases. When ε = 1 the sphere behaves almost as a rigid body.

(a) (b) (c) (d)

Figure 4: An elastic sphere dropped on the ground using (a) semi-implicit time integration, (b) fully implicit time integration,
(c) fully implicit time integration with small time step sizes, and (d) accurate solution with high resolution mesh for comparison.

number of coarse elements. The placement and constitutive
properties of these elements can then be computed using any
dimensionality reduction technique such as PCA. We, how-
ever, take a simpler, albeit perhaps ad hoc, approach of inter-
polating between a constitutive model representing a hollow
inside (ε = 0) and a constitutive model representing a rigid
core (ε = 1). In that sense ε can be thought of as a parameter
affecting the hardness of the inside. We did not find it dif-
ficult to set a value for ε which results in simulations close
to the actual model. Moreover, this approach is efficient to
implement and provides an intuitive control over the simu-
lation behavior. We show the effects of varying the param-
eter ε in Figure 3. Reference simulations with fully implicit
and semi-implicit time integration are shown in Figure 4. We
have found the dependence of simulation behavior on ε to be
tolerable away from the boundary values, and we simply use
ε = 1

2 . This corresponds to removing half of the non-bulk
forces within the fully-implicit regions of the body. We also
note that for ε 6= 0 and ε 6= 1, this does not result in a pro-
jection matrix (it lacks idempotence); nevertheless, we have
encountered no problems incorporating it into the conjugate
gradient solution as though it were a projection.

6. Collisions

We process collisions and contact as was done in [SSF08],
but we have made an improvement to make it more suit-

able for use at the frame rate, i.e. 24 frames per second.
In [SSF08], collision and contact fit into the time integration
scheme as follows:

• Update velocities from vn to vn+ 1
2

• Update positions from xn to xn+1

• Process collisions, applied to vn, vn+ 1
2 , xn+1

• Process contact, applied to vn+ 1
2 , xn+1

• Process deformable-deformable collisions, applied to
xn+1

• Update velocities from vn to vn+1

• Process contact, applied to vn+1

The algorithm distinguishes between contact and colli-
sions, since [SSF08] does two-way deformable rigid cou-
pling, and separate contact and collision steps are impor-
tant when simulating rigid bodies. Collisions and contacts
are processed in Gauss Seidel fashion between pairs of bod-
ies, with each particle of a deforming body treated as a rigid
body with zero inverse inertia tensor (particles do not re-
spond to torques). Within the scope of this paper, however,
the contact and collision steps process particles against static
rigid bodies. Moreover, since the first contact step does the
same thing as the collision step it follows, it could be ig-
nored. Deformable-deformable collisions are separated from
all other types of collisions, since we use the cloth colli-
sion algorithm of [BFA02], which operates by maintaining a
collision-free state and, though Gauss Seidel in nature, does

submitted to COMPUTER GRAPHICS Forum (7/2011).



8 Shroeder et al. / Implicit Asynchronous Evolution

not lend itself easily to Gauss Seidel processing with other
types of collisions.

The first six steps can be thought of as choosing the new
positions, and the last two steps can be thought of as choos-
ing the new velocities. Because the collision algorithm of
[SSF08] is designed to function properly in the context of
two-way coupling, they are not able to take the much sim-
pler collision approach used in [SSIF09] to handle collisions
with static rigid bodies. The time integration of [SSIF09] is
able to directly fix both positions and velocities in a single
step, and within the relatively narrow scope of this paper we
could have chosen to do the same. Instead, we stay within the
confines of the more general collision algorithm and address
its limitations.

Collisions with rigid bodies are processed by removing
the normal velocity from the particle and applying friction.
The collision processing will force the normal relative veloc-
ity between the particle and static bodies to be zero, so that
the relative normal separation between them will not change
during the time step. This results in a gap between objects
that are otherwise in contact. That is, a particle falling to the
ground will stop just above the ground, separated from it by a
distance of up to ∆tvrel , where vrel is the relative normal ve-
locity. Since the particle is now at rest and above the ground
(and thus not in contact with it), it will begin to fall under
gravity until it hits the ground a second time and is stopped
closer to the surface but still above it. This process allows
the particle to approach the ground closer, until it is within
a distance of 1

2 g∆t2 from the ground. Within this distance, it
will fall into the ground from rest in a single time step and
behave as though it were in contact. With time steps as large
as a frame, this initial collision gap can produce noticeable
artifacts, since objects travel a noticeable distance in a single
time step.

We therefore propose a modification to the way collisions
are processed. The idea is to instead reduce the normal ve-
locity so that positions will lie at the surface of the rigid
body after the time step and apply friction based on this im-
pulse. This will produce a velocity whose normal compo-
nent is still approaching. That is, the particle will still appear
to be colliding after the position update, but the particle’s
position will be on the surface as desired. After the colli-
sion step, three more steps will directly involve these mod-
ified velocities and must each be considered. First, the ve-
locities will be processed for contact immediately after the
collision step, and the modification to the collision response
must be repeated here so that it is not undone. The second
step that sees the modified velocity is the implicit velocity
update. The third step to see the modified velocities is the fi-
nal contact step, which must be handled carefully. This con-
tact step must process the same pairs as collisions processed
and should zero out relative normal velocity rather than tar-
geting a position. After the time step has ended, the particles
will lie on the collision body surface with zero relative ve-

locity as desired. While this approach is rather subtle, it has
the advantage of being applicable to the two-way coupled
context of the original algorithm rather than being limited to
the narrower context of this paper.

For collisions between two deformable objects, we use
the collision algorithm of [BFA02]. Although this algorithm
guarantees no interpenetration, it does not work well when
taking time steps as large as the frame rate. Since, our adap-
tive asynchronous time integration takes small times steps
on surface where collision occurs, it is quite useful for accu-
rate resolution of self collisions. See Figures 5 (middle) and
6 (left middle) for examples of failed collision resolution at
large time steps. Note that one can also resolve this issue by
carefully designing their collision response methods like the
implicit contact handling method in [?].

7. Examples

In all our examples the surface elements are evolved semi-
implicitly, while the internal elements are evolved fully im-
plicitly. Figures 6 shows that we are able to handle more
complicated geometry, even with self collisions. Observe
that the fully implicit simulation in Figure 6 has collision
artifacts due to the frame rate collisions resolution, whereas
the asynchronous and semi-implicit simulations lack such
artifacts. We also show the extreme case ε = 1, which causes
the armadillo to behave almost like a rigid body wrapped in a
thin deformable mesh. It is still able to bend because we do
not project velocities and because the coupled steps allow
relative motion of the interior particles. The effects of spa-
tial refinement can be seen in Figure 7. Timings are shown
in Table 2. In addition, the semi-implicit iteration is approx-
imately half cheaper than the fully-implicit one.

We use the meshing algorithm of [MBTF03], which gen-
erates well-conditioned elements in the interior of the mesh.
The time step size in an explicit method is determined
by the time required for information to travel the length
of the smallest feature in the mesh at the speed of sound
in the material. This restriction is relaxed significantly for
semi-implicit methods and avoided entirely for fully-implicit
methods. Because of the quality and adaptivity of the mesh,
the smallest elements, and therefore the shortest edges, oc-
cur on the mesh’s surface. Since in all of our asynchronous
examples we evolve the surface elements semi-implicitly,

Figure 7: One sphere falling using meshes of various res-
olutions: (left) 600 tetrahedra, (middle) 6,120 tetrahedra,
(right) 21,528 tetrahedra.

submitted to COMPUTER GRAPHICS Forum (7/2011).



Shroeder et al. / Implicit Asynchronous Evolution 9

Figure 5: Two elastic spheres colliding using (left) semi-implicit time integration, (middle) fully implicit time integration and
(right) asynchronous time integration with ε = .5. Note that the fully implicit simulation has collision artifacts due to frame rate
collision resolution, whereas the artifacts are significantly reduced in the asynchronous simulation and resolved entirely in the
semi-implicit simulation.

Figure 6: An elastic armadillo falls on the ground using (left) semi-implicit time integration, (left middle) fully implicit time
integration, (right middle) asynchronous time integration with ε = .5 and (right) asynchronous time integration with ε = 1.
Note that the fully implicit simulation has collision artifacts (near legs and ears) due to frame rate collision resolution, whereas
the asynchronous and semi-implicit simulations lack such artifacts. The extreme case of ε = 1, causes the armadillo to behave
almost like a rigid body wrapped in a thin deformable mesh. It is still able to bend because we do not project velocities and
because the coupled steps allow relative motion of the interior particles.

we do not benefit much in terms of time step size during
their evolution. In fact, the added cost of the worse condi-
tioned linear solver impedes the computational efficiency of
the asynchronous time integration scheme. We note however
that a single bad element in the interior of the mesh can
impose a severe time step restriction on the semi-implicit
scheme. This can be seen in the case of Figure 8, where our
asynchronous evolution yields a speed up of 8.5 times com-
pared with the semi-implicit evolution due to the presence of
a single bad spring element inside the object, whose length
is 0.001 times that of the shortest length spring in the orig-
inal mesh. The difference in the two results originates from
difference in choices of numerical schemes. Since the fully-
implicit scheme takes large time steps, we do not expect its
result to match the semi-implicit scheme, which takes small
time steps.

The asynchronous scheme is able to handle larger and
more complicated scenes as well. Figure 1 shows a simu-
lation with 24 deformable bodies dropped into a bowl. The
bodies collide with each other, the bowl, and in the case of
the tori themselves. The bodies are evolved asynchronously
with the interiors fully implicit taking one step per 24Hz
frame. The exterior is semi-implicit and takes smaller time

steps. We use ε = .5 for all of the bodies. The simulation av-
eraged 33 seconds per frame and 35 substeps per frame for
the semi-implicit exterior. The simulation contains 94,224
degrees of freedom (134,480 tetrahedra).

Figure 8: An elastic sphere with a single bad element is
dropped on the ground using (left) semi-implicit time inte-
gration, (middle) asynchronous time integration with ε = .5,
and (right) fully-implicit with runtime matching the asyn-
chronous scheme. We obtain an factor of 8.5 improvement in
computational efficiency over the semi-implicit scheme when
using the asynchronous method in this example.

submitted to COMPUTER GRAPHICS Forum (7/2011).



10 Shroeder et al. / Implicit Asynchronous Evolution

Test name
semi-implicit fully-implicit asynchronous (seconds/frame)
(seconds/frame) (seconds/frame) ε = 0 ε = .25 ε = .5 ε = .75 ε = 1

1 sphere 0.87 0.47 1.2 1.18 1.16 1.08 0.84
2 spheres 3.31 1.47 4.29 4.38 4.31 4.05 3.09
Armadillo 3.55 1.03 3.58 3.69 3.51 3.45 3.37
1 sphere with

13.24 0.8 1.61 1.91 1.54 1.26 1.26
a single bad element

Table 2: Wall clock times comparing the semi-implicit method, the fully implicit method and the asynchronous method.

8. Conclusion and Future Work

We present an implicit asynchronous time integration
scheme that evolves one set of forces semi-implicitly at a
small time step size and another set of forces fully implicitly
with a larger time step size to allow better collision reso-
lution and visual fidelity. We use a novel force distribution
method to avoid interior collapse due to asynchronous evolu-
tion. Our time integration scheme works well with collisions
and self collisions, and it can achieve an order of magnitude
speed improvement for meshes that contain bad elements.

Although we only consider two regions, a semi-implicit
region and a fully-implicit, one is not limited to only two
regions. In fact, there could be many semi-implicit regions,
each one categorized to flow at some finer time step, or one
might also consider using an explicit, fully asynchronous
method within the semi-implicit region so that each element
is applied in the most efficient fashion. Another area we have
not adequately explored is different means of choosing re-
gions for different time steps.

We note that we did not achieve the efficiency gains that
we were expecting. One of the main reasons for this is that
taking time steps of twice the size does not accelerate the
runtime by a factor of two. Although the time steps are
larger, the cost of each time step increases. This is because
the matrix upon which conjugate gradient is acting has the
form A = I−∆tM−1 ∂f

∂v −∆t2M−1 ∂f
∂x . As ∆t → 0, A → I,

which greatly improves the conditioning of the problem and
accelerates the rate of convergence of the conjugate gradient
algorithm. In particular, the effect on conditioning becomes
a very significant factor when ∆t is on the order of the frame
rate. This is why the fully implicit simulations, running at
the frame rate, are only a small factor more efficient than
the semi-implicit simulations, which run with over ten times
as many time steps. This in turn severely limits the gains
that asynchronous evolution is able to provide. One avenue
for improving upon our asynchronous scheme is to address
the conditioning problems caused by the fully implicit forces
applied over the large ∆t.

The force distribution scheme was necessary because the
mesh tends to collapse or experience other undesirable be-
haviors when being evolved with the interior forces dis-
abled. It seems likely that the asynchronous time integration
scheme itself could be modified in a way that avoids this

limitation without the need for adding additional forces. We
leave this for future work.

While our results leave room for improvement, we feel
that this is a promising avenue for future research. We also
feel that many of the ideas and observations we have made
along the way may be helpful to others that are interested in
pursuing asynchronous integration.

Acknowledgement

Research supported in part by a Packard Foundation Fellow-
ship, an Okawa Foundation Research Grant, ONR N0014-
06-1-0393, ONR N00014-05-1-0479 for a computing clus-
ter, NIH U54-GM072970, and NSF CCF-0541148. C.S. was
supported in part by a Stanford Graduate Fellowship.

References
[Bel81] BELYTSCHKO T.: Partitioned and adaptive algorithms

for explicit time integration. Nonlinear Finite Element Anal. in
Struct. Mech. (1981), 572–584.

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.: Robust treat-
ment of collisions, contact and friction for cloth animation. ACM
Trans. Graph. 21, 3 (2002), 594–603.

[BM76] BELYTSCHKO T., MULLEN R.: Mesh partitions of
explicit-implicit time integration. Formulations and Computa-
tional Algorithms in Finite Element Analysis, K. Bathe, J. Oden
and W. Wunderlich, eds., MIT Press, Cambridge, Mass (1976),
673–690.

[BMF03] BRIDSON R., MARINO S., FEDKIW R.: Simulation of
clothing with folds and wrinkles. In Proc. of the 2003 ACM SIG-
GRAPH/Eurographics Symp. on Comput. Anim. (2003), pp. 28–
36.

[BS93] BIESIADECKI J., SKEEL R.: Dangers of multiple time
step methods. J. of Comp. Phys. 109 (1993), 318–328.

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simula-
tion. In ACM SIGGRAPH 98 (1998), ACM Press/ACM SIG-
GRAPH, pp. 43–54.

[BYM79] BELYTSCHKO T., YEN H., MULLEN R.: Mixed meth-
ods for time integration. Comp. Meth. in Appl. Mech. and Engng.
17, 18 (1979), 259–275.

[CH08] CASADEI F., HALLEUX J.: Binary spatial partitioning
of the central-difference time integration scheme for explicit fast
transient dynamics. International Journal Numerical Methods in
Engineering (2008).

[CK02] CHOI K.-J., KO H.-S.: Stable but responsive cloth. ACM
Trans. Graph. (SIGGRAPH Proc.) 21 (2002), 604–611.

submitted to COMPUTER GRAPHICS Forum (7/2011).



Shroeder et al. / Implicit Asynchronous Evolution 11

[Dan03] DANIEL W.: A partial velocity approach to subcycling
structural dynamics. Comp. Meth. Appl. Mech. Engng. 192
(2003), 375–94.

[Dru08] DRUMWRIGHT E.: A fast and stable penalty method for
rigid body simulation. IEEE Trans. Viz. Comput. Graph. 14, 1
(2008), 231–240.

[FDL08] FONG W., DARVE E., LEW A.: Stability of asyn-
chronous variational integrators. J. Comput. Phys. 227 (2008),
8367–94.

[GC01] GRAVOUIL A., COMBESCURE A.: Multi-time-step
explicit-implicit method for non-linear structural dynamics. Intl.
J. for Numer. Meth. in Engng. 50, 1 (2001), 199–225.

[GC03] GRAVOUIL A., COMBESCURE A.: Multi-time-step and
two-scale domain decomposition method for non-linear struc-
tural dynamics. Intl. J. for Numer. Meth. in Engng. 58, 10 (2003),
1545–1569.

[GOM∗06] GALOPPO N., OTADUY M. A., MECKLENBURG P.,
GROSS M., LIN M. C.: Fast simulation of deformable mod-
els in contact using dynamic deformation textures. In Proc.
of the ACM SIGGRAPH/Eurographics Symp. on Comput. Anim.
(2006), pp. 73–82.

[HVS∗09] HARMON D., VOUGA E., SMITH B., TAMSTORF R.,
GRINSPUN E.: Asynchronous contact mechanics. In ACM SIG-
GRAPH 2009 (2009), ACM Press/ACM SIGGRAPH, pp. 1–12.

[LMOW04] LEW A., MARSDEN J., ORTIZ M., WEST M.: Vari-
ational time integrators. Int. J. Num. Meth. Eng. 60 (2004), 153–
212.

[MBTF03] MOLINO N., BRIDSON R., TERAN J., FEDKIW R.:
A crystalline, red green strategy for meshing highly deformable
objects with tetrahedra. In 12th Int. Meshing Roundtable (2003),
pp. 103–114.

[MTS07] MOUSTAKAS K., TZOVARAS D., STRINTZIS M.: SQ-
Map: Efficient layered collision detection and haptic rendering.
IEEE Trans. Viz. Comput. Graph. 13, 1 (2007), 80–93.

[SLF08] SELLE A., LENTINE M., FEDKIW R.: A mass spring
model for hair simulation. ACM Transactions on Graphics 27, 3
(Aug. 2008), 64.1–64.11.

[SSF08] SHINAR T., SCHROEDER C., FEDKIW R.: Two-way
coupling of rigid and deformable bodies. In SCA ’08: Proceed-
ings of the 2008 ACM SIGGRAPH/Eurographics symposium on
Computer animation (2008), pp. 95–103.

[SSF09] SU J., SCHROEDER C., FEDKIW R.: Energy stability
and fracture for frame rate rigid body simulations. In Proceedings
of the 2009 ACM SIGGRAPH/Eurographics Symp. on Comput.
Anim. (2009), pp. 155–164.

[SSIF09] SELLE A., SU J., IRVING G., FEDKIW R.: Robust
high-resolution cloth using parallelism, history-based collisions,
and accurate friction. IEEE Trans. on Vis. and Comput. Graph.
(2009), 339–350.

[TPS08] THOMASZEWSKI B., PABST S., STRASSER W.: Asyn-
chronous cloth simulation. In CGI Proc. 2008 (2008).

[WST09] WICKE M., STANTON M., TREUILLE A.: Modular
bases for fluid dynamics. ACM Trans. Graph. 28, 3 (2009), 1–8.

Appendix

Derivation of Second Order Positions

Recall that the second order position update looks like (5).

If we let fI = 0, fE i = fE , and p∆t i = ∆t, then

vn+ k
p =vn+ k−1

p +
∆t
p

M−1fE

=vn +
k∆t
p

M−1fE

xn+ k
p =xn+ k−1

p +
∆t
2p

(
vn+ k−1

p +vn+ k
p

)
=xn+ k−1

p +
∆t
p

vn +
∆t2

p2

(
k− 1

2

)
M−1fE

=xn +
k∆t
p

vn +
k2

∆t2

2p2 M−1fE

xn+1 =xn +∆tvn +
∆t
2

M−1
p

∑
i=1

∆t ifE i

=xn +∆tvn +
∆t2

2
M−1fE

=xn+1− 1
p +

∆t
p

vn +
(2p−1)∆t2

2p2 M−1fE

=xn+1− 1
p +

∆t
p

vn−1+ 1
p +

∆t2

2p2 M−1fE

submitted to COMPUTER GRAPHICS Forum (7/2011).


