
CS130 - LAB - Introduction to OpenGL

Name: SID:

Introduction

Open Graphics Library (OpenGL) is a cross-platform API for fast rendering of 2D and 3D
graphics. OpenGL typically runs on a graphics processing unit (GPU) and it is optimized to
render multiple images per second. For this reason, OpenGL is often used in game engines
and other applications that require interactivity with the user.

The goal of this lab is to get you started with OpenGL by implementing Phong’s illumination
model into special OpenGL programs called shaders.

The process is summarized as follows:

• An OpenGL program is written in C/C++ and consists of setting up the scene (camera
position, objects, lights, among others).

• The OpenGL program is also responsible for reading a text file with shader code,
compiling it and sending it to the GPU for execution.

• The language used in the shader program is very similar to C and is called OpenGL
shader language (GLSL)

• The shader typically runs on the GPU and the shader determines the position and
color of vertices. Vertices are the points that constitute geometry. For instance, a cube
has 8 vertices.

• Here, we care about two types of shaders: vertex and fragment.

• The vertex shader receives vertices and applies transformations to these vertices (scale,
translation, rotation, among others).

• The fragment shader receives fragments and determines the color of that fragment.
Fragments are transformed vertices outputted by the vertex shader after rasterization.

1

The left diagram below depicts the process of loading the vertex and fragment shaders in the
OpenGL C/C++ code. The right diagram depicts the vertex and fragment shaders. Taken
from
http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/pipeline-overview/.

1. Consider the OpenGL code diagram depicted above. Describe briefly with your own
words each one of the following functions. Look at the OpenGL documentation for reference.
Google: “opengl 4 references.”

Link: https://www.khronos.org/registry/OpenGL-Refpages/gl4/

glCreateShader

input:
output:

glShaderSource

input:

glCompileShader

input:

glCreateProgram

output:

glAttachShader

input:

glLinkProgram

input:

glUseProgram

2

https://www.google.com/url?q=http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/pipeline-overview/&sa=D&ust=1601679253988000&usg=AOvVaw24XGbOqgiEH0AFlwC_2n_a
https://www.google.com/url?q=https://www.khronos.org/registry/OpenGL-Refpages/gl4/&sa=D&ust=1601679253989000&usg=AOvVaw04dktDekd6O2yRGd862SNn

input:

2. Read the comments and order the lines of code in correct order for loading shaders. Fill
in the blanks afterwards.

A. glCompileShader(); // compile fragment shader

B. glAttachShader(,); // attach vertex shader to program

C. GLuint vertex id = glCreateShader(); // create vertex shader

D. glCompileShader(); // compile vertex shader

E. glAttachShader(, fragment id); // attach fragment shader to program

F. glShaderSource(, 1, &vertex shader file, NULL); // source vertex shader

G. glLinkProgram(); // link program

H. GLuint fragment id=glCreateShader(); // create fragment shader

I. glShaderSource(, 1, &fragment shader file, NULL); // source fragment shader

J. GLuint program = glCreateProgram();

Ordering:

// ver tex shader
void main ()
{

g l P o s i t i o n = g l Pro j e c t i onMat r i x ∗ gl ModelViewMatrix ∗ g l Ver t ex ;
g l FrontCo lo r = vec4 (0 , 1 , 0 , 1) ;

}

// fragment shader
vec4 l i g h t c o l o r = vec4 (1 , 1 , 0 , 1) ;
void main ()
{

g l FragCo lor = l i g h t c o l o r ∗ g l FrontCo lo r ;
}

3

The vertex shader receives a vec4 gl Vertex and returns a vec4 gl Position. gl ProjectionMatrix

and gl ModelViewMatrix are transformation matrices given by OpenGL.

The fragment shader receives gl FrontColor from the vertex shader and returns the color
of the fragment as gl FragColor.

3.1. What is the output color of the fragment shader?

gl FragColor = (, , ,)

3.2. Consider an object with color green represented by the RGB color vector (0, 1, 0) and
a blue light source with color (0, 0, 1). If we illuminate the object with the light, what is
the output color?

∎

Part 2: Phong model

Write the equations for the the Phong model components. Draw any missing vectors in the
figure below.

Ambient:
Diffuse:
Specular:

In the figure below, vector r is the reflection of vector l from the surface, and n vector is the
unit-length normal of the surface.

4

Write the reflection vector r in terms of n and l, following the steps below:

1. Formulate vector p, which is the projection of l on n, in terms of l and n. p =
.

2. Formulate vector d, in terms of l and p. d = .

3. Write vector r in terms of d, p and l (you do not have to use all of them). r =
.

4. Substitute p and d, with your results from steps 1 and 2, and write r in terms of l and
n only. r = .

In order to write Phong’s model in your shader, you can use (these structures and variables
are already defined elsewhere in the program):

s t r u c t g l L ightSourceParameters
{

vec4 ambient ;
vec4 d i f f u s e ;
vec4 spe cu l a r ;
vec4 p o s i t i o n ;

} ;
uniform gl L ightSourceParameters
g l L i gh tSourc e [gl MaxLights] ;
s t r u c t gl LightModelParameters
{

vec4 ambient ;
} ;
uniform gl LightModelParameters g l LightModel ;
s t r u c t g l Mater ia lParamete r s

5

{
vec4 ambient ;
vec4 d i f f u s e ;
vec4 spe cu l a r ;
f l o a t s h i n i n e s s ; // t h i s i s the exponent o f the spe cu l a r component

} ;
uniform g l Mater ia lParamete r s g l FrontMate r i a l ;

You may also use the following functions: max(⋅,⋅); dot(⋅,⋅); normalize(⋅);
You can assume the camera position is at the origin, i.e., at coordinates (0, 0, 0).

Part 3: Notes on Assignment 1 - Checkpoint 2

If you implemented plane intersection, then you have test 04 working. The next steps are:

1. Phong shader

2. Shadows

Starting with the Phong shader. (Implement Shade Surface in phong shader.cpp). Recall
Phong shader consists of 3 components: ambient, diffuse, specular. You will need to calculate
each component and add them all to the color that is returned.

Ambient. Combination of three variables (you have access to all of them in Shade Surface)

1. world.ambient color

2. world.ambient intensity

3. color ambient

Diffuse. Is proportional to the cosine of the angle between the normal (n) and the vector
from the intersection point to the light source (l). This term is the intensity of the diffuse
component.

• The intersection point is calculated as the point in the ray with the earliest hit t. You
can get any point on a ray using the function ray.Point(t).

• You may need to calculate the intersection point in your Cast Ray before passing it to
the shader.

6

• Notice the normal should be pointing to outside of your object. If the nearest point is
exiting the object, you may need to invert the normal so it is facing the right direction.

• Normalize the vectors when calculating the cosine using dot product.

• Check if the light source is behind the intersection point on the surface. In this case,
the diffuse intensity is zero. You can check for this by taking max(l ⋅ n,0).

• You have access to color diffuse in your Phong shader. This should be combined
with the diffuse intensity.

• You will also need to compute the color of the light source and combine it in your
diffuse component. In particular, the intensity of the light should decay proportional
to the square distance between the intersection point and the light source.

• You can get the light color at the proper intensity by calling the function Emitted Light

passing the vector between the light source and the intersection point.

Specular. Proportional to the cosine of the angle between the reflected direction and the
vector from the intersection point to the camera position (c).

• You can calculate the reflected direction using r = (2 ∗ (l ⋅ n)n − l). Make sure l and r
are normalized.

• The specular intensity is max(r ⋅c,0)α, where α is given to you as the specular power

variable.

• The final color is calculated similarly to the diffuse component by using the light color

with decay proportional to the square of the distance to the light source.

Shadows.

• In your Phong shader, check if shadows should be calculated by using the variable
world.enable shadows.

• If world.enable shadows is true, then you should check if there is an object between
your intersection point and the light source (You can use Closest Intersection for
this).

• If there is an object blocking all your light sources, then you should return only the
ambient light component.

7

