
CS130 - LAB - Bézier curves

Name: SID:

In this lab, we will render an approximation of a parametric curve known as the Bézier.

Consider the parametric equation of a segment between two control points P0 and P1

B(t) = (1 − t)P0 + tP1 (1)

For n control points, we can recursively apply Eq. (1) to consecutive control points until we
are left with only P (t). For three control points, B(t) = (1−t)[(1−t)P0+tP1]+t[(1−t)P1+tP2].
1. Given n control points, what is the degree of the polynomial equation for the Bézier
curve? In general, B(t) for n + 1 points is given by:

B(t) =
n

∑
i=0

(n
i
)ti(1 − t)n−iPi

∎
2. Since we may need the factorial n!, combination (n

k
), and polynomial of B(t) in this lab,

complete the code to for these functions below.

f l o a t f a c t o r i a l ( i n t n)
{

}

f l o a t combination ( i n t n , i n t k )
{

}

f l o a t polynomial ( i n t n , i n t k , f l o a t t )
{
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}

∎
The code is an O(n2) algorithm for computing the n + 1 coefficients

ci = (n
i
)ti(1 − t)n−i.

Next, lets improve upon this. Let

ri = (n
i
)ti si = (1 − t)n−i ci = risi

3. The advantage of dividing ci into two parts is that ri can be easily computed left to right,
since r0 = and ri = ( )ri−1. Similarly, si can be easily computed right
to left, since sn = and si = ( )si+1. Note that each of these expressions
should be O(1) and use only basic arithmetic (+,-,*,/).

∎
4. Next, write code for an O(n) algorithm that computes all of the coefficients c[0], . . . ,
c[n] at once. Use only basic arithmetic (+,-,*,/).

void c o e f f i c i e n t s ( f l o a t ∗ c , i n t n , f l o a t t )
{

}

∎

A

B

C

We can construct the quadratic Bézier curve by assuming that it takes the general form
P (t) = (a2t2 + a1t + a0)A + (b2t2 + b1t + b0)B + (c2t2 + c1t + c0)C. We can use the properties
below to solve for the coefficients.
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5. Assumption: P (0) = A. Use this to solve for a0 = , b0 = , and c0 = .

∎
6. Assumption: P (1) = C. Use this to solve for a1 = , b1 = , and c1 = .

∎
7. Assumption: If A = B = C, then P (t) = A for all t. Use this to solve for b2 = .

∎
8. Assumption: P ′(0) depends on A and B, but it does not depend on C. Use this to solve
for c2 = .

∎
9. Assumption: P ′(1) depends on B and C, but it does not depend on A. Use this to solve
for a2 = .

∎
10. Substituting in all of the coefficients and factoring the resulting polynomials produces
P (t) = ( )A + ( )B + ( )C.

∎
11. One can show that P ′(0) = α(B −A) and P ′(1) = β(B −C). Find α and β.

∎

Part 2: Coding

Download the skeleton code and modify main.cpp as follows:

• Define a global vector to store the control points.

• Push back the mouse click coordinates into the vector in the function GL mouse.

• Write the code for the factorial, combination and binomial.

• Draw line segments between points along the Bézier curve in GL render().

• You can use GL LINE STRIP to draw line segments between consecutive points.

• You can iterate t between 0 and 1 in steps of 0.01.

Optional: Rather than using the general equation for the Bézier curve to write your program,
you can write a program where you recursively apply Eq. (1) to consecutive points to get
B(t). Alternatively, you can use the more efficient algorithm coefficients.

3


