Curves

Design considerations

- local control of shape
 - design each segment independently
- •smoothness and continuity
- ability to evaluate derivatives
- stability
 - •small change in input leads to small change in output
- ease of rendering

Design considerations

- local control of shape
 - design each segment independently
- •smoothness and continuity
- •ability to evaluate derivatives
- stability
 - •small change in input leads to small change in output
- ease of rendering

approximate out of a number of wood strips

Design considerations

- local control of shape
 - design each segment independently
- •smoothness and continuity
- •ability to evaluate derivatives
- stability
 - •small change in input leads to small change in output
- ease of rendering

approximate out of a number of wood strips

What is a curve?

intuitive idea:
draw with a pen
set of points the pen traces

may be 2D, like on paper or 3D, space curve

What is a curve?

Implicit (2D) f(x,y) = 0test if (x,y) is on the curve


```
Implicit

(2D) f(x,y) = 0

test if (x,y) is on the curve
```


Implicit (2D) f(x,y) = 0test if (x,y) is on the curve

Implicit (2D) f(x,y) = 0test if (x,y) is on the curve

Parametric

(2D) $(x,y) = \mathbf{f}(t)$ (3D) $(x,y,z) = \mathbf{f}(t)$ map free *parameter* t to points on the curve

Implicit (2D) f(x,y) = 0test if (x,y) is on the curve

Parametric

(2D) $(x,y) = \mathbf{f}(t)$ (3D) $(x,y,z) = \mathbf{f}(t)$ map free *parameter* t to points on the curve


```
Implicit

(2D) f(x,y) = 0

test if (x,y) is on the curve
```

Parametric

(2D) $(x,y) = \mathbf{f}(t)$ (3D) $(x,y,z) = \mathbf{f}(t)$ map free *parameter* t to points on the curve

Procedural

e.g., fractals, subdivision schemes

Fractal: Koch Curve

Implicit (2D) f(x,y) = 0test if (x,y) is on the curve

Parametric

(2D) $(x,y) = \mathbf{f}(t)$ (3D) $(x,y,z) = \mathbf{f}(t)$ map free *parameter* t to points on the curve

Procedural

e.g., fractals, subdivision schemes

Bezier Curve

Implicit
$$f(x,y) = x^2 + y^2 - 1 = 0$$

but different mathematical representation!

sometimes easy to find a parametric representation

e.g., circle, line segment

in other cases, not obvious

strategy: break into simpler pieces

strategy: break into simpler pieces

switch between functions that represent pieces:

$$\mathbf{f}(u) = \begin{cases} \mathbf{f}_1(2u) & u \le 0.5 \\ \mathbf{f}_2(2u-1) & u > 0.5 \end{cases}$$

strategy: break into simpler pieces

switch between functions that represent pieces:

$$\mathbf{f}(u) = \begin{cases} \mathbf{f}_1(2u) & u \le 0.5 \\ \mathbf{f}_2(2u-1) & u > 0.5 \end{cases}$$

map the inputs to \mathbf{f}_1 and \mathbf{f}_2 to be from 0 to 1

Curve Properties

```
Local properties: continuity position direction curvature
```

```
Global properties (examples): closed curve curve crosses itself
```

Interpolating vs. non-interpolating

Continuity: stitching curve segments together

Finding a Parametric Representation

Polynomial Pieces

<whiteboard>

Blending Functions

Blending functions are more convenient basis than monomial basis

• "canonical form" (monomial basis)

$$\mathbf{f}(u) = \mathbf{a}_0 + \mathbf{a}_1 u + \mathbf{a}_2 u^2 + \mathbf{a}_3 u^3$$

"geometric form" (blending functions)

$$\mathbf{f}(u) = b_0(u)\mathbf{p}_0 + b_1(u)\mathbf{p}_1 + b_2(u)\mathbf{p}_2 + b_3(u)\mathbf{p}_3$$

Interpolating Polynomials

Interpolating polynomials

- Given n+1 data points, can find a unique interpolating polynomial of degree n
- Different methods:
 - Vandermonde matrix
 - Lagrange interpolation
 - Newton interpolation

higher order interpolating polynomials are rarely used

Piecewise Polynomial Curves

Example: blending functions for two line segments

$$\mathbf{f}(u) = \begin{cases} \mathbf{f}_1(2u) & u \le 0.5 \\ \mathbf{f}_2(2u-1) & u > 0.5 \end{cases}$$

Cubics

- ullet Allow up to C^2 continuity at knots
- need 4 control points
 - may be 4 points on the curve, combination of points and derivatives, ...
- good smoothness and computational properties

We can get any 3 of 4 properties

- •piecewise cubic
- 2. curve interpolates control points
- 3. curve has local control
- 4. curves has C2 continuity at knots

Cubics

- Natural cubics
 - C2 continuity
 - n points -> n-l cubic segments
- control is non-local:(
- ill-conditioned x(

Cubic Hermite Curves

- CI continuity
- specify both positions and derivatives

Cubic Hermite Curves

Specify endpoints and derivatives

construct curve with C^1 continuity

Hermite blending functions

$$b_0(u) = 2u^3 - 3u^2 + 1$$

$$b_1(u) = -2u^3 + 3u^2$$

$$b_2(u) = u^3 - 2u^2 + u$$

$$b_3(u) = u^3 - u^2$$

[Wikimedia Commons]

Example: keynote curve tool

Interpolating vs. Approximating Curves

Interpolating

Approximating (non-interpolating)

Cubic Bezier Curves

Cubic Bezier Curves

Cubic Bezier Curve Examples

Cubic Bezier blending functions

Bezier Curves Degrees 2-6

Bernstein Polynomials

 The blending functions are a special case of the Bernstein polynomials

$$b_{\rm kd}(u) = \frac{d!}{k!(d-k)!} u^k (1-u)^{d-k}$$
 • These polynomials give the blending

 These polynomials give the blending polynomials for any degree Bezier form

All roots at 0 and 1

For any degree they all sum to 1

They are all between 0 and 1 inside (0,1)

n = 5

Bezier Curve Properties

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

Joining Cubic Bezier Curves

Joining Cubic Bezier Curves

Evaluating p(u) geometrically

Evaluating p(u) geometrically

Bezier subdivision

Recursive Subdivision for Rendering

Cubic B-Splines

Cubic B-Splines

Spline blending functions

$$b_0(u) = \frac{1}{6}(1 - u)^3$$

$$b_1(u) = \frac{1}{6}(4 - 6u^2 + 3u^3)$$

$$b_2(u) = \frac{1}{6}(1 + 3u + 3u^2 - 3u^3)$$

$$b_3(u) = \frac{1}{6}u^3$$

General Splines

Defined recursively by Cox-de Boor recursion formula

$$b_{j,0}(t) = \begin{cases} 1 & \text{if } t_j \le t \\ 0 & \text{otherwise} \end{cases}$$

$$b_{j,n}(t) := \frac{t - t_j}{t_{j+n} - t_j} b_{j,n-1}(t) + \frac{t_{j+n+1} - t}{t_{j+n+1} - t_{j+1}} b_{j+1,n-1}(t)$$

Spline properties

Basis functions

convexity

Surfaces

Parametric Surface

$$x = x(u, v)$$
$$y = y(u, v)$$
$$z = z(u, v)$$

Parametric Surface - tangent plane

$$\mathbf{t}_{u} = \begin{pmatrix} \frac{\partial x}{\partial u} \\ \frac{\partial y}{\partial u} \\ \frac{\partial z}{\partial u} \end{pmatrix}$$

$$\mathbf{t}_{v} = \begin{pmatrix} \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial v} \end{pmatrix}$$

Bicubic Surface Patch

Bezier Surface Patch

$$\mathbf{f}(u,v) = \sum_{i} \sum_{j} b_i(u)b_j(v)\mathbf{p}_{ij}$$

Patch lies in convex hull

