## Curves

## Design considerations

-local control of shape -design each segment independently
-smoothness and continuity
-ability to evaluate derivatives
-stability
-small change in input leads to small change in output - ease of rendering


## Design considerations

-local control of shape -design each segment independently
-smoothness and continuity
-ability to evaluate derivatives
-stability
-small change in input leads to small change in output - ease of rendering


## Design considerations

-local control of shape -design each segment independently
-smoothness and continuity
-ability to evaluate derivatives
-stability
-small change in input leads to small change in output - ease of rendering


## What is a curve?

intuitive idea:
draw with a pen
set of points the pen traces
may be 2D, like on paper or 3D, space curve


## What is a curve?

may have
endpoints
extend
infinitely

## How do we specify a curve?



## How do we specify a curve?

Implicit
(2D) $f(x, y)=0$
test if $(x, y)$ is on the curve


## How do we specify a curve?

Implicit
(2D) $f(x, y)=0$
test if $(x, y)$ is on the curve


## How do we specify a curve?

## Implicit

(2D) $f(x, y)=0$
test if $(x, y)$ is on the curve


## How do we specify a curve?

Implicit
(2D) $f(x, y)=0$
test if $(x, y)$ is on the curve
Parametric
(2D) $(x, y)=\mathbf{f}(t)$
(3D) $(x, y, z)=f(t)$
map free parameter t to points on the curve


## How do we specify a curve?

Implicit
(2D) $f(x, y)=0$
test if $(x, y)$ is on the curve
Parametric
(2D) $(x, y)=\mathbf{f}(t)$
(3D) $(x, y, z)=f(t)$
map free parameter t to points on the curve


## How do we specify a curve?

Implicit
(2D) $f(x, y)=0$
test if $(x, y)$ is on the curve
Parametric
(2D) $(x, y)=f(t)$
(3D) $(x, y, z)=f(t)$
map free parameter t to points on the curve

Procedural
e.g., fractals, subdivision schemes


Fractal: Koch Curve

## How do we specify a curve?

Implicit
(2D) $f(x, y)=0$
test if $(x, y)$ is on the curve
Parametric
(2D) $(x, y)=f(t)$
(3D) $(x, y, z)=f(t)$
map free parameter t to points on the curve

Procedural
e.g., fractals, subdivision schemes

A curve may have multiple representations

## A curve may have multiple representations

Implicit

$$
f(x, y)=x^{2}+y^{2}-1=0
$$



## A curve may have multiple representations

Parametric

$$
(x, y)=f(t)=(\cos t, \sin t)
$$



## A curve may have multiple representations

Parametric

$$
\begin{aligned}
(x, y)=f(t)= & (\cos t, \sin t), \\
& t \text { in }[0,2 p i)
\end{aligned}
$$



Same curve (set of points), but different mathematical representation!

## A curve may have multiple representations

Parametric

$$
\begin{aligned}
(x, y)=f(t)= & (\cos t, \sin t), \\
& t \text { in }[0,2 p i)
\end{aligned}
$$



We will focus on parametric representations

## Parameterization, re-parameterization



## Parameterization, re-parameterization



## Parameterization, re-parameterization



## Parameterization, re-parameterization


$S=S_{0}$

$$
\mathbf{f}_{2}(\mathrm{~s})=\mathbf{f}_{\mathbf{1}}(\mathrm{f}(\mathrm{~s}))
$$

## Parameterization, re-parameterization



## Natural parameterization



## Natural parameterization

pen moves at a constant velocity: evenly spaced points


## Natural parameterization

pen moves at a constant velocity: evenly spaced points


## Natural parameterization

pen moves at a constant velocity: evenly spaced points


## piecewise parametric representation

sometimes easy
to find a parametric representation
e.g., circle, line segment

## piecewise parametric representation

in other cases, not obvious


## piecewise parametric representation

strategy: break into simpler pieces


## piecewise parametric representation

strategy: break into simpler pieces

switch between functions that represent pieces:

$$
\mathbf{f}(u)= \begin{cases}\mathbf{f}_{1}(2 u) & u \leq 0.5 \\ \mathbf{f}_{2}(2 u-1) & u>0.5\end{cases}
$$

## piecewise parametric representation

strategy: break into simpler pieces

switch between functions that represent pieces:

$$
\mathbf{f}(u)= \begin{cases}\mathbf{f}_{1}(2 u) & u \leq 0.5 \\ \mathbf{f}_{2}(2 u-1) & u>0.5\end{cases}
$$

map the inputs to
$\mathbf{f}_{1}$ and $\mathbf{f}_{2}$
to be from 0 to 1

## Curve Properties

Local properties:
continuity
position
direction
curvature
Global properties (examples):
closed curve
curve crosses itself
Interpolating vs. non-interpolating

## Continuity: stitching curve segments together


$C^{0}$


## Finding a Parametric Representation

## Polynomial Pieces

<whiteboard>

## Blending Functions

# Blending functions are more convenient basis than monomial basis 



- "canonical form" (monomial basis)

$$
\mathbf{f}(u)=\mathbf{a}_{0}+\mathbf{a}_{1} u+\mathbf{a}_{2} u^{2}+\mathbf{a}_{3} u^{3}
$$

- "geometric form" (blending functions)

$$
\mathbf{f}(u)=b_{0}(u) \mathbf{p}_{0}+b_{1}(u) \mathbf{p}_{1}+b_{2}(u) \mathbf{p}_{2}+b_{3}(u) \mathbf{p}_{3}
$$

## Interpolating Polynomials

## Interpolating polynomials

- Given $n+1$ data points, can find a unique interpolating polynomial of degree $n$
- Different methods:
- Vandermonde matrix
- Lagrange interpolation
- Newton interpolation


# higher order interpolating polynomials are rarely used 


non-local effects
4th order (gray) to 5th order (black)

## Piecewise Polynomial Curves

## Example: blending functions for two line segments

$$
\mathbf{f}(u)= \begin{cases}\mathbf{f}_{1}(2 u) & u \leq 0.5 \\ \mathbf{f}_{2}(2 u-1) & u>0.5\end{cases}
$$



## Cubics



$$
\mathbf{f}(u)=\mathbf{a}_{0}+\mathbf{a}_{1} u+\mathbf{a}_{2} u^{2}+\mathbf{a}_{3} u^{3}
$$

- Allow up to $C^{2}$ continuity at knots
- need 4 control points
- may be 4 points on the curve, combination of points and derivatives, ...
- good smoothness and computational properties


## We can get any 3 of 4 properties

| .piecewise cubic
2.curve interpolates control points
3. curve has local control
4.curves has $C 2$ continuity at knots

## Cubics

- Natural cubics
- C2 continuity
- n points -> n -I cubic segments
- control is non-local :(
- ill-conditioned $\times$ (


## Cubic Hermite Curves

- Cl continuity
- specify both positions and derivatives


## Cubic Hermite Curves

Specify endpoints and derivatives
construct curve with
$C^{1}$ continuity


## Hermite blending functions



Example: keynote curve tool


## Interpolating vs.Approximating Curves



Interpolating
Approximating
(non-interpolating)

## Cubic Bezier Curves

## Cubic Bezier Curves



## Cubic Bezier Curve Examples



## Cubic Bezier blending functions



## Bezier Curves Degrees 2-6



## Bernstein Polynomials

- The blending functions are a special case of the Bernstein polynomials

$$
b_{\mathrm{kd}}(u)=\frac{d!}{k!(d-k)!} u^{k}(1-u)^{d-k}
$$

-These polynomials give the blending polynomials for any degree Bezier form
All roots at 0 and 1
For any degree they all sum to 1
They are all between 0 and 1 inside $(0,1)$


## Bezier Curve Properties

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision


Joining Cubic Bezier Curves


## Joining Cubic Bezier Curves

- for Cl continuity, the vectors must line up and be the same length
- for GI continuity, the vectors need only line up


## Evaluating P(u) geometrically



## Evaluating P(u) geometrically



## Bezier subdivision



## Recursive Subdivision for Rendering



## Cubic B-Splines

## Cubic B-Splines



## Spline blending functions

$$
\begin{gathered}
b_{0}(u)=\frac{1}{6}(1-u)^{3} \\
b_{1}(u)=\frac{1}{6}\left(4-6 u^{2}+3 u^{3}\right) \\
b_{2}(u)=\frac{1}{6}\left(1+3 u+3 u^{2}-3 u^{3}\right) \\
b_{3}(u)=\frac{1}{6} u^{3}
\end{gathered}
$$

## General Splines

- Defined recursively by Cox-de Boor recursion formula

$$
\begin{gathered}
b_{j, 0}(t)= \begin{cases}1 & \text { if } t_{j} \leq t \\
0 & \text { otherwise }\end{cases} \\
b_{j, n}(t):=\frac{t-t_{j}}{t_{j+n}-t_{j}} b_{j, n-1}(t)+\frac{t_{j+n+1}-t}{t_{j+n+1}-t_{j+1}} b_{j+1, n-1}(t)
\end{gathered}
$$



## Spline properties

## Basis functions



convexity

## Surfaces

## Parametric Surface

$$
\begin{aligned}
x & =x(u, v) \\
y & =y(u, v) \\
z & =z(u, v)
\end{aligned}
$$



## Parametric Surface tangent plane



## Bicubic Surface Patch



## Bezier Surface Patch

$$
\mathbf{f}(u, v)=\sum_{i} \sum_{j} b_{i}(u) b_{j}(v) \mathbf{p}_{i j}
$$



