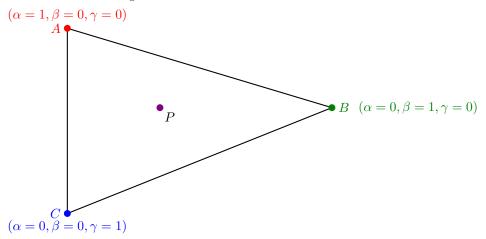
Barycentric Coordinates

$\mathrm{CS}~130$

1. Want to interpolate vertex data along a segment

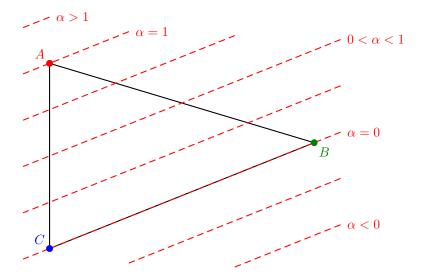
$$A \bullet B = 0 \qquad (\alpha = 1, \beta = 0) \qquad (\alpha = 0, \beta = 1)$$

- Define $f(\mathbf{x})$ for all points \mathbf{x} on the line
- Value at endpoints: f_A , f_B .
- Interpolation should get the endpoints right: $f(A) = f_A$, $f(B) = f_B$
- $f(P) = \alpha f(A) + (1 \alpha)f(B).$
- $0 \le \alpha \le 1$.
- Symmetry: define $\beta = 1 \alpha$.
- $f(P) = \alpha f(A) + \beta f(B)$, with $\alpha + \beta = 1$.
- $\alpha = \frac{\operatorname{len}(PB)}{\operatorname{len}(AB)}, \ \beta = \frac{\operatorname{len}(AP)}{\operatorname{len}(AB)}$
- 2. Extend this to a triangle

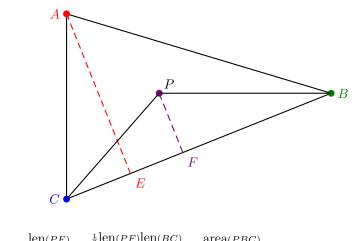


- Define $f(\mathbf{x})$ for all points \mathbf{x} on the triangle
- Value at vertices: f_A , f_B , f_C .
- Interpolation should get the vertices right: $f(A) = f_A$, $f(B) = f_B$, $f(C) = f_C$
- $f(P) = \alpha f(A) + \beta f(B) + \gamma f(C)$, with $\alpha + \beta + \gamma = 1$.

• Weights form isocontours:

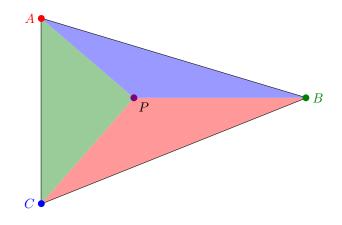


- Note that $\alpha < 0$ or $\alpha > 1$ lies outside the triangle
- Compute using distance to edge:



•
$$\alpha = \frac{\operatorname{len}(PF)}{\operatorname{len}(AE)} = \frac{\frac{1}{2}\operatorname{len}(PF)\operatorname{len}(BC)}{\frac{1}{2}\operatorname{len}(AE)\operatorname{len}(BC)} = \frac{\operatorname{area}(PBC)}{\operatorname{area}(ABC)}$$

• Similarly: $\beta = \frac{\operatorname{area}(APC)}{\operatorname{area}(ABC)}, \gamma = \frac{\operatorname{area}(ABP)}{\operatorname{area}(ABC)}$



- Pattern of areas
- Since $\operatorname{area}(PBC) + \operatorname{area}(APC) + \operatorname{area}(ABP) = \operatorname{area}(ABC)$, we have $\alpha + \beta + \gamma = 1$
- Barycentric interpolation is okay for z-values
- Barycentric interpolation is okay for colors in orthographic case
- Barycentric interpolation does not work for colors in the projective case

3. Inside/outside tests

- $\alpha < 0$ or $\alpha > 1$ lies outside the triangle (Same for $\beta < 0$ or $\beta > 1$, $\gamma < 0$ or $\gamma > 1$)
- Inside the triangle if $0 \le \alpha \le 1$ and $0 \le \beta \le 1$ and $0 \le \gamma \le 1$.
- Sufficient to check $\alpha, \beta, \gamma \ge 0$
- For example if $\alpha \ge 0$ and $\beta \ge 0$ then $\gamma = 1 \alpha \beta \le 1 \beta \le 1$.
- Since we need the weights to compute the depth values when doing z-buffering, we might as well also use them to determine inside/outside.