CS 230, Quiz 7

Solutions

You will have 6 minutes to complete this quiz. No books, notes, or other aids are permitted.

One technique that processors use to compute $z=\sqrt{a}$ is to first compute $x=\frac{1}{\sqrt{a}}$ and then multiply $z=a x$. Let $f(x)=\frac{1}{x^{2}}-a$.

Problem 1 (1 Point)

Show that $f(x)=0$.

$$
f(x)=\frac{1}{x^{2}}-a=\frac{1}{\left(\frac{1}{\sqrt{a}}\right)^{2}}-a=\frac{1}{\frac{1}{a}}-a=a-a=0
$$

Problem 2 (4 Points)

Given an estimate \bar{x} to x (so that $f(\bar{x}) \approx 0$), use Newton's method to derive an update rule to compute a better estimate $\hat{\boldsymbol{x}}$ from the original estimate $\overline{\boldsymbol{x}}$.

$$
\begin{aligned}
\hat{x} & =\bar{x}+y \\
0=f(\hat{x}) & =f(\bar{x}+y) \approx f(\bar{x})+f^{\prime}(\bar{x}) y \\
y & =-\frac{f(\bar{x})}{f^{\prime}(\bar{x})} \\
\hat{x} & =\bar{x}-\frac{f(\bar{x})}{f^{\prime}(\bar{x})} \\
f(x) & =\frac{1}{x^{2}}-a \\
f^{\prime}(x) & =-\frac{2}{x^{3}} \\
\hat{x} & =\bar{x}-\frac{\frac{1}{\bar{x}^{2}}-a}{-\frac{2}{\bar{x}^{3}}}=\bar{x}+\frac{\bar{x}-a \bar{x}^{3}}{2}=\frac{1}{2} \bar{x}\left(3-a \bar{x}^{2}\right)
\end{aligned}
$$

