CS 230, Quiz 3

Solutions

You will have 5 minutes to complete this quiz. No books, notes, or other aids are permitted.

Problem 1

Fill in the missing parts of the triangle rasterization algorithm

```
for all }x\in[\mp@subsup{x}{\operatorname{min}}{\prime},\mp@subsup{x}{max}{m}]\mathrm{ do
    for all }\boldsymbol{y}\in[\mp@subsup{y}{\mathrm{ min }}{\prime},\mp@subsup{y}{\mathrm{ max }}{}]\mathrm{ do
        Compute (\alpha,\beta,\gamma) for (x,y)
        if 0\leq\alpha,\beta,\gamma then
            c}=\alpha\mp@subsup{c}{0}{}+\beta\mp@subsup{c}{1}{}+\gamma\mp@subsup{\mathbf{c}}{2}{
            Draw pixel (x,y) with color c
```


Problem 2

The triangle below is to be rasterized. The colors of the vertices are $A=$ red $=(1,0,0)$, $B=$ green $=(0,1,0)$ and, $C=$ blue $=(0,0,1)$. (1) Compute the barycentric weights of P, and (2) compute the color of the point P.

$$
\begin{aligned}
\operatorname{area}(A B C) & =32 \quad \operatorname{area}(A P C)=8 \quad \operatorname{area}(A B P)=16 \\
\operatorname{area}(P B C) & =\operatorname{area}(A B C)-\operatorname{area}(A P C)-\operatorname{area}(A B P)=8 \\
\alpha & =\frac{\operatorname{area}(P B C)}{\operatorname{area}(A B C)}=\frac{1}{4} \quad \beta=\frac{\operatorname{area}(A P C)}{\operatorname{area}(A B C)}=\frac{1}{4} \quad \gamma=\frac{\operatorname{area}(A B P)}{\operatorname{area}(A B C)}=\frac{1}{2} \\
C_{P} & =\alpha C_{A}+\beta C_{B}+\gamma C_{C}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right)
\end{aligned}
$$

