Triangle rasterization

Triangle rasterization issues

Who should fill in shared edge?

Who should fill in shared edge?

Use Midpoint Algorithm for edges and fill in?

Use an approach based on barycentric coordinates

We can interpolate attributes using barycentric coordinates

for all x do for all y do compute (α, β, γ) for (x,y)if $(\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

for all x do for all y do compute (α, β, γ) for (x,y)if $(\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

for x in [x_min, x_max] for y in [y_min, y_max] $\alpha = f_{bc}(x, y) / f_{bc}(x_a, y_a)$ $\beta = f_{ca}(x, y) / f_{ca}(x_b, y_b)$ $\gamma = f_{ab}(x, y) / f_{ab}(x_c, y_c)$ if $(\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

<whiteboard>

Optimizations?

for x in [x_min, x_max] for y in [y_min, y_max] $\alpha = f_{bc}(x, y) / f_{bc}(x_a, y_a)$ $\beta = f_{ca}(x, y) / f_{ca}(x_b, y_b)$ $\gamma = f_{ab}(x, y) / f_{ab}(x_c, y_c)$ if $(\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

Optimizations?

for x in [x_min, x_max] for y in [y min, y max] $\alpha = f_{bc}(x, y) / f_{bc}(x_a, y_a)$ $\beta = f_{ca}(x, y) / f_{ca}(x_b, y_b)$ $\gamma = f_{ab}(x, y) / f_{ab}(x_c, y_c)$ if $(\alpha \ge 0 \text{ and } \beta \ge 0 \text{ and } \gamma \ge 0)$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

make computation of bary. coords. incremental color can also be computed incrementally don't need to check upper bound

