CS 230, Quiz 9

Solutions

You will have 8 minutes to complete this quiz. There are two problems; you only need to do one of them. No books, notes, or other aids are permitted.

Problem 1

The heat equation $\frac{\partial u}{\partial t}=a \frac{\partial^{2} u}{\partial x^{2}}$ may be discretized with BTCS as $\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=a \frac{u_{i+1}^{n+1}-2 u_{i}^{n+1}+u_{i-1}^{n+1}}{\Delta x^{2}}$. Show that the even-odd analysis from class does not lead to any restrictions on the time step size Δt for this discretization.

Let $u_{2 i}^{n}=e^{n}, u_{2 i+1}^{n}=o^{n}$, and $z^{n}=e^{n}-o^{n}$.

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=a \frac{u_{i+1}^{n+1}-2 u_{i}^{n+1}+u_{i-1}^{n+1}}{\Delta x^{2}}
$$

Letting i be even or odd:

$$
\frac{e^{n+1}-e^{n}}{\Delta t}=a \frac{o^{n+1}-2 e^{n+1}+o^{n+1}}{\Delta x^{2}} \quad \text { and } \quad \frac{o^{n+1}-o^{n}}{\Delta t}=a \frac{e^{n+1}-2 o^{n+1}+e^{n+1}}{\Delta x^{2}}
$$

Subtract these:

$$
\begin{aligned}
\frac{z^{n+1}-z^{n}}{\Delta t} & =\frac{-4 a z^{n+1}}{\Delta x^{2}} \\
\left(1+\frac{4 a \Delta t}{\Delta x^{2}}\right) z^{n+1} & =z^{n} \\
z^{n+1} & =\frac{z^{n}}{1+\frac{4 a \Delta t}{\Delta x^{2}}}
\end{aligned}
$$

Since the denominator is greater than one, the difference is decreasing in magnitude. This is true for any $\Delta t>0$, so we do not find any restrictions on the time step size using this approach.

Problem 2

Explain the difference between the two time derivatives $\frac{D u}{D t}$ and $\frac{\partial u}{\partial t}$ and show how they are related.

The first time derivative is the change in acceleration experienced by an observer moving with the material (eg, looking at the speedometer in a car from the passenger seat). The partial derivative is the change in velocity observed in the material moving past a fixed location (eg, the observation made by a police officer with a radar gun). The relationship can be worked out by assuming that an observer is moving with a car
at position $x_{k}(t)$ and velocity $v_{k}(t)$. The relationship is then

$$
\frac{D u}{D t}=\frac{d}{d t} u\left(x_{k}(t), t\right)=\frac{\partial u}{\partial t}\left(x_{k}(t), t\right)+\frac{\partial u}{\partial x}\left(x_{k}(t), t\right) \frac{d}{d t} x_{k}(t)=\frac{\partial u}{\partial t}+(\nabla u) \cdot u=\frac{\partial u}{\partial t}+(u \cdot \nabla) u
$$

