## CS 230, Quiz 6

## Solutions

You will have 6 minutes to complete this quiz. No books, notes, or other aids are permitted.

## Problem 1

Construct a discretization for the Poisson equation $\left(\nabla^{2} u=f\right)$ in 2 D to approximate $u(x, y)$ on $-1 \leq x \leq 1,-1 \leq y \leq 1$. The function $f(x, y)$ is known in advance; you can evaluate it wherever you need it. Don't worry about boundary conditions or initial conditions. (Recall that $\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$.)

Let $x=i \Delta x-1$ and $y=j \Delta y-1$, with $0 \leq i \leq M, 0 \leq j \leq N, \Delta x=\frac{2}{M}$, and $\Delta y=\frac{2}{N}$. Then, I can define my degrees of freedom as $u_{i, j}=u(x, y)$ and my right hand side as $f_{i, j}=f(x, y)$. Discretizing using a central difference gives

$$
\begin{aligned}
\nabla^{2} u & =f \\
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} & =f \\
\frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{\Delta x^{2}}+\frac{u_{i, j+1}-2 u_{i, j}+u_{i, j-1}}{\Delta y^{2}} & =f_{i, j}
\end{aligned}
$$

