Lighting and Shading

University of California Riverside

Why we need shading

- Suppose we build a model of a red sphere
- We get something like
- But we want

Shading

- Why does a real sphere look like this?

Shading - lighting

- Why does a real sphere look like this?
facing light
shadow

Shading - material properties

Shading - viewing location

Shading - surface orientation

General rendering

- Based on physics
- conservation of energy
- Surfaces can
- absorb light
- emit light
- reflect light
- transmit light

Idealized light sources

ambient

spotlight

point light

directional light

Ambient light

- Achieve uniform light level
- No shadows
- Same light level everywhere

Point light

- Light emitted from a point \mathbf{p}
- Uniform in all directions
- Falls off with distance: $\ell(\mathbf{x})=\frac{1}{\|\mathbf{x}-\mathbf{p}\|^{2}} L$

Point light - limitations

rapid falloff

Soft shadows

Spotlight

- Light emitted from a point \mathbf{p}
- Emited in a cone
- Brightest in middle of cone
- Falls off with distance

Spotlight

$$
\ell(\mathbf{x})=\frac{\cos ^{e} \phi}{\|\mathbf{x}-\mathbf{p}\|^{2}} L
$$

Spotlight - exploring e

Directional light

- Light source at infinity
- Rays come in parallel
- No falloff
- Characterized by direction

Lambertian reflection model

Lambertian reflection model

	Light	Absorbed
Intensity	L	L^{\prime}
Energy	$E=L w a$	$E=L^{\prime} w h$

Lambertian reflection model

	Light	Absorbed	Emitted
Intensity	L	L^{\prime}	$I=R L^{\prime}$
Energy	$E=L w a$	$E=L^{\prime} w h$	$R E$

Lambertian reflection model

	Light	Absorbed	Emitted
	L	L^{\prime}	$I=R L^{\prime}$
Intensity	L	$I=L R \frac{a}{h}$	
Energy	$E=L w a$	$E=L^{\prime} w h$	$R E$

Lambertian reflection model

$$
I=L R \frac{a}{h}
$$

Lambertian reflection model

Lambertian reflection model

Lambertian reflection model

Avoid bug: $I=L R \max (\mathbf{n} \cdot \mathbf{l}, 0)$

Ambient reflection

$$
I=L R \max (\mathbf{n} \cdot \mathbf{l}, 0)
$$

Surfaces facing away from the light will be totally black

Ambient reflection

$I=L_{a} R_{a}+L_{d} R_{d} \max (\mathbf{n} \cdot 1,0)$

All surfaces get the same amount of ambient light

Phong reflection model

Phong reflection model

- Efficient
- Reasonably realistic
- 3 components
- 4 vectors

Phong reflection model

$$
\begin{aligned}
I & =I_{a}+I_{d}+I_{s} \\
& =R_{a} L_{a}+R_{d} L_{d} \max (\mathbf{n} \cdot \mathbf{l}, 0)+R_{s} L_{s} \max (\cos \phi, 0)^{\alpha}
\end{aligned}
$$

Ambient reflection

$$
I_{a}=F_{a} I_{a}
$$

$0 \leq R_{a} \leq 1$

Diffuse reflection

Ambient

Diffuse

Diffuse reflection

$I_{d}=R_{d} L_{d} \max (\mathbf{n} \cdot \mathbf{l}, 0)$

Specular reflection

Ideal reflector
 $$
\theta_{i}=\theta_{r}
$$

\mathbf{r} is the mirror reflection direction

Specular reflection

Specular surface

specular reflection is strongest in reflection direction

Specular reflection

$$
I_{s}=R_{s} L_{s} \max (\cos \phi, 0)^{\alpha}
$$

specular reflection drops off with increasing ϕ

Phong reflection model

$$
\begin{aligned}
I & =I_{a}+I_{d}+I_{s} \\
& =R_{a} L_{a}+R_{d} L_{d} \max (\mathbf{n} \cdot \mathbf{1}, 0)+R_{s} L_{s} \max (\mathbf{v} \cdot \mathbf{r}, 0)^{\alpha}
\end{aligned}
$$

Attribution

[1] Andrea Fisher Fine Pottery. jody-folwell-jar05big.jpg. https://www.eyesofthepot.com/santa-clara/jody_folwell.

