Line Rasterization

DDA algorithm for lines

Parametric Lines: the DDA algorithm
(digital differential analyzer)

Yisy =MmMXq +B
=m(X;+AX)+B AX = (X4 - X))
=y, + m(AXx) <- must round to find int

If we increment by 1 pixel in X, we turn on
[xi, Round(yi)] or same for Y if m> 1

Scan conversion for lines

DDA includes Round(); and this is fairly slow
For Fast Lines, we want to do only integer math +,-
We do this using the Midpoint Algorithm

To do this, lets look at lines with y-intercept B
and with slope between 0 and 1:

y=(dy/dx)x+B ==>
f(x,y) = (dy)x - (dx)y + B(dx) =0

Removes the division => slope treated as 2 integers

WWhich pixels should be used
to approximate a line!?

/./

1=

Draw the thinnest possible
line that has no gaps

S

Line drawing algorithm

(case:0 <m <= |)

y =y0
for x = x0 to x| do
draw(x,y)

if (<condition>) then
y =y+|

*move from left to right
*choose between
(x+1,y) and (x+1,y+1)

S

Line drawing algorithm

(case:0 <m <= |)

y =yO0

for x = x0 to x| do

draw(x,y)

if (<condition>) then

y = y+l

*move from left to right

echoose between
(x+1,y) and (x+1,y+1)

Use the midpoint between the
two pixels to choose

Use the midpoint between the
two pixels to choose

Use the midpoint between the
two pixels to choose

Use the midpoint between the
two pixels to choose

implicit line equation:
f(X)=N-(X~-Xg)=0

<whiteboard>
evaluate f at midpoint:

1

Use the midpoint between the
two pixels to choose

implicit line equation:

fIX)=N-(X—-Xp) =0

evaluate f at midpoint:

1

Line drawing algorithm

(case:0 <m <= |)

y =)'0 -Hz/A
for x = x0 to x| do :
CII"&W(X’)’) o
(0 1) then
y =)I+| -

VVe can make the Midpoint
Algorithm more efficient

y = y0
for x = x0 to x| do

draw(x,y)

if (fle+1,y+ l‘) ()) then

u) /

y =y+l

VVe can make the Midpoint
Algorithm more efficient

©

by making it incremental!

f(il?ay) — (yo — y1)$ T (5131 — 5130)3/ + 2oy1 — 1Yo = 0

fle+1,y) = f(z,y) + (yo — y1)

fle+1y+1)= f(z,y) + (yo —y1) + (z1 — o)

VVe can make the Midpoint
Algorithm more efficient

1
f(;flﬁ..' + 1,y + ;) > 0

N\
I
o
po—;
o
1 1

f(x,y) — (yo — 3/1)$ T (51?1 — 5130)3/ + 2oy1 — 1Yo = 0

fle+1Ly) = flz,y) + (Yo — y1)

fle+1y+1)= f(z,y) + (yo —y1) + (z1 — o)

VVe can make the Midpoint
Algorithm more efficient

1
fle+1Ly+ =) <0 . B
2 H/f;

f(x,y) — (yo — 3/1)$ T (51?1 — 5130)3/ + 2oy1 — 1Yo = 0

fle+1,y) = f(z,y) + (yo — y1)

f(:l:+1,y-|—1) :f(x,y)+(y0—y1)+($1—330)

VVe can make the Midpoint
Algorithm more efficient

y =y0
d = f(x0+1,y0+1/2)

for x = x0 to x| do -Hé—(__

Cll”aW(X,)’) fle+1,y) = f(x,y) + (yo — y1)
if (d<0) then

y = y+l

d = d+(y0-y |)+(x1-x0) -
else -Hg:_
d = d+(y0-yl) B

fle+1Ly+1)= f(z,y) + (yo — y1) + (71 — 20

Adapt Midpoint Algorithm for
other cases

case:0 < m <= |

T

Adapt Midpoint Algorithm for
other cases

case: -l <=m<90

aan, =

Adapt Midpoint Algorithm for
other cases

case: | <=m
orm<= -|

N
i
=

Line drawing references

® The algorithm we just described is the Midpoint Algorithm
(Pitteway, 1967), (van Aken and Novak, 1985)

® Handles floating point coordinates

® Draws the same lines as the Bresenham Line Algorithm
(Bresenham, 1965)

® Simpler, cheaper

® [nteger coordinates only

