Perspective Transformations

Viewing Transformations

Viewing transformations

World space

Viewing transformations

 Image space- Move objects from their 3D locations to their positions in a 2 D view

Decomposition of viewing transforms

Viewing transforms depend on: camera position and orientation, type of projection, field of view, image resolution

Viewport transform

$$
\begin{gathered}
(x, y, z) \rightarrow\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \\
(x, y, z) \in[-1,1]^{3} \quad \begin{array}{l}
x^{\prime} \in\left[-.5, n_{x}-.5\right] \\
\\
y^{\prime} \in\left[-.5, n_{y}-.5\right]
\end{array}
\end{gathered}
$$

Viewport transform

Orthographic Projection Transform

Camera Transform

Camera Transform

How do we specify the camera configuration?

Camera Transform

How do we specify the camera configuration? $\begin{gathered}\text { eye } \\ \text { position }\end{gathered}$

Camera Transform

How do we specify the camera configuration?

Camera Transform

How do we specify the camera configuration? $\begin{gathered}\text { up } \\ \text { vector }\end{gathered}$

Camera Transform

How do we specify the camera configuration?

Camera Transform

$M_{c a m}$ <whiteboard>

Perspective Viewing

rigid

affine

projective

Projective Transformations

Projective Transformations

Projective Transformations

$$
\begin{aligned}
& \text { Example: } \\
& M=\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 3 & 0 \\
0 & \frac{2}{3} & \frac{1}{3}
\end{array}\right) \\
& \\
& ,
\end{aligned}
$$

<whiteboard>

Projective Transformations

Example:

$$
M=\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 3 & 0 \\
0 & \frac{2}{3} & \frac{1}{3}
\end{array}\right)
$$

Perspective Projection

both x and y get multiplied by d / z
[Shirley, Marschner]

Simple perspective projection

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right) \Rightarrow\left\{\begin{array}{l}
x^{\prime}=\frac{d}{z} x \\
y^{\prime}=\frac{d}{z} y \\
z^{\prime}=\frac{d}{z} z=d
\end{array}\right.
$$

This achieves a simple perspective projection onto the view plane $\mathbf{z}=\mathbf{d}$
but we've lost all information about z !
<whiteboard>

Perspective Projection

$$
P=\left(\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right) \quad z^{\prime}=(n+f)-\frac{n f}{z}
$$

\searrow

$$
M_{\mathrm{per}}=M_{\mathrm{orth}} P
$$

OpenGL Perspective Viewing

glFrustum (xmin, xmax, ymin, ymax, near , far)

Using Field of View

With glFrustum it is often difficult to get the desired view gluPerpective (fovy, aspect, near, far) often provides a better interface

Clipping after the perspective transformation can cause problems

