Texture Mapping

There are limits to geometric modeling

National Geographic

Although modern GPUs can render millions of triangles/sec, that's not enough sometimes...

Use texture mapping to increase realism through detail

This image is just 8 polygons!

No texture

With texture

Pixar - Toy Story

Store 2D images in buffers and lookup pixel reflectances

photo

procedural

Other uses of textures...

Light maps Shadow maps Environment maps Bump maps Opacity maps Animation

Texture mapping in the OpenGL pipeline

- Geometry and pixels have separate paths through pipeline
- meet in **fragment processing** where textures are applied
- texture mapping applied at end of pipeline efficient since relatively few polygons get past clipper

uv Mapping

 (u_a, v_a)

 (u_c, v_c)

 (u_b, v_b)

- 2D texture is parameterized by (u,v)
- Assign polygon vertices texture coordinates
- Interpolate within polygon

Cylindrical mapping

$$(x,y,z) \rightarrow (theta, h) \rightarrow (u,v)$$

Spherical Mapping

Box Mapping

[Rosalee Wolfe]

Parametric Surfaces

32 parametric patches

3D solid textures

can map object (x,y,z) directly to texture (u,v,w)

Procedural textures

e.g., Perlin noise

Triangles

- Store (u,v) at each vertex
- interpolate inside triangles using barycentric coordinates

- Store (u,v) at each vertex
- interpolate inside triangles using barycentric coordinates

$$\mathbf{p}(eta,\gamma) = \mathbf{a} + eta(\mathbf{b}-\mathbf{a}) + \gamma(\mathbf{c}-\mathbf{a}),$$
 $u(eta,\gamma) = u_a + eta(u_b-u_a) + \gamma(u_c-u_a),$ $v(eta,\gamma) = v_a + eta(v_b-v_a) + \gamma(v_c-v_a).$

Choice of (u,v) makes big difference

Choice of (u,v) makes big difference

Choice of (u,v) makes big difference

Textures in OpenGL

• Assign (u,v) to vertices

glTexCoord*()

 OpenGL then uses interpolation for triangle interior

good selection of tex coordinates

poor selection of tex coordinates

Multitexturing

Texture Sampling

Point Sampling

Map back to texture image and use the nearest texel

Aliasing

Point sampling of the texture can lead to aliasing artifacts

Angel and Shreiner

point samples in texture space

Magnification and Minification

Magnification and Minification

More than one texel can cover a pixel (*minification*) or more than one pixel can cover a texel (*magnification*)

Can use point sampling (nearest texel) or linear filtering (2 x 2 filter) to obtain texture values

Aliasing artifacts

We apply filtering to reduce aliasing artifacts

Area Averaging

A better but slower option is to use area averaging

Use bilinear filtering

nearest neighbor

bilinear

Wikipedia **bicubic**

mitigate magnification artifacts

Mipmapping

Togikun, Wikimedia Commons

Reduce minification artifacts

Prefilter the texture to obtain reduced resolutions

Requires 1/3 more space

Get a texture hierarchy indexed by level

128×128, 64×64, 32×32, 16×16, 8×8, 4×4, 2×2, 1×1

Environment mapping

Environment Mapping

Use a texture for the distant environment simulate the effect of ray tracing more cheaply

Wikimedia Commons

Sphere Mapping

Project objects in the environment onto sphere centered at eye
unwrap and store as texture
use reflection direction to lookup texture value

Cube Mapping

Compute six projections, one for each wall
store as texture
use reflection direction to lookup texture value

Different environment maps

www.reindelsoftware.com

Blinn/Newell latitude mapping

OpenGL spherical mapping

Cube mapping

Environment Mapping

Create the effect of a mirror with two-pass rendering

 First pass: render the scene from the perspective of the mirror
 Second pass: render from original pov; use the first image as a texture for the mirror

Shadow Mapping

first pass from light's perspective

I. render scene from pov of light and store z-buffer in a texture

2. when rendering scene from desired pov, also render from light pov and test pixel against stored texture

Wikimedia Commons

Bump Mapping

perturb normal vectors

doesn't affect silhouette

[DirectXTutorial.com]

FPS = 74 Bump Map Compression Demo mouse to rotate WASD keys to move.

http://www.lg.clanhost.cz

http://www.paulsprojects.net/tutorials/simplebump/simplebump.html

bump mapping

geometric detail

Wikimedia Commons

Normal Mapping

Wikimedia Commons

original mesh 4M triangles

simplified mesh 500 triangles

simplified mesh and normal mapping 500 triangles