CS 130, Homework 1

Solutions

Please complete the problems below. Be sure to show your work; answers alone are not enough.

Problem 1

Using the definitions below, compute the requested quantities. If the quantity does not exist, write "DNE" and give a very brief explanation.

$$
\mathrm{u}=\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right) \quad \mathrm{v}=\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right) \quad \mathrm{A}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
2 & 3
\end{array}\right) \quad \mathrm{B}=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)
$$

(a) $\frac{u}{\|u\|}$
(b) $\mathbf{A}^{T} \mathbf{A}-\mathbf{B}$
(c) $\mathbf{A} \mathbf{A}^{T}-\mathbf{B}$
(d) A vector of unit length that is orthogonal to both u and v
(e) \mathbf{A} vector of the form $\alpha u+\beta v$ which is orthogonal to $v .(\alpha, \beta$ are scalars.)
(f) Two vectors w and x such that $w+x=u, w$ is parallel to v, and x is orthogonal to v.
(a)

$$
\frac{\mathbf{u}}{\|\mathbf{u}\|}=\frac{\mathbf{u}}{\sqrt{1^{2}+(-2)^{2}+0^{2}}}=\left(\begin{array}{c}
\frac{1}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}} \\
0
\end{array}\right)
$$

(b)

$$
\begin{aligned}
\mathbf{A}^{T} \mathbf{A}-\mathbf{B} & =\left(\begin{array}{ccc}
1 & -1 & 2 \\
1 & 0 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
2 & 3
\end{array}\right)-\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
(1)(1)+(-1)(-1)+(2)(2) & (1)(1)+(-1)(0)+(2)(3) \\
(1)(1)+(0)(-1)+(3)(2) & (1)(1)+(0)(0)+(3)(3)
\end{array}\right)-\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
6 & 7 \\
7 & 10
\end{array}\right)-\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
4 & 7 \\
6 & 9
\end{array}\right)
\end{aligned}
$$

(c) Does not exist. $\mathbf{A} \mathbf{A}^{T}$ is 3×3, while \mathbf{B} is 2×2.
(d) The vector $\mathbf{w}=\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v}, though it is not of unit length. This can be
corrected by normalizing it. Thus, $\frac{w}{\|w\|}$ is a solution. There are two solutions; $-\frac{w}{\|w\|}$ is the other.

$$
\begin{aligned}
\mathbf{w} & =\mathbf{u} \times \mathbf{v}=\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right) \times\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
(-2)(1)-(0)(1) \\
(0)(3)-(1)(1) \\
(1)(1)-(-2)(3)
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-1 \\
7
\end{array}\right) \\
\|\mathbf{w}\| & =\sqrt{(-2)^{2}+(-1)^{2}+7^{2}}=\sqrt{54} \\
\frac{\mathbf{w}}{\|\mathbf{w}\|} & =\left(\begin{array}{c}
-\frac{2}{\sqrt{54}} \\
-\frac{1}{\sqrt{54}} \\
\frac{7}{\sqrt{54}}
\end{array}\right)
\end{aligned}
$$

(e) Let $\mathbf{w}=\alpha \mathbf{u}+\beta \mathbf{v}$, so that $\mathbf{w} \cdot \mathbf{v}=0$.

$$
\begin{aligned}
0 & =\mathbf{w} \cdot \mathbf{v}=(\alpha \mathbf{u}+\beta \mathbf{v}) \cdot \mathbf{v} \\
& =\alpha \mathbf{u} \cdot \mathbf{v}+\beta \mathbf{v} \cdot \mathbf{v} \\
& =\alpha(3-2+0)+\beta(9+1+1) \\
& =\alpha+\beta 11
\end{aligned}
$$

Let $\beta=1$. Then, $\alpha=-11$. Finally,

$$
\mathbf{w}=\alpha \mathbf{u}+\beta \mathbf{v}=-11 \mathbf{u}+\mathbf{v}=\left(\begin{array}{c}
-11+3 \\
22+1 \\
0+1
\end{array}\right)=\left(\begin{array}{c}
-8 \\
23 \\
1
\end{array}\right)
$$

(f) To be parallel, we need $\mathbf{w}=\alpha \mathbf{v}$ for some α. Then, $\mathbf{x}=\mathbf{u}-\alpha \mathbf{v}$. For orthogonality, $\mathbf{x} \cdot \mathbf{v}=(\mathbf{u}-\alpha \mathbf{v}) \cdot \mathbf{v}=$ $(\mathbf{u} \cdot \mathbf{v})-\alpha(\mathbf{v} \cdot \mathbf{v})=1-11 \alpha$. Thus, $\alpha=\frac{1}{11}$. Then $\mathbf{w}=\alpha \mathbf{v}=\left(\begin{array}{c}\frac{3}{11} \\ \frac{1}{11} \\ \frac{1}{11}\end{array}\right)$ and $\mathbf{x}=\mathbf{u}-\mathbf{w}=\left(\begin{array}{c}\frac{8}{11} \\ -\frac{23}{11} \\ -\frac{1}{11}\end{array}\right)$.

