
CS 130, Final

Solutions
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Read the entire exam before beginning. Manage your time carefully. This exam has 60 points; you need
50 to get full credit.

Problem 1 (2 points)
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Problem 2 (1 points)
If I were interviewing a programming candidate, here is a question I might ask. Rewrite the function
double foo(double x){return pow(x,15);} by replacing pow with at most 6 multiplications. (Fewer
than 6 multiplications gives you one point of extra credit.) Division is not allowed.

You can get to 6 by eliminating common subexpressions.
double foo(double x){return pow(x,15);}
double foo(double x){return x*x*x*x*x*x*x*x*x*x*x*x*x*x*x;}
double foo(double x){double a=x*x;return a*a*a*a*a*a*a*x;}
double foo(double x){double a=x*x,b=a*a;return b*b*b*a*x;}

You can get the result in 5 multiplications by noting that 3 ⋅ 5 = 15.
double foo(double x){double a=x*x,b=a*a*x;return b*b*b;}
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Problem 3 (2 points)
Eliminate multiplications from the body of the loop.

void func ( double a , double b , i n t n)
{

f o r ( i n t i=−n ; i<n ; i++)
{

f oo ( a * b + a * i − b * i )
}

}

void func ( double a , double b , i n t n)
{

double d = a − b , c = a * b − n * d ;
f o r ( i n t i=−n ; i<n ; i++)
{

f oo ( c ) ;
c += d ;

}
}
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Problem 4 (2 points)
Eliminate exp from the body of the loop.

void func ( double a , double b , i n t n)
{

f o r ( i n t i =0; i<n ; i++)
{

f oo ( exp ( a − b * i ) )
}

}

Let ci = e
a−bi. Then, ci = e

−bci−1 and c0 = e
a.

void func ( double a , double b , i n t n)
{

double c = exp ( a ) , d = exp(−b ) ;
f o r ( i n t i =0; i<n ; i++)
{

f oo ( c ) ;
c *= d ;

}
}

4



Problem 5 (2 points)
Eliminate the trig functions from the body of the loop.

void func ( double a , double b , i n t n)
{

f o r ( i n t i =0; i<n ; i++)
{

f oo ( cos ( i *2* pi /n ) , s i n ( i *2* pi /n ) ) ;
}

}

Let ci = cos(
2iπ
n
) and si = sin(

2iπ
n
). Note that the angle addition formulas imply ci+k = cick − sisk and

si+k = sick + cisk. We will use these with k = 1.

void func ( double a , double b , i n t n)
{

double dt = 2* pi /n , c1 = cos ( dt ) , s1 = s i n ( dt ) , c = 1 , s = 0 ;
f o r ( i n t i =0; i<n ; i++)
{

f oo ( c , s ) ;
double tc = c * c1 − s * s1 ; // Do not des t roy c be f o r e computing s !
s = s * c1 + c * s1 ;
c = tc ;

}
}
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Problem 6 (4 points)
Write pseudocode to rasterize the parabola 4py = x2 in the box [−2pa,2pa] × [0, pa2], where a and p

are positive integers that are inputs to your function void rasterize(int a,int p). The line must
be thin and without gaps. No floating point is allowed, but basic arithmetic (add, subtract, multiply,
divide) is permitted everywhere. Use the routine draw(int x,int y) to plot points; this routine can
be called with any integer coordinates inside the box. Your algorithm should be an extension of the
midpoint algorithm.

This problem is fairly similar to ones we have done before. One tricky part is that we need to pay

attention to when ∣y′∣ ≤ 1. Note that y = x2

4p
, so y′ = x

2p
. ∣y′∣ ≤ 1 when ∣x∣ ≤ 2p. For these x, we must increment

by x. Beyond that, the loop should run in y. We should also be careful to not go beyond ∣x∣ = 2pa or y = pa2.
This is made somewhat easier by the nice rectangle (the parabola hits both top corners). Note that 2pa ≥ pa,
so the first loop never hits the edge.

void r a s t e r i z e ( i n t a , i n t p)
{

i n t x = 0 , y = 0 , mx = 2*p , my = p*a*a ;
draw (x , y ) ;
whi l e ( x < mx)
{

x++;
i f (p*(4*y+2) < x*x )

y++;
draw(−x , y ) ;
draw (x , y ) ;

}
whi le ( y < my)
{

y++;
i f (16*p*y > (2*x+1)*(2*x+1))

x++;
draw(−x , y ) ;
draw (x , y ) ;

}
}

Note that I chose to increment the primary direction before computing the criterion to produce simpler code.
For the first part of the midpoint algorithm, we need to test the point (x, y+ 1

2
), noting that x has already

been incremented. We increment y if 4p(y + 1

2
) < x2.

For the second part of the midpoint algorithm, we need to test the point (x + 1

2
, y), noting that y has

already been incremented. We increment x if 4py > (x + 1

2
)2. Clearing fractions gives the criterion in the

code.
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Problem 7 (4 points)
For this problem, you will write the routine void Split Face(coedge* a, coedge* b);. The coedges
a and b are coedges belonging to the same face (call it A). That is, a->cell==b->cell. You may assume
a and b do not share an endpoint. These coedges point to two vertices of face A (1 and 3 in this case.)
You will connect these two points to split the face in two, as shown below. You will need to allocate a
new face (call it B) and two new coedges. After your routine is finished: (1) the half-edge data structure
is in a valid state, (2) the face that was A is now divided into two faces A and B, (3) a->cell==A, (4)
b->cell==B. The C++ structures used for vertex, face, and coedge are shown below.

s t r u c t ver tex
{

coedge * edge ;
} ;
s t r u c t f a c e
{

coedge * edge ;
} ;
s t r u c t coedge
{

coedge *pair , *next , *prev ;
ver tex *head , * t a i l ;
f a c e * c e l l ;

} ;
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a b
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The strategy I take is to first create the new objects, then go through the different structure members
one by one and make sure I have them all updated. Note that none of the vertex->edge entries need to
change. The named quantities in the routine are shown in the diagram.

void Sp l i t Fac e ( coedge * a , coedge * b)
{

f a c e * A = a−> c e l l ;
f a c e * B = new fa c e ;
coedge * c = new coedge ;
coedge * d = new coedge ;
coedge * e = a−>next ;
coedge * f = b−>next ;
A−>edge = a ;
B−>edge = b ;
c−>pa i r = d ; d−>pa i r = c ;
a−>next = c ; c−>prev = a ;
c−>next = f ; f−>prev = c ;
b−>next = d ; d−>prev = b ;
d−>next = e ; e−>prev = d ;
c−>head = b−>head ;
c−> t a i l = a−>head ;
d−>head = a−>head ;
d−> t a i l = b−>head ;
c−> c e l l = A;
d−> c e l l = B;
f o r ( coedge * p = d−>next ; p != d ; p = p−>next )

p−> c e l l = B;
}
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Problem 8 (4 points)
Design an algorithm for implementing a routine bool clip(vec2 p, vec2 n, vector<vec2>& poly);.

� Here, poly is a list of vertices of a convex polygon (listed in counterclockwise order).
� The vertex that is listed first in poly is arbitrary.
� The vectors p and n define a line. A point x⃗ considered to be inside if (x⃗ − p⃗) ⋅ n⃗ ≤ 0.
� The clipping line intersects the polygon exactly zero or two times
� The clipping line never passes through a vertex of the polygon.

The program should have the following behavior:
� If the polygon is entirely inside, poly is not modified, return false. Otherwise, return true.
� If the polygon lies entirely outside, poly should be empty when the function returns.
� Otherwise, the polygon poly should be a clipped version of the original.

I do not expect you to write code or pseudocode for this, but you should explain the algorithm in enough
detail that someone could sit down and implement it. You may assume that the person implementing
the routine knows how to find the intersection between two lines.

There are two special cases that need to be handled separately: the polygon is entirely inside or entirely
outside. If neither is the case, we want to find the edge where the polygon enters the clipping region (the
assumptions ensure there will be exactly one). Below is an algorithm that will work.

1. Walk through the polygon testing each edge to find the edge that crosses from outside to inside (enter
edge) and the edge that crosses from inside to outside (exit edge). Don’t forget the segment between
the first and last entries of poly. You can determine whether such edges were found by initializing
them to an invalid index and testing for this value later.

2. If no such edges were found, the polygon is entirely inside or entirely outside. Test the first vertex. If
it is inside, the polygon is entirely inside; return false. Otherwise, clear out poly and return true.

3. Create a temporary polygon vector<vec2> temp.
4. Append the intersection point between the enter edge and the clip line.
5. Starting with the inside endpoint of the enter edge, walk through the polygon list until the inside

endpoint of the exit edge is encountered, adding the vertices to temp as they are encountered (including
both of those endpoints). Note that if the exit edge index is less than the enter edge index, you will
pass the end of poly and have to resume from the beginning.

6. Append the intersection point between the exit edge and the clip line.
7. Swap temp with poly and return true.
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Problem 9 (2 points)
The triangle at right is to be rasterized. The colors of the vertices are A = yellow = (1,1,0),
B = cyan = (0,1,1) and, C = violet = (1,0,1). Compute the color of the point P .
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To do this, we need to compute the areas of the triangles, which we can then use to compute barycentric
weights.

area(ABC) = 18
area(PBC) = 4
area(APC) = 6
area(ABP ) = 8

α =
area(PBC)
area(ABC) =

2

9

β =
area(APC)
area(ABC) =

3

9

γ =
area(ABP )
area(ABC) =

4

9

CP = αCA + βCB + γCC = (6
9
,
5

9
,
7

9
)
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Problem 10 (4 points)
The unit square [0,1] × [0,1] is transformed to each of the polygons below. In each case, identify
the type of transform and, if possible, find a 3 × 3 homogeneous transform matrix corresponding to it.
(R=rotation, T=translation, S=uniform scale, A=affine, L=linear, P=projection, X=none of these. R,
S, and T can be combined.) The most restrictive option should be chosen. Thus, a transform that can
be accomplished by a combination of rotation and uniform scale should be described as R+S, not as A.
If no transform matrix exists, briefly explain why.
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(d)

(a) P. To find it, assume the matrix is
⎛⎜⎝
a b c

d e f

g h i

⎞⎟⎠.

First point:
⎛⎜⎝
a b c

d e f

g h i

⎞⎟⎠
⎛⎜⎝
0
0
1

⎞⎟⎠ =
⎛⎜⎝
0
0
k

⎞⎟⎠. Implies c = 0, f = 0.

Second point:
⎛⎜⎝
a b 0
d e 0
g h i

⎞⎟⎠
⎛⎜⎝
1
0
1

⎞⎟⎠ =
⎛⎜⎝
k

0
k

⎞⎟⎠. Implies d = 0, a = g + i.

Third point:
⎛⎜⎝
g + i b 0
0 e 0
g h i

⎞⎟⎠
⎛⎜⎝
0
1
1

⎞⎟⎠ =
⎛⎜⎝
0
k

k

⎞⎟⎠. Implies b = 0, e = h + i.

Fourth point:
⎛⎜⎝
g + i 0 0
0 h + i 0
g h i

⎞⎟⎠
⎛⎜⎝
1
1
1

⎞⎟⎠ =
⎛⎜⎝
2k
2k
k

⎞⎟⎠. 2k = g + i = h + i. k = g + h + i. g = h = −k. i = 3k.

Since the overall scale does not matter, let k = 1. Solution:
⎛⎜⎝
2 0 0
0 2 0
−1 −1 3

⎞⎟⎠.

(b) RS.
⎛⎜⎝
1 −1 0
1 1 0
0 0 1

⎞⎟⎠
(c) L.

⎛⎜⎝
2 0 0
0 1 0
0 0 1

⎞⎟⎠
(d) ST.

⎛⎜⎝
2 0 −1
0 2 −1
0 0 1

⎞⎟⎠
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Problem 11 (4 points)
A box is given by [a, b] × [c, d] × [e, f]. Let u⃗ + tw⃗ define a ray (∥w⃗∥ = 1). Work out logic for a routine
that computes the intersections. The routine should produce a list of all suitable intersection pairs as
was done for the second project. I am mostly concerned with the logic and the algebra. Just be sure it
is clear what pairs you produce in each case. You must handle all cases to get full credit. Don’t worry
about being efficient or about degeneracies (division by zero, etc.). You can get most of the points by
solving the 2D version.

The plane x = a is crossed when ux + tvx = a, or ta =
a−ux

vx

. Similarly, tb =
b−ux

vx

. Let tx− = min(ta, tb) and
tx+ = max(ta, tb). The line (not ray) enters the space between the x faces at tx− and leaves at tx+. This gives
us the interval [tx−, tx+]. Repeating this process in the y and z directions we get [ty−, ty+] and [tz−, tz+]. We must
intersect these intervals.

Let A =max(tx−, ty−, tz−). This is the time when the last entering planes has been crossed. B =min(tx+, ty+, tz+)
is the time when the first leaving plane is encountered. If A > B, there is no intersection. Otherwise, the
intersection of the intervals is [A,B].

Now, we have to take account of the fact that part of the interval may be behind the ray. If 0 ≤ A ≤ B,
output (A,B). If A < 0 ≤ B output (0,B). Otherwise A ≤ B < 0, and there is no intersection.
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Problem 12 (1 points)
For what values of x,y,z is the code fragment

g lBeg in (GL POINTS ) ;
g lVe r t ex3 f (x , y , z ) ;
glEnd ( ) ;

equivalent to this fragment?

glPushMatrix ( ) ;
g lRota t e f ( 1 80 , 0 , 0 , 1 ) ;
g lT r an s l a t e f ( 0 , 2 , 1 ) ;
g l S c a l e f ( −1 ,1 , 1 ) ;
g lBeg in (GL POINTS ) ;
g lVe r t ex3 f ( 1 , 2 , 3 ) ;
glEnd ( ) ;
glPopMatrix ( ) ;

Recall that the operations are specified to OpenGL in reverse order.

⎛⎜⎝
1
2
3

⎞⎟⎠
scale
Ô⇒

⎛⎜⎝
−1
2
3

⎞⎟⎠
translate
Ô⇒

⎛⎜⎝
−1
4
4

⎞⎟⎠
rotate
Ô⇒

⎛⎜⎝
1
−4
4

⎞⎟⎠
Thus, x = 1, y = −4, and z = 4.
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Problem 13 (4 points)
A conic section (in 2D) can be defined by a 3 × 3 symmetric homogeneous matrix A. A homogeneous

point w⃗ =
⎛⎜⎝
x

y

1

⎞⎟⎠ is on the conic section if and only if w⃗TAw⃗ = 0. Observe that scaling w⃗ does not affect

the actual 2D point or whether it is considered to be on the conic section.
(a) Find A corresponding to a general circle: (x − h)2 + (y − k)2 = r2.
(b) Show that an ellipse (x−h)

2

m2 +
(y−k)2

n2 = 1 and a hyperbola (x−h)
2

m2 −
(y−k)2

n2 = 1 can both be written in
the form ax2

+ 2bxy + cy2 + 2dx + 2ey + f = 0.
(c) Show that things of the form ax2

+ 2bxy + cy2 + 2dx + 2ey + f = 0 are exactly what can be expressed
by w⃗TAw⃗ = 0. Find A.
(d) Use this form of a conic section to show that conic sections are preserved under projective transforms.
(Assume the transform is invertible.)

(a) A =
⎛⎜⎝
1 0 −h

0 1 −k

−h −k h2
+ k2 − r2

⎞⎟⎠
(b) Ellipse: a = 1

m2 , b = 0, c =
1

n2 , d = −
h
m2 , e = −

k
n2 , f =

h2

m2 +
k2

n2 − 1.

Hyperbola: a = 1

m2 , b = 0, c = −
1

n2 , d = −
h
m2 , e =

k
n2 , f =

h2

m2 −
k2

n2 − 1.

(c) A =
⎛⎜⎝
a b d

b c e

d e f

⎞⎟⎠.
⎛⎜⎝
x

y

1

⎞⎟⎠
T ⎛⎜⎝

a b d

b c e

d e f

⎞⎟⎠
⎛⎜⎝
x

y

1

⎞⎟⎠ = ax
2
+ 2bxy + cy2 + 2dx + 2ey + f = 0. The two are equivalent.

(d) Let P be a matrix representing a projective transform. Let A be a symmetric matrix representing a
conic section. A homogeneous point w⃗ on this conic section is transformed to u⃗ = Pw⃗.

0 = w⃗TAw⃗

0 = w⃗TPTP−TAP−1Pw⃗

0 = u⃗T (P−TAP−1)u⃗
0 = u⃗TBu⃗

Thus, we see that u⃗ is on a conic section defined by the symmetric matrix B = P−TAP−1, which defines
another conic section.
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Problem 14 (4 points)
To simplify some computations, we introduced the notation u⃗∗ to represent the matrix such that u⃗∗v⃗ =
u⃗ × v⃗. We can do something similar for quaternions. Let p = (r, u⃗), q = (s, v⃗), and pq = (t, w⃗). Define

q△ = (s
v⃗
) and q◻ = (s −v⃗T

v⃗ sI + v⃗∗
). Note that q△ is a 4-vector and q◻ is a 4 × 4 matrix.

(a) Show that p◻q△ = (pq)△.
(b) What is 1◻?
(c) Show that p◻q◻ = (pq)◻ by multiplying the matrices. You may find these properties of cross product
matrices useful: (u⃗ × v⃗)∗ = v⃗u⃗T

− u⃗v⃗T , u⃗∗v⃗∗ = v⃗u⃗T
− (u⃗ ⋅ v⃗)I.

(d) Let m be another quaternion. Use the new tools introduced above to show that (mp)q = m(pq).
That is, quaternion multiplication is associative. Be careful not to assume the conclusion in the process.
(Hint: your solution should be quite short.)

Recall that pq = (rs − u⃗ ⋅ v⃗, su⃗ + rv⃗ + u⃗ × v⃗).
(a) p◻q△ = (r −u⃗T

u⃗ rI + u⃗∗
)(s

v⃗
) = ( rs − u⃗T v⃗

su⃗ + rv⃗ + u⃗∗v⃗
) = (pq)△.

(b) 1◻ = I.
(c)

p◻q◻ = (r −u⃗T

u⃗ rI + u⃗∗
)(s −v⃗T

v⃗ sI + v⃗∗
)

= ( rs − u⃗T v⃗ −rv⃗T − su⃗T
− u⃗T v⃗∗

su⃗ + rv⃗ + u⃗∗v⃗ −u⃗v⃗T + (rI + u⃗∗)(sI + v⃗∗))
= ( t −rv⃗T − su⃗T

− ((v⃗∗)T u⃗)T
w⃗ −u⃗v⃗T + rsI + su⃗∗ + rv⃗∗ + u⃗∗v⃗∗

)
= ( t −rv⃗T − su⃗T

+ (v⃗∗u⃗)T
w⃗ −u⃗v⃗T + rsI + su⃗∗ + rv⃗∗ + v⃗u⃗T

− u⃗T v⃗I
)

= ( t −rv⃗T − su⃗T
+ (v⃗ × u⃗)T

w⃗ tI + su⃗∗ + rv⃗∗ + (u⃗ × v⃗)∗)
= ( t −w⃗T

w⃗ tI + w⃗∗
)

= (pq)◻

(d) First, ((mp)q)△ = (mp)◻q△ = (m◻p◻)q△ = m◻(p◻q△) = m◻(pq)△ = (m(pq))△. Note that I have only
used associativity for matrices and vectors here. Finally, note that if p△ = q△ then p = q. Alternatively, one
could use matrices throughout. ((mp)q)◻ = (mp)◻q◻ = (m◻p◻)q◻ = m◻(p◻q◻) = m◻(pq)◻ = (m(pq))◻. As
before, if p◻ = q◻ then p = q.
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Problem 15 (4 points)
Raytracing traces photons back from the camera to determine the color of pixels in an image. The
process is fairly efficient, but it has serious limitations.
(a) When introducing ray tracing, we assumed that light hitting an object arrived at the object straight
from the light (we also did an ambient hack). If this straight line is blocked by an object, we assume that
the surface receives no photons from the light source. In reality, light can reach a surface by reflecting
from a mirror or refracting through a glass object. Why do we ignore this light?
(b) An alternative strategy is to follow the photons forward from the lights rather than backwards from
the camera. The image is made when photons hit the film as they would in a real camera. Why would
this strategy work in the above scenarios?
(c) This method is not used in practice because it is too slow. Why is this approach vastly slower than
normal ray tracing?
(d) A more practical approach is to shoot photons and record where they hit objects in the scene. Then,
we make a texture map for each object showing where and how many photons hit the object. Finally,
we ray trace the image as we normally would. This is the general idea behind photon mapping. Why
would this be much faster than the original approach from (b)?

(a) There is not generally a good way to determine where to cast a ray to see if the light is visible. It is easy
enough with a flat mirror, but things get hard in a hurry. To get one bounce with one light, you would have
to consider each transparent or reflective object and solve for all possible ray directions from which light
could travel through the object to reach the camera. This is a very hard (and nonlinear) problem. We don’t
do it because we don’t have a good way to do so.
(b) It is able to capture physics because it is mimicking the physics directly. There is no problem tracing a
ray through transparent objects; the path of the ray is easy to compute.
(c) In normal ray tracing, pretty much every ray we cast counts. Other than shadow rays, all rays we cast
contribute to the image. In the above scheme, only rays that happen to strike our tiny piece of film will
contribute to the output. The vast majority hit other surfaces.
(d) Photons illuminate objects by hitting them. We don’t have to get lucky by having a photon be re-emitted
from the surface and hit the film.
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Problem 16 (4 points)
Construct a KD-tree (we also called this a BSP in class) for the following points. Construct the actual
tree.
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D H

C K
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Problem 17 (4 points)
In each of the four examples below, control points are shown for two cubic Bezier curves. (Two curves
share the middle point, so there are 7 points rather than 8.) Sketch out approximately what these
curves will look like.
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Problem 18 (4 points)
Geometrically construct the location of P (t) for the Bezier curve given by the control points below.
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Geometrically subdivide each Bezier curve given by the control points below and at the desired spot
along the curve. Label the new control points A, B, C, . . . .
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Problem 19 (4 points)
For each of the following discretizations, identify the differential equation that is being solved.

(a)
yn+1 − yn

∆t
= − cos(yn+1)

(b)
3yn+1 − 4yn + yn−1

2∆t
= −yn+1

(c)
yn+1 − 2yn + yn−1

∆t2
= −yn

(d)
yn+1 − 2yn + yn−1

∆t2
+

yn+1 − yn−1

∆t
= −yn

(a) y′ = − cos(y)
(b) y′ = −y
(c) y′′ = −y
(d) y′′ + 2y′ = −y
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