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Abstract—Data movement (memory copies) is a very common operation during network processing and application execution on

servers. The performance of this operation is rather poor on today’s microprocessors due to the following aspects: 1) Several long-

latency memory accesses are involved because the source and/or the destination are typically in memory, 2) latency hiding

techniques, such as out-of-order execution, hardware threading, and prefetching, are not very effective for bulk data movement, and

3) microprocessors move data at register (small) granularity. In this paper, we show this overhead of bulk data movement and propose

the use of dedicated copy engines to minimize it. We present a detailed analysis of copy engine architectures along two dimensions:

1) on-die versus off-die and 2) synchronous versus asynchronous. These copy engine architectures are superior to traditional Direct

Memory Access (DMA) engines because they are tightly coupled to the core architecture and enable lower overhead communication

and signaling. We describe the hardware support required to implement these copy engines and integrate them into server platforms.

We perform a detailed case study to evaluate the performance of these copy engines. The evaluation is based on an execution-driven

simulator, which was extended with detailed models of copy engines. Our simulation results show that copy engines are effective in

reducing the bulk data movement overhead and, hence, hold significant promise for high-performance server platforms.

Index Terms—Copy engine, hardware acceleration, servers, TCP/IP, performance evaluation.
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1 INTRODUCTION

DATA movement (also known as memory copies) is a
basic primitive operation that is commonly executed

by operating systems, network stacks, Java virtual ma-
chines, Web server, database applications, and so forth. The
performance of these applications is known to be heavily
dependent on the extent to which the memory accesses are
overlapped by useful computation. The data movement
problem exacerbates the memory latency problem since it
requires a train of memory accesses, consumes most of the
resources (load/store queues, cache line fill buffers, reorder
buffers, and so forth), and stalls the CPU for a long period
of time. Several memory latency hiding techniques (out-of-
order (OOO) execution [13], multithreading [19], [33], [34],
prefetching [5], [7]) that have been investigated apply well
to one or a few simultaneous memory accesses but do not
address the bulk data movement scenario. In this paper, our
aim is to reduce the stall time due to bulk data movement
and help improve workloads that are highly dependent on
this primitive operation.

In order to understand the bulk data movement problem,

it is important to determine the performance overhead of

memory copies in representative workloads. A suitable

workload to study memory copy operations is the widely
used network protocol stack (Transmission Control Proto-
col/Internet Protocol (TCP/IP) [23]). A recent study [17] has
shown that TCP/IP processing constitutes 30 percent or
more of Web server execution time and even database
server execution time when using storage over IP [16]. By
profiling TCP/IP processing on today’s microprocessors,
we show that bulk data movement is a significant
performance bottleneck. The reasons include the following:

1. Microprocessors move data at register (small)
granularity.

2. Several long-latency memory accesses are involved
because the source and/or destination are typically
in memory (not in cache).

3. The memory accesses clog up all of the memory
buffering resources in the CPU.

4. Latency hiding techniques, such as OOO execution,
hardware threading, and prefetching, are not very
effective.

Researchers have attempted to address the bulk data
movement solution in the past. From a networking stand-
point, the two major solution vectors that have been proposed
are copy avoidance [30], [3], [4] and copy acceleration [25],
[26]. However, it should be noted that most copy avoidance
(zero-copy) techniques have not been adopted widely in
commercial operating systems due to their limitations in
scope and their specific requirements. For instance, in the case
of page remapping [30], when the network packet sizes are
smaller than the O/S page sizes, zero-copy is inefficient and
requires pages to be pinned down in memory (which, in turn,
requires translation look-aside buffers (TLBs) to be flushed).
On the other hand, Remote Direct Memory Access (RDMA)
[25] achieves zero-copies using TCP Offload Engines
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(TOEs), which, we believe, are not viable solutions from
an economical, as well as a technological, standpoint [21].
Other researchers [3], [4] have proposed new APIs and
kernel structures which require modifications to the
application and, hence, have not yet been adopted. For
copy acceleration, the use of traditional Direct Memory
Access (DMA) engines for memory-to-memory copies is
quite attractive. However, DMA engines are typically
treated as peripheral devices that may impose a significant
overhead in communication between the CPU and the
DMA engine. Finally, since the DMA engine largely deals
with physical addresses (as it has no translation support),
user-level applications are not allowed to take advantage of
it. Our goal in this paper is to investigate the hardware
support needed to enable copy engines (similar to DMA
engines) with the requirement that they are tightly coupled
into the platform and have low communication overhead.

Our contribution in this paper is the detailed exploration
of design and implementation choices for copy engines.
These choices are along two vectors: 1) placement of the
copy engine with respect to CPU and memory and
2) various modes of operations for the copy engines.
Placement of the copy engine is, to a great extent, dictated
by the underlying platform architecture. We consider two
predominant types of platforms: bus-based centralized-
memory (uniform memory access (UMA)) systems and
link-based integrated-memory (nonuniform memory access
(NUMA)) systems. From a design and performance point of
view, we cover trade-offs and point out issues along the
following dimensions:

1. proximity to memory,
2. access to cache,
3. interconnect design modifications,
4. coherence protocol changes, and
5. adherence to consistency models.

For the modes of operations, we have considered synchro-
nous and asynchronous execution of copies by the copy
engine. We discuss instruction-based triggering of copy
execution and evaluate whether the copy execution in the
copy engine should be synchronous or asynchronous with
respect to the CPU.

Based on our analysis, we propose the most suitable
copy engine solutions for the platform architectures con-
sidered. We focus on the implementation options and
describe the changes required in the platform to integrate
the copy engine solution. We model the implementation in

an execution-driven simulator and evaluate the perfor-
mance benefits. Our evaluation is based on a detailed case
study of the TCP/IP processing and how using our copy
engines helps boost the TCP/IP throughput. Our evaluation
shows that the use of a copy engine can speed up TCP/IP
processing by 15 percent to 50 percent, depending on the
packet sizes processed.

The rest of this paper is organized as follows: In Section 2,
we present the bottlenecks in bulk data movement and
analyze the limitations that they impose on TCP/IP
performance. In Section 3, we present the potential benefits
of copy engines if they are introduced in server platforms.
In Section 4, we describe the architectural considerations for
integrating copy engines in server platforms. Section 5
covers a detailed description of the implementation options
for our proposed copy engine solutions. Section 6 presents
the evaluation methodology and analyzes the performance
benefits of copy engines. Finally, Section 7 summarizes the
paper and presents a direction toward future research in
this area.

2 THE BULK DATA MOVEMENT PROBLEM

In this section, we describe why bulk data movement is a
problem on server platforms and show its impact on
applications by using TCP/IP processing as an example.

2.1 Data Movement Overhead in Network
Processing

Although CPU speeds have been increasing at a steady rate,
memory speeds and latencies have not kept up and the gap
is widening over time. As a result, applications that move
lots of data do not scale well with the improving CPU
frequency. For instance, copying 64 Kbytes of data from one
memory location to another took 80,000 ns on an Intel
Pentium M1 processor-based server platform with DDR
200 memory with two channels and a 400 million transfers
per second front side bus. This forms a significant portion
(53 percent) of TCP/IP processing when receiving the same
amount of data from the network. Because of this data
movement operation, the TCP/IP receive performance
scales poorly with CPU speeds. Fig. 1a shows the overhead
of TCP/IP processing in data center servers [17] running
back-end database workloads (like TPC-C [31]) using
storage over IP, Web server workloads (like SPECweb99
[28]), and front end e-commerce servers (like TPC-W [32]).
The data shows that TCP/IP processing takes more than
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30 percent of the total execution time. Addressing this
TCP/IP processing overhead is an active research area [8],
[9], [12], [14], [17], [18], especially given the evolution of
Ethernet technology from 1 to 10 Gbps and the growing
demand for network bandwidth in data centers. The main
challenge here is to efficiently scale TCP/IP processing to
10 Gbps speeds so that application can benefit from the
increased network bandwidth.

In the network processing context, we show that it is
important to solve the data movement problem to scale
TCP/IP processing performance. At a 10 Gbps line rate, the
TCP/IP stack has a budget of roughly 52,000 ns to receive,
process, and deliver 64 Kbytes of data to the application.
We have measured and projected TCP/IP receive proces-
sing times (including the copy overhead) on current and
future server platforms. Fig. 1b illustrates this data by
comparing it against the 10 Gbps budget (indicated by the
horizontal line in the figure). As processing speed and
memory technology improve in the future, we find that the
10 Gbps target budget is not achievable. This is despite the
optimistic scaling that we used when projecting the TCP
processing time: 1) The measured copy latency was reduced
by 42 percent when the memory technology was improved
from DDR 200 to DDR-II 400 and beyond and 2) the rest of the
TCP/IP processing was linearly scaled with the reductions in
the processor cycle time (due to frequency improvements).
This scaling is optimistic because TCP/IP processing (even
without copies) has several memory accesses that do not scale
with the CPU speed. In summary, without significant
reduction in the copy overhead, TCP/IP processing at
10 Gbps will be hard to achieve in the near future.

2.2 Related Work

Having identified the need for accelerating data movement,
we now cover related work to evaluate whether existing
solutions address this problem adequately. Most modern
processors implement hardware prefetching [7] and support
software prefetching mechanisms [5] to hide memory access
latency. However, these mechanisms are not very
applicable to bulk data movement. For instance, hard-
ware prefetchers [7] wait for a stride to develop before
they begin prefetching: Their impact is limited because
the copy is already in progress. Also, they always
prefetch more data than is needed as they try to keep
ahead of CPU load requests and this results in wasted
memory bandwidth. Software prefetching mechanisms
[5] enable applications to prefetch a cache line ahead of
time. However, most microprocessors do not guarantee
prefetch execution, which makes it indeterministic and
less appealing for software developers. We have
analyzed execution of software prefetch instructions
and their impact on data movement. We found that,
in most cases, they actually increase the cost of the
copy ðprefetch timeþ copy timeÞ. In one case, however, we
found a slight (5 percent) reduction in copy time when the
copy source is prefetched and no data is evicted from the
cache as a result. The underlying reason for this prefetch
overhead is that multiple prefetch instructions need to be
executed and these take up valuable CPU resources, such as
cache line fill buffers and load/store queues.

There are additional techniques that have been proposed
to reduce the copy overhead in the context of network
processing. These solutions fall into two categories: copy
avoidance and copy acceleration. In the copy avoidance
category, mechanisms like memory page remapping [30]
and RDMA [25] have been proposed. Page remapping [30]

has not been implemented in any major commercial
operating systems due to associated complexity and limited
applicability. On the other hand, RDMA [25] requires TOE
hardware support [11], [14] for processing additional
protocol layers that are part of RDMA. We do not believe
that TOE itself is a viable solution to accelerate TCP/IP
processing from an economical, as well as a technological,
point of view; our belief is supported by a recent study [21].

In the copy acceleration category, DMA engines [13], [1]
have been looked at as a way to perform memory-to-
memory copies in addition to the data movement between
the conventional Input/Output (I/O) device and memory.
However, DMA engines have not entirely succeeded due to
the following shortcomings:

1. Descriptor setup entails setting up the [src, dest,
length] parameters into shared memory descriptors
and adding them to a list that is accessible to the
DMA engine. This requires at least one memory
access, which costs 300 to 500 clock cycles.

2. Uncacheable triggers that trigger the DMA engine
(also referred to as a doorbell) require the use of an
uncacheable write to a DMA engine register. Such an
uncacheable access typically is a very long latency
operation (500 clock cycles).

3. Notification of the copy completion is either through
polling or through interrupts; both are expensive,
with interrupts being far worse.

4. DMA engines operate in physical address space to
prevent the use of the DMA engine by user-level
stacks and applications. An alternative is to lock
down pages (containing source and destination
buffers) in memory, which is prohibitive specifically
for use in application space.

Our goal in this study is to find a solution that avoids all of
the above overheads and thereby achieve an efficient low-
cost asynchronous copy. The copy engine in a server
platform is designed to meet the following requirements:

1. low overhead communication between the host
processor and the engine,

2. hardware support for allowing the engines to
operate asynchronously with respect to processors,

3. hardware support for sharing the virtual address
space between the processor and the engine, and

4. low overhead signaling of completion.

Other copy acceleration techniques include the use of
larger registers and techniques to improve the memory
efficiency by scheduling loads and stores efficiently, as well
as bypassing the cache [29]. However, these techniques
allow for some speedup of the copy operation. They still
stall the CPU for a long time. Our approach, as will be
described in Section 3, allows for copy speedup, as well as
freeing the CPU to perform overlapping computation.
There has also been extensive study to improve the memory
performance of applications with irregular access patterns
(scatter/gathers, strides, and so forth). One approach is to
add new features in the traditional memory controller.
Impulse [6] is a smart memory controller that supports
application-specified scatter/gather remapping and pre-
fetching. By adding another level of address translation in
the memory controller, it allows applications to use the
shadow addresses (unused physical addresses) to achieve
application-specific operation. It is required to modify the
application and the OS, but no modification to the dynamic
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RAM (DRAM) is needed. Another approach is based on
Processing-In-Memory (PIM), which integrates processor
logic into memory devices [22] so that processors em-
bedded within the memory can take advantage of high
bandwidth and low latency to the memory system on the
same chip. Our approach here is different because it is
much more tightly coupled to the processor execution and
requires an instruction set and core enhancements to
achieve the benefits.

3 A CASE FOR COPY ENGINES IN SERVERS

Our analysis in the previous section shows the overhead of
executing memory copies in today’s platforms and describes
why existing latency hiding techniques do not alleviate this
overhead. In this section, we introduce the use of dedicated
copy engines to accelerate data movement in servers.

Fig. 2 illustrates the basic characteristics of copy
execution on CPUs versus copy engines. Performance
improvement can be realized by employing copy engines
due to the following benefits.

3.1 Potential for Faster Copies and Reducing CPU
Resource Occupancy

The memory copy function is usually implemented as a
series of load and store operations (memory to register and
vice versa). As a result, it ends up occupying several CPU
resources and stalls the CPU until the copy completes. Even
though the CPU reads data into cache at cache line
granularity (64 bytes or higher in most modern processors),
it performs copy by reading data into registers that are
either 32 or 64 bits long. Copy engines can be used to speed
up this copy operation since it can perform copies at higher
(cache line) granularity. Another benefit of offloading the
copy to a copy engine is that the resources in the CPU are
also freed up for other instructions to be executed. For
instance, the series of load/store instructions ends up
occupying load/store queues, the reorder buffer, and the
cache line fill-buffers. As a result, even if the CPU were able
to look far ahead in the instruction window and execute
other instructions, it would not be able to execute those due
to lack of resources.

3.2 Copies Can Be Done in Parallel with CPU
Computation

Just like individual memory accesses are overlapped by
computation, memory copies can be performed in parallel
with CPU computation as well. If asynchronous memory-
to-memory copy operations can be enabled (using copy
engines), then the CPU is free to perform computation
operations. This is similar to a DMA operation, where data
is transferred between the memory and the device directly.

3.3 Potential to Avoid Cache Pollution and Reduce
Interconnect Traffic

Memory copy is a streaming workload from a caching point
of view. Unless the source or the destination is needed by
the application after the copy, allocating this data in the
cache can result in unnecessary pollution as it may kick out
other valuable data from the cache. For many workloads,
like the TCP/IP processing, the source of the memory copy
is rarely touched by the workload after the copy. However,
the destination is touched by the application since it is the
recipient of the incoming network data. However, most of
the applications (a Web server, for instance) employ
multiple processing threads, which may not touch the data
immediately or even on the same processor. Thus, allocat-
ing the destination may also pollute the cache. The use of a
copy engine allows for better control of this pollution, that
is, the copy engine can be designed to be configurable so as
to allow for various options by the applications running on
the server. Similarly, the copy engine can also reduce the
interconnect traffic in the platform. For instance, in a system
with centralized memory, embedding the copy next to the
memory controller can potentially reduce the traffic that is
placed on the interconnect (like a shared bus). This has the
potential to reduce the queuing delays on the bus and
thereby provide additional improvement to the application
performance.

Although the copy engine has the potential to provide
these benefits, the performance improvement will materi-
alize only if the underlying architecture is carefully
considered and the appropriate hardware support is
provided in the platform. In Section 4, we will provide a
detailed discussion of the aspects that need to be considered
before copy engines are implemented.

4 ARCHITECTURAL CONSIDERATIONS FOR COPY

ENGINES

In this section, we discuss the architectural considerations
for integrating copy engines into a server platform. There
are two major aspects to consider: 1) the placement of the
copy engine and 2) the mode of operation for the copy
engine. We start by covering the placement considerations
for copy engines.

4.1 Placement Considerations for Copy Engines

The location of the copy engine depends on the underlying
platform architecture. We focus our attention on two
dominant architectures for server platforms: 1) a bus-based
centralized architecture with external memory controllers
(EMC [15]) and UMA and 2) a link-based architecture with
integrated memory controllers (IMC [2]) and NUMA. Fig. 3
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illustrates the basic components of these architectures and
points out the potential copy engine integration choices.

Since we are discussing the tight coupling of copy engine
with the platform (and the CPU implicitly), it should be
assumed that the copy engine will be triggered by the
execution of a new “ecpy” instruction (the design/imple-
mentation details will be covered in Section 5). Upon
execution of this instruction, the CPU will communicate the
parameters of the copy to the copy engine by sending a
custom message. This flow is identical for both architectures
described in Fig. 3. As shown in the figure, the placement/
integration choices for the copy engine can be essentially
classified as 1) on-die copy engines and 2) off-die copy
engines. The major considerations for integrating on-die
versus off-die copy engines in these two architectures are
enumerated and discussed as follows:

. Proximity to memory. Ideally, a copy engine should
be integrated into the memory controller so that it
can perform DRAM-aware sequences of reads and
writes directly, without occupying any other re-
sources in the platform. In order to be close to the
memory controller in the UMA/EMC architecture,
the copy engine must be integrated into the memory
controller hub (MCH). In the case of NUMA/IMC
architectures, memory controllers are integrated into
the processors in order to reduce the time to local
memory. In this case, the copy engine should be
integrated into the processor as well so as to take
advantage of the low latency to the local memory
subsystem. At the same time, if UMA is desired and
one copy engine is to be supported for the entire
platform, then the copy engine may be integrated
into the I/O hub. However, it should also be noted
that, as the number of cores increase on each
processor socket (in CMP architectures), it may be
also be desirable to provide replicated copy engines
on each socket.

. Proximity to cache. Another important performance
consideration for the copy engine is the access to a
cache resource. Since the copy is initiated by the
CPU, it is possible that, in some cases, the source of
the copy is already in memory. Similarly, it is also
desirable in some cases that the destination should
be written into the cache by the copy engine so that
the application can avoid cache misses when it
touches it subsequently. In order to support these

caching benefits, the copy engine should have access
to the cache. In most architectures (encompassing
UMA/EMC and NUMA/IMC), the last level of
cache is typically on-die and, as a result, access to
cache largely means that the copy engine should be
integrated on-die.

. Interconnect traversal. Upon execution of the ecpy
instruction, the CPU communicates the parameters
of the copy to the copy engine by sending a request
message. As a result, if the copy engine is placed off-
die, then additional interconnect support may be
required for the message to be appropriately
encoded and transmitted to the copy engine. For
instance, in the case of an off-die copy engine in the
UMA/EMC architecture, the bus protocol will need
to support a new transaction that allows an ecpy
request to be communicated to the MCH and to be
passed to the copy engine. In Section 5, we will
discuss what this entails in terms of bus protocol
design and implementation.

4.2 Operation Modes for Copy Engines

Once the location of the copy engine is decided, the next

step is to evaluate the execution modes of the copy. We

consider two major execution modes for the copy engine:

synchronous and asynchronous.

. Synchronous copy engine. The simplest mode for
the copy engine is to execute the copy synchronously
with respect to the CPU. Here, the copy engine
notifies the CPU only after the copy is completed. As
a result, the pending instruction that issued the copy
to the copy engine will not retire until the copy is
completed. Some of the issues to consider here are
1) subsequent instructions that the CPU executes in
parallel with the copy engine have no data depen-
dencies (if they have dependencies, then they need to
be stalled) and 2) the copy engine is in the cache-
coherent domain so that it performs the necessary
reads and writes coherently and also listens and
responds to other coherent read/write operations that
the CPUs perform. One optimization that we design
and evaluate for synchronous copy operations is CPU
memory request bypassing, explained as follows:
Since the copy operation can generate a significant
number of reads/writes into the memory queue, the
memory requests initiated by the CPUs could be

744 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

Fig. 3. Copy engine placement in server platforms. (a) UMA/EMC architecture. (b) NUMA/IMC architecture.



stalled for a longer period of time than usual. By
allowing CPU requests to bypass the copy engine
requests, the CPU can make more forward progress
(and overlap computation with the copy).

. Asynchronous copy engines. Synchronous copy
engines allow the CPU to overlap the execution of as
many instructions as can be held in the reorder buffer
(which is typically small—around 128 entries). How-
ever, the copy operation can take a much longer
period of time to complete. Since there is room for
additional overlap, we consider asynchronous copy
execution by the copy engine. To enable asynchronous
copies, the copy engine essentially notifies the CPU of
copy completion earlier than the actual completion of
the copy operation. To support this, additional
hardware support is required to enforce coherence,
as well as to serialize subsequent CPU reads/writes
based on their dependency on the outstanding copies.
For example, once the CPU retires the ecpy instruction,
the subsequent instructions in the application may
attempt to either read/modify the source or destina-
tion of the copy. Even worse, the application may free
a critical section or lock, which allows another process
running on another thread/processor to begin access
to the source or destination of the copy. Thus, we
require hardware support that allows for dependence
checks, thereby ensuring that the load/store requests
from the CPU and copy operation by the copy
engine are serialized appropriately. Note that the
asynchronous copy engine does not require inter-
rupt handling, which is required by DMA engines;
thus, it can reduce execution time. In case a context
switch occurs, the CPU has to be stalled until the
completion signal is received.

5 DESIGN AND IMPLEMENTATION OF COPY ENGINES

Having covered the basic considerations and issues for copy
engine architectures, we now delve deeper into the design
and implementation options for two specific copy engine

solutions: 1) off-die copy engines for the UMA/EMC
architecture and 2) on-die copy engines for the NUMA/
IMC architecture. There are multiple reasons for choosing
these two options. As listed in Table 1, we believe these to
be the most relevant solutions, given how server platform
architectures are evolving. In addition, if we discuss the
design and implementation for these, then we can easily
apply/extend the solution for the other two possibilities, as
shown in the table as well. We cover the design and
implementation options for these copy engine solutions (in
synchronous and asynchronous modes of operations) by
describing the execution flow and pointing out the hard-
ware components affected along the way.

5.1 Triggering Copy Execution on the CPU

In order to trigger copy execution, we now describe the
Instruction Set Architecture (ISA) and microarchitectural
support required in the CPU. One can notice that the
triggering support described is independent of the copy
engine type (on-die or off-die) and mode of operation
(synchronous and asynchronous). There are three steps
involved in triggering the copy engine to start the copy (as
illustrated in Fig. 4).

5.1.1 Copy Initiation

A memory copy operation typically requires three oper-
ands: the source address, the destination address, and the
length of the copy. For a Complex Instruction Set Computer
(CISC), one instruction may be enough to specify all three
operands and initiate the communication with the copy
engine. However, for a Reduced Instruction Set Computer
(RISC), more instructions may be required. We assume a RISC
machine in order to describe the additional ISA support
required. We propose the addition of three new registers
(indicated by the “C” prefix to denote Copy). These three
copy registers are first initialized with the source (in Cs), the
destination (in Cd), and the length (in Cl) by using existing
instructions (like addi, as shown in Fig. 4). After all of the copy
parameters are available, we propose the use of a new
instruction called “ecpy” to start the process of communicat-
ing the copy parameters to the copy engine. At this point, the
copy control unit (CCU, shown in Fig. 4) reads the three copy
registers and buffers them.

5.1.2 Address Translation

After receiving a copy command, the CCU proceeds to
translate the source and destination addresses from a
virtual to a physical address space by using the TLB (may
require a page walk if a TLB miss is detected). If the
memory copy region crosses a page boundary, then this
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copy must be split up into several operations, each of which
has three operands (source, destination, and length) with
contiguous physical memory regions.

5.1.3 Copy Communication

Once the translation(s) is complete, each resulting copy
(addresses and length) is individually communicated to the
copy engine. It should be noted that the communication of
the three parameters to the copy engine should be “atomic”
and “ordered” in order to avoid any interleaving of
parameters between simultaneous memory copies issued
by different processors in the platform. We discuss the
interconnect support needed for this in Section 5.2.

5.2 Communication between the CPU and the Copy
Engine

The communication between the CPU and the copy engine
and back depends on the placement of the copy engine and
the architecture under consideration. Here, we describe the
communication for the two architectures considered.

5.2.1 Off-Die Copy Engine

In the UMA/EMC architecture, communication between
the copy engine and the CPU needs to traverse the global
interconnect (a shared bus). A typical pipelined bus [24]
consists of address lines, command lines, and data lines. A
bus transaction goes through several phases: the phases of
interest here include arbitration, request, snoop, response,
and data. After the arbitration phase, the CPU is allowed to
place a transaction on the bus. The transaction typically
consists of the request type (such as read, write, and
invalidate), the length of the transaction, and the physical
memory address.

For sending a copy transaction on the bus (shown in
Fig. 5), we require two addresses (source and destination)
and the length of the copy to be placed on the address/
command bus. In order to do so, we encode a new request
type called copy. By placing the copy request type on the bus
during the request phase, we indicate that two different
addresses will be transmitted to the agents (like CPU and
MCH) on the address lines in the subsequent clock cycles.
During these clocks, the length of the request is asserted in
the command lines. As a result, all nodes in the system are
able to latch the request on the bus. The latched copy
addresses can be used for two purposes: 1) to perform
snoops and 2) to detect dependencies for subsequent reads/
writes. The snoop phase may or may not be used, depending
on the copy mode of operation. We will discuss this in
more detail in Section 5.3.2. The response and data phases
are largely ignored for this transaction since it is much
like a memory write transaction, where the CPU does not

expect any response or data. Once the MCH collects the
copy addresses and the length, it communicates the copy
command to the copy engine. After some period of time
(depending on the mode of operation), the copy engine
will place the completion status on the bus so that the
completion of the copy is visible to all the nodes in the
system. The completion is indicated by placing the
address of the copy destination on the bus, the status of
the copy on the data bus, and the copy request, as well as
the ID of the requesting agent, on the command lines.

5.2.2 On-Die Copy Engine

In the NUMA/IMC architecture, the copy engine is much
simpler to implement since the copy engine is on-die and not
connected to an external interconnect (like a bus in the
previous case). The request can be communicated between
the CCU and the copy engine either through point-to-point
connections between these units or by enabling a new custom
message that is routed by an internal switch. The details of
this communication are beyond the scope of this paper.

5.3 Copy Engine Execution Flow

Most of the implementation choices discussed above were
independent of the mode of execution chosen for complet-
ing the copy transaction itself. In Section 4.2, we introduced
the synchronous and asynchronous modes of execution.
Here, we describe the implementation of these execution
modes. Fig. 6 illustrates the flow of execution starting after
the copy command is communicated to the copy engine and
ending with the copy engine notifying the CPU of copy
completion.

5.3.1 Synchronous Copy Engine

For the synchronous copy execution, the copy engine
performs coherent reads and writes by 1) sending out the
necessary snoops to all the processors in the platform and
2) performing speculative memory reads/writes. By doing
these in parallel, the latencies are overlapped and the
overall copy time can be significantly reduced. Once the
copy is completed, the copy engine sends a notification to
the requesting processor, which then retires the “ecpy”
instruction.

5.3.2 Asynchronous Copy Engine

As described earlier, the asynchronous copy operation
attempts to provide more computation overlap by allowing
the ecpy instruction to retire even before the copy transac-
tion is completed. To accomplish this, the copy engine
essentially needs to make the outstanding copy globally
observable by informing all processors that it is using the
memory regions (source and destination). Typically, this is
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made possible by broadcasting individual snoop opera-
tions. However, we propose the use of a multiline snoop
operation to reduce the overhead of broadcasting one snoop
per cache line in the buffer and receiving individual
responses for each. A multiline snoop operation sends the
base address and the length of the buffer to the processor
cache. Upon receiving the multiline snoop for the source
and the destination of the copy, the CCU enters this
information in a pending copy table (to track the pending
copies) and sends back an acknowledgment to the copy
engine. As shown in Fig. 6b, the copy engine then sends an
early completion notification to the requesting processor so
that it can retire the ecpy instruction. All subsequent loads
and stores from any processor are locally compared against
the entries in the pending copy table and are stalled and
retried until the copy is actually completed. Once the copy
engine completes the copy, it broadcasts the completion
notification to the processors in the platform so that the
local CCU can delete the copy entry from the pending copy
table. This releases any loads and stores that are pending in
the processor.

5.4 Scheduling Memory Transactions

In this subsection, we discuss the design of the copy engine
for initiating the reads/writes into the memory subsystem.
As shown in Fig. 7, the copy engine consists of a queue of

control registers that store the source, the destination
addresses, and the length of outstanding copy commands.
It also contains a stream buffer to store the copied data.
Since the data transfer size typically requested from the
memory is one cache line (for example, 64 bytes), more data
transfers are required if the copy length is larger than
64 bytes. Assuming that there is one memory queue Mem Q
in the memory controller, the copy engine injects a sequence
of read requests to Mem Q. The copy engine stores data
read from the memory stream buffer. Then, the copy engine
injects a sequence of write requests to Mem Q to store the
read data at destination address. By issuing a stream of
reads and writes, we can exploit the row locality in the
memory. It is known that modern DRAM chips latch an
entire row (row buffer) on the first access to that row.
Subsequent accesses to the same row have much lower
latency as a result. This is because subsequent accesses will
not incur the precharge and row access times.

The scheduling of CPU and copy engine requests differ,
depending on the mode of operation (synchronous versus
asynchronous). In the synchronous mode of operation,
memory requests from the CPU are not given higher
priority over the copy engine-generated ones. When the
copy engine is active, it issues several read/write requests
into the Mem Q. As a result of this, the CPU requests may
suffer long delays when accessing memory. This limits the
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extent to which the CPU can overlap other computation
with the copy operation. To let the CPU make maximum
forward progress while the copy engine is busy, we have
implemented a CPU request bypass mechanism, where the
CPU memory requests are placed in front of copy engine-
generated requests in the Mem Q. Fig. 8 illustrates these
two scenarios. To avoid copy engine starvation, we have
implemented a fairness algorithm, which guarantees a
predetermined amount of memory bandwidth for the copy
engine. In the rest of the paper, we use SYNC_WLB to
indicate CPU request bypass during the synchronous mode
and SYNC_NLB to indicate no bypass during the synchro-
nous mode. ASYNC indicates the asynchronous copy mode,
which assumes the CPU request bypass.

5.5 Taking Advantage of Local Cache

For an on-die copy engine, access to local cache can be a
significant asset. For instance, the copy engine may find the
source of the copy already in the cache of the requesting
CPU. As a result, the speed of the copy can be greatly
improved by looking up the cache before performing a
global coherent operation. Another potential benefit is the
invalidation of the source after completion of the copy.
Also, instead of writing the destination of the copy into
memory, the copy engine can potentially write the data
directly into the cache. The trade-offs here are related to
1) the distance between the copy completion and the
subsequent access of the destination data, 2) whether this
processor touches the data or another, and 3) the overhead
of potential cache pollution. In our evaluation, we largely
discuss writing of destination data to the memory but
compare it to the speedup that can be obtained if the
destination is indeed written to cache.

5.6 Copy Retirement and Dependency Checks

These are the last two steps that are required in the CPU to
ensure that copies are completed appropriately, and all
dependency checks are maintained appropriately.

5.6.1 Copy Completion

As mentioned earlier, the CCU receives copy notification
from the copy engine(s) in the platform. It has to deal with
three types of copy notification: 1) an early copy completion
notification for a copy that it generated, 2) a final copy
completion notification for a copy that was initiated either
by the final notification itself or by another unit, and 3) a
multiline snoop notification for a copy that was initiated
elsewhere. When receiving an early notification or a final
notification, the CCU ensures that the ecpy instruction is
retired by the CPU if it initiated the copy. Upon receiving a
final notification, it also deletes the copy entry from the
pending copy table. Upon receiving a multiline snoop
transaction, the CCU basically enters the addresses in the

pending copy table so that it can enable dependency checks
for asynchronous copy execution (as illustrated in Fig. 9).

5.6.2 Copy Dependency

One more issue that needs to be addressed when using the
copy engine is that of data dependency. For instance, once
the copy command is initiated, the CPU continues to
execute other instructions, which could be dependent on
the copy source or the destination data. In order to detect
these data dependencies, the CCU maintains the out-
standing copy source and destination addresses in the
pending copy table. Fig. 9 shows how dependency is
detected and handled. Just as the subsequent loads and
stores are compared to the pending memory transactions in
the load/store queues of the CPU, they should also be
compared against the copy commands in the pending copy
table. This is especially critical when the copies are executed
asynchronously. In this case, an external copy engine sends
a multiline snoop to the CCU (as described earlier). Once
the CCU receives the multiline snoop request, it enters the
addresses and length into the pending copy table. This
allows the CPU to perform dependency checks globally
against copies initiated by all CPUs. Note that the size of the
pending copy table is limited to ensure that the checking
incurs low overhead. When a copy is issued and no entry is
available in the table, the copy is either stalled or directly
executed by the CPU.

6 PERFORMANCE EVALUATION

In this section, we present an in-depth evaluation of the
impact of copy engines on TCP performance. We analyze
copy engines along the following basic dimensions: 1) on-
die versus off-die copy engines and 2) synchronous versus
asynchronous copy execution. Our evaluation is based on a
detailed simulation methodology, which is described in
Section 6.1.

6.1 Simulation Methodology

Our copy engine simulation results are based on an
execution-driven simulator SimpleScalar [27]. Since
SimpleScalar had a simplistic memory subsystem model
(based on a fixed latency calculation), our first task was to
modify the cache/memory subsystem to a detailed event-
driven model. Our cache/memory subsystem model
implements 1) Miss Status Holding Registers (MSHRs) to
limit the number of outstanding memory transactions, 2) a
pipelined bus model to accurately model the latency and
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the queuing effect, and 3) a memory subsystem model that
takes into account DRAM cycle times (row access, column
access, and precharge) based on the page conflicts, the
number of memory channels, and the Double Data Rate
(DDR) memory technology [10]. The memory subsystem is
configured to use an open-page policy. Our second major
task was to add the hardware support required to enable
synchronous and asynchronous copy engine models. This
required the following: 1) addition of instruction support to
the SimpleScalar ISA to emulate the ecpy instruction,
2) modeling of the communication between the CPU and
the copy engine via the interconnect (if needed), and
3) modeling of the copy engine to generate coherent reads
and writes to the memory subsystem. The final task was to
calibrate the model with appropriate parameter values so as
to simulate the delays observed in a realistic server
platform. Although we do not have multiprocessor support
in SimpleScalar, it should be noted that the delays modeled
take into account the time taken for snooping all the
processors in a four-way platform. A description of the
architectural parameter values used for the server platform
is provided below.

Our base system configuration is a four-way fetch/
issue/commit MIPS microprocessor with an instruction
window size of 128 entries and has two integer units, two
load/store units, and a floating-point unit. We simulate a
two-level cache hierarchy. The L1 I-cache and D-caches are
32 Kbytes in size, with 64-byte cache lines and four-way set
associativity. The data cache is write-back, write-allocate,
and nonblocking with two ports. The overhead to look up
the copy pending table is the same as the L1 cache lookup.
The L2 is a unified eight-way 1 Mbyte cache with 64-byte
cache lines and a 15-cycle cache hit latency. The system bus
is 64 bits wide (for data) and operates at 200 MHz (quad
pumped), resulting in a bandwidth of 6.4 Gbps. The
memory system is made up of two channels of DDR-II
400, contains 32 banks, and has a row buffer size of
2 Kbytes. The DRAM cycle times are assumed to be as
follows: 3-cycle (15 ns) precharge penalty, 3-cycle (15 ns)
row access, and 3-cycle (15 ns) column access. These
configuration parameters are shown in Table 2. Variations
on the parameters are explained where needed. For our

platform configuration, we have an unloaded memory
latency of approximately 80 ns (240 CPU cycles) for the
UMA/EMC system architecture and a memory latency of
60 ns (180 cycles) for the NUMA/IMC system architecture.
The latter latency assumes a uniform distribution of the
memory accesses across two nodes in the platform and
therefore includes a single-hop overhead to access the other
nodes’ memory subsystem. It should be noted that these
memory latencies also include the delays taken to propa-
gate the request and response via a realistic chipset. In
addition to these latencies, the simulation takes into account
the stalls experienced in the cache hierarchy (due to fully
occupied MSHRs) and queuing delays experienced due to
bus and memory traffic generated by the application.

The TCP/IP processing workload that we use is derived
from the FreeBSD stack [20] and performs receive-side
processing. To simulate different types of network traffic,
we drive the TCP/IP stack with three different packet
traces. Each trace contains 100,000 packets, with a fixed
packet payload size of 512, 1,024, and 1,400 bytes,
respectively. These packet sizes were chosen to represent
the typical receive traffic in a Web server, e-mail server, and
database server configurations.

6.2 Summary of Copy Engine Simulation
Configurations

We present and analyze simulation results for three copy
engine configurations: 1) SYNC_NLB—synchronous copy
engine with no load bypass, 2) SYNC_WLB—synchronous
copy engines with load bypass, and 3) ASYNC—asynchro-
nous copy engines, which assume load bypass. As
mentioned earlier, load bypass basically allows cache
misses generated by the CPU to be interleaved within the
copy engine requests and therefore does not have to stall
until all outstanding copies are completed. We compare
these three copy engine configurations with the basic
system configuration without a copy engine (BASE). All
three traces are run through the TCP stack in these four
configurations (BASE, SYNC_WLB, SYNC_NLB, and
ASYNC) for off-die copy engines. Subsequently, for space
considerations, we focus primarily on the trace with 1 Kbyte
packets when comparing the on-die copy engine versus the
off-die copy engine and when studying the sensitivity of the
copy engine to various architectural parameters and
optimization. All of the data is shown in the form of
percentage of execution time reduction as compared to the
base case.

6.3 Performance Benefits of Off-Die Copy Engines

Fig. 10 shows the execution time reduction with the copy
engine as compared to a BASE system running with a
MIPS-like processor running in In-Order (IO) and Out-of-
Order (OOO) execution modes. Although our primary
focus is the system with an OOO MIPS-like core, we
compare against an IO core to show how poorly the copy
may perform if the execution core is unable to extract
parallelism by looking ahead in the instruction window. As
expected, the benefits of a copy engine are significantly
greater in an IO system than in an OOO system. For instance,
when processing 512-byte packets in an IO system, the use of a
copy engine reduces the execution time by 43 percent to
58 percent based on the copy execution model used. When
processing the same-sized packet in an OOO system, the use
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of a copy engine reduces the execution time by 15 percent to
48.5 percent. Based on these results, we also notice that the
difference between the synchronous engine and the asyn-
chronous engine performance is less significant in an IO
system than in an OOO system. The reasoning for this is that
the major benefit of a copy engine in an IO system is the
reduction in the copy latency itself, whereas a significant
portion of the benefit in an OOO system is due to the
computation overlap.

To understand the underlying reasons for the benefits of
copy engine, we break down the execution time reduction
caused by the copy engine into two parts: 1) copy
speedup—this is due to the copy engine moving data at a
faster rate and 2) the computation overlap—some computa-
tion can be executed in parallel with the copy operation. As
confirmed in Table 3, in an IO execution system, most of the
improvement is from the faster copies. This is because the
copy performance, when executed by an IO CPU, is really
poor. In addition, the amount of computation overlap is
limited because of the IO restriction placed on execution.
Therefore, even with ASYNC copy engines, the number of
the instructions that can be executed in parallel with the
copy is very limited.

On the other hand, for an OOO system, the three copy
execution models have different contributions to the overall
execution time reduction. With SYNC_NLB, the improve-
ment is mostly due to faster copies when employing copy
engines. Since this approach does not allow subsequent
load instructions to bypass the copy command, only a
limited number of instructions can be executed in parallel
with the copy operation. Those instructions that have data
dependency on the load instructions have to wait until the

copy completes. SYNC_WLB improves upon this by
allowing CPU-issued load instructions to bypass the copy
command so that more instructions can be executed in
parallel with the copy. For 512-byte packets, the computa-
tion overlap is increased from 2.5 percent (out of 14.6 per-
cent) for SYNC_NLB to 19.6 percent (out of the 27.1 percent)
for SYNC_WLB. However, SYNC_WLB is still limited by
the fact that the number of subsequent instructions that can
be executed cannot exceed the size of the instruction
window and the load/store queue (128 and 64 in our case).

ASYNC alleviates this limitation by allowing the copy
instruction to retire sooner than the actual completion of the
copy command. This increases the computation overlap from
37 percent (for SYNC_WLB) to 41.1 percent (for ASYNC). As
we increase the packet size from 512 to 1,400 bytes, we can
see the improvement in copy speeds and reduction in
overlap for all three schemes. The former observation is
obvious since the percentage of the copy latency in the
total execution time is higher with larger payload sizes.
Thus, faster copies contribute more to the improvement.
The latter observation is for the same reason: The
percentage of the computation is smaller with larger
payload sizes. In summary, we believe that an asynchro-
nous execution model is critical to providing sufficient
performance benefits, even with larger payload sizes.

6.4 Benefits of On-Die Copy Engines

In Section 6.3, we evaluated the off-die copy engine for the
UMA/EMC architecture. In this section, we present the
benefits of an on-die copy engine for the NUMA/IMC
architecture and compare it to the off-die copy engine
benefits. The simulation results (for 1 Kbyte packet
processing) are shown in Fig. 11. The percentage reduction
in execution time is shown as compared to the BASE UMA/
EMC system. It can be observed that the NUMA/IMC
system performance is better than the UMA/EMC system
by about 10 percent because of the reduction in memory
access latency (due to integrated memory controller). When
enabling copy engines, we find that the benefits of
synchronous copy engines are about the same for both
architectures. However, the performance of the asynchro-
nous on-die copy engine is lower than that of the off-die
copy engine. This occurs because the computation is
completely overlapped with the copy operation, which
leads to the copy engine becoming the bottleneck. Since the
copy engine access time is increased in the on-die system,
the benefit is reduced.
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TABLE 3
Factors Affecting Execution Time Reduction



When considering on-die copy engines in the NUMA/
IMC architecture, we also evaluate the benefits of early
notification for the asynchronous execution model. Here, the
early notification is sent after receiving an acknowledgment
from the processors in the platform that it has observed the
outstanding copy. The processors can observe the copy in two
different ways: 1) by performing a snoop on the copy regions
and responding (after snoop) and 2) by entering the addresses
in the pending copy table and responding. Table 4 shows a
comparison of these two modes of operation. The first row in
the table shows the time taken for the acknowledgment to be
received by the copy engine. It should be noted that this is
considered only for asynchronous copy engines since the
snoop time can be overlapped with the memory access time in
the case of synchronous copy engines. It should also be noted
that this is not considered for UMA/EMC because the bus is a
global medium and the copy is globally observed when the
request is placed on the bus by the requesting processor. For
asynchronous copy engines in NUMA/IMC, the BASE case
requires the snoop to return within 30 ns so as to overlap with
the communication between the processor and the copy
engine. However, if the multiline snoop needs to be
completed at the processor caches, then the time taken can
be much longer (as shown in the second column). The
block_num is the number of cache lines that are invalidated.
For a 1 Kbyte packet, the snoop time is 84 ns. The effect of this
additional snoop time before the ecpy instruction can be
retired translates to a reduction in performance benefit of
about 2 percent (from 40.7 percent to 37.8 percent). As a result,
either approach can be employed from a performance
perspective.

6.5 Impact of Memory Subsystem

We also look at the impact of the memory system on the
performance. In Fig. 12, we increase the memory bandwidth
from 3.2 GHz to 6.4 GHz and show that the execution time
reduces significantly in all four modes of operation for off-die
copy engines. This is expected because, even with the help

of the copy engine, the bottleneck still remains in the
memory system. Therefore, faster memory gives better
performance. In Fig. 13, we decrease the memory access
latency from 110 to 80 ns. We can see that the memory
access time has less impact on the copy engine than the
BASE case. For instance, the execution time of the BASE is
reduced by about 10 percent and 18 percent when the
latency is reduced to 95 and 80 ns, respectively. However,
with SYNC_NLB, the execution time reduction changes by
hardly 2 percent (from 33.7 percent to 36.1 percent). The
difference is even less for SYNC_WLB and ASYNC copy
engines (about 1 percent and 0.2 percent, respectively).

6.6 Effects of CPU Frequency

We vary the processor frequency and measure its impact on
the off-die copy engine performance. The results are
normalized to the base case when the CPU frequency is
2.0 GHz. As shown in Fig. 14, the execution time reduction
is 7.2 percent and 10.1 percent for the BASE case when the
frequency is increased to 3 and 4 GHz, respectively. This
benefit is entirely due to the computation speedup by the
faster CPUs as the memory subsystem is not scaled at all.
However, the benefit of faster CPUs declines as we start
using synchronous and asynchronous copy engines. There
continues to be a benefit due to faster copies in copy
engines, but the amount of overlap possible is reduced in
absolute time (in nanoseconds, not cycles). One can observe
in the figure that faster CPUs have almost no effect on the
ASYNC mode of execution because the computation is
already (100 percent) overlapped with the copy operation.
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Fig. 11. Performance benefits of the on-die copy engine.

TABLE 4
Early Notification on ASYNC

Fig. 12. Impact of memory bandwidth.

Fig. 13. Impact of memory latency.



Here, the copy engine becomes the bottleneck and thereby

determines the execution time.

6.7 Benefits of Cache Usage during Copies

Until now, most of the above simulation results were based

on the copy engine issuing reads and writes directly to

memory. Given that we have an on-die copy engine, it is

possible for the destination to be written directly into the

cache by the copy engine. This has the potential to speed up

the copy operation since it can be performed faster than the
memory write and also has the potential to reduce

subsequent cache misses if the application touches the

destination soon enough. Although we do not evaluate the

effect of the application touching the data, we have

simulated the effect of writing the destination to the cache.

The simulation results are shown in Fig. 15. The results
show that the synchronous copy engine provides an

additional 20 percent reduction in the execution time if

the destination is written to cache. The additional reduction

for an asynchronous copy engine is about 13 percent. This is

because less of the copy operation time is overlapped in the

case of synchronous operation as compared to the asyn-

chronous operation.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we described the bulk data movement

problem in servers and studied its impact on TCP/IP

processing, which is a workload common to many network-

intensive server applications. Having reviewed existing

techniques for latency hiding during data movement, we

showed that most of these are either ineffective or have
limited applicability. To address this problem directly, we

proposed the use of copy engines that can be tightly

integrated into the server platforms.
We then discussed the architectural considerations for

integrating copy engines and identified two major dimen-

sions: 1) on-die placement versus off-die placement and

2) synchronous versus asynchronous execution models. We

then described the implementation options for these copy
engine solutions and the associated hardware support

required in the platform, including CPU support, inter-

connect support, copy engine design, and coherence/

synchronization requirements.

Finally, we modeled the copy engine solutions by

extending an execution-driven simulator and showed that

the performance benefits of the proposed copy engines are

significant. Our analysis of the simulation results also

showed that asynchronous on-die copy engines are desir-

able from a performance standpoint. In addition, we also

showed that the proposed copy engines may even be able to

take advantage of the local processor’s cache to provide

additional speedup.
We believe that the integration of copy engines in server

platforms has significant potential. In future work, we plan

to evaluate the benefits of copy engines for a wider range of

applications. We also plan to extend our analysis to other

bulk data operations such as memory initialization, parsing,

encryption, and others. We believe that the basic framework

that we described in this paper can be easily extended to

accommodate these other frequently occurring operations.
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