
34

Network processors recently
emerged as a successful platform providing
both high performance and flexibility in build-
ing powerful routers. A typical network proces-
sor (NP) includes multiple fast-execution cores
on a single chip that exploits packet-level par-
allelism. Example products include Intel’s IXP
family,1 IBM’s PowerNP, Motorola’s C-Port,
and Agere’s APP550. With the exponential
increase in clock frequency and core complex-
ity, power dissipation will become a major
design consideration in NP development. For
example, a typical router configuration might
include one or two NPs per line card. A group
of line cards, say 16 or 32, generally resides
within a single rack or cabinet.2 Because each
NP typically consumes approximately 20 W
and the operating temperature can reach 70
degrees centigrade, aggregated heat dissipation
becomes a major concern.

Research into NPs and their power dissipa-
tion is in its infancy. The main obstacle is the
lack of open-source infrastructure for analyz-
ing and quantifying the performance and
power ramifications among NP architecture
alternatives. Although there have been cycle-

accurate architecture simulators for commer-
cial NPs—for example, Intel’s Software Devel-
opment Kit (SDK)3 and Motorola’s
C-Ware—their internal architecture design is
not open source for users. Moreover, these
simulators do not incorporate power model-
ing and evaluation tools.

This article presents NePSim, an integrat-
ed system that includes a cycle-accurate archi-
tecture simulator, an automatic formal
verification engine, and a parameterizable
power estimator for NPs consisting of clusters
of multithreaded execution cores, memory
controllers, I/O ports, packet buffers, and
high-speed buses. To perform concrete simu-
lation and provide reliable performance and
power analysis, we defined our system to com-
ply with Intel’s IXP1200 processor specifica-
tion because academia has widely adopted it
as a representative model for NP research. The
verification engine, called Iveri,4 can validate
the simulation from the execution log traces
by employing user-defined constraints in a
verification language. The power estimator
combines a suite of models (Xcacti,5 Wattch,6

and Orion7) for dynamic power measure-

Yan Luo, Jun Yang,
Laxmi N. Bhuyan, and

Li Zhao
University of California,

Riverside

THIS OPEN-SOURCE INTEGRATED SIMULATION INFRASTRUCTURE CONTAINS A

CYCLE-ACCURATE SIMULATOR FOR A TYPICAL NETWORK PROCESSOR

ARCHITECTURE, AN AUTOMATIC VERIFICATION FRAMEWORK FOR TESTING

AND VALIDATION, AND A POWER ESTIMATION MODEL FOR MEASURING THE

SIMULATED PROCESSOR’S POWER CONSUMPTION.

NEPSIM: A NETWORK PROCESSOR
SIMULATOR WITH A POWER
EVALUATION FRAMEWORK

Published by the IEEE Computer Society 0272-1732/04/$20.00  2004 IEEE

ments and calculates results on the basis of
per-cycle resource usage counts.

In addition, we propose low-power tech-
niques tailored to NPs and using our NePSim
system. We adopted the classic dynamic volt-
age scaling (DVS) technique to each execu-
tion core, observing that there is abundant
idle time (on average, 10 percent to 23 per-
cent) resulting from contention in the shared
memory. Overall, we achieve a maximum of
17 percent power savings for the NP over four
network application benchmarks, with less
than a 6 percent performance loss.

Cycle-level simulation
We start with a high-level overview of the

IXP1200, then we describe our simulator soft-
ware structure.

Background: Intel IXP1200 and its microengines
The IXP1200 is an integrated processor

comprising a single StrongARM processor, six
microengines (MEs), standard memory inter-
faces, and high-speed bus interfaces. The
StrongARM core manages functions such as
initializing MEs, running routing protocols,
and handling exceptions. The MEs are fast
RISC engines that can be programmed to per-
form high-speed packet inspection, data
manipulation, and data transfer. The
SDRAM unit is a shared-memory interface
accessible by the StrongARM, the MEs, and
devices on the PCI bus. SDRAM serves most-
ly for temporarily storing packet payloads.
The SRAM unit is also a shared-memory
interface accessible by the StrongARM and
the MEs. SRAM serves mostly for storing
control data structures such as forwarding or
routing tables. The IX bus unit, controlled by
MEs, transfers data blocks between the
IXP1200 and networking devices such as
media access controllers (MACs). Intel’s ref-
erence manual describes the IXP1200 in
detail.1

The simulator
Our simulator implements most function-

alities of the IXP1200, the external SDRAM,
and the SRAM. We also implemented a full-
fledged command bus arbiter and an IX bus
unit, which contains the scratchpad memory
and packet I/O buffers. We did not model the
StrongARM core because its main task is con-

trol plane functions that don’t affect the crit-
ical path of packet processing.

Figure 1 shows the NePSim hardware
model’s software architecture. We first com-
pile the applications into microcode assem-
bly. We didn’t use the binary directly because
we wanted to leave room for instruction
extensions in future research. It’s usually eas-
ier to modify the program using assembly
rather than binary. NePSim’s inputs are net-
work packet streams generated from the traf-
fic generator. Ideal packet streams are those
collected from real-world networks or down-
loaded from trace archive sites such as the
National Laboratory for Applied Network
Research. If these aren’t available for an appli-
cation, the traffic generator module will gen-
erate a synthetic trace of packets.

The NePSim body (the microengine sim-
ulation core) is the module that simulates the
following five stages of the ME pipeline:

1. instruction lookup;
2. initial instruction decoding and forma-

tion of the source register address;
3. reading of operands from the source reg-

isters;
4. ALU operations, shift or compare oper-

ations, and generation of condition
codes; and

5. writing of result to destination register.

An ME’s threads share the pipeline and func-
tional units such as the ALU. Thread execu-
tion is not preemptive, which means a thread
cannot gain control of the pipeline unless the
running thread yields control. Mutual

35SEPTEMBER–OCTOBER 2004

Microcode (assembly)

Host platform

Microengine
simulation core

SRAM Stats
Traffic

generator

SDRAM DliteFBI unit Device

Figure 1. NePSim software structure.

exclusion mechanisms include absolute regis-
ter and atomic scratchpad operations.1

The lack of an IXP1200 timing specification
complicates modeling the memory module and
memory controllers. The SRAM and SDRAM
memory controllers consist of multiple refer-
ence-command queues with different priori-
ties. The arbiter in the controller schedules the
memory reference commands to achieve high
throughput. However, the documents available
to us do not explicitly state the command
enqueue and service time. Our methodology
here is to analyze memory access traces from
Intel’s SDK, which contains detailed cycle
information for all possible events, such as
memory access issues and commits. From the
traces, we can extract relatively accurate timing
relations among different events. On the basis
of these relations, we implemented the mem-
ory units to match NePSim with the IXP1200
as closely as possible.

The device module in Figure 1 implements
I/O devices such as I/O ports and the MACs.
The Dlite (lightweight debugger) module
resembles the debugger in SimpleScalar. For
example, it lets users set breakpoints, print
pipeline status, display register values, and
dump memory content.

The simulator is highly parameterized,
enabling users to model components with dif-
ferent configurations. For example, the MEs
can be set to run at different clock rates and
supply voltages. Users can configure the
SRAM and SDRAM with different latencies
and bandwidths, and they can define incom-
ing traffic with different arrival rates and
arrival patterns—for example, Poisson, uni-
form, or random.

Our simulator provides several other advan-
tages over Intel’s SDK.

Enables new architecture design. This is prob-
ably the strongest motivation for developing
NePSim. If an SDK user wants to change the
behavior of certain hardware to observe any
differences, it might be necessary to modify
the program being run. This is certainly intru-
sive and not trustworthy. NePSim gives users
maximum freedom by letting them test any
modification in the architecture with ease.

Permits number of MEs and threads to vary. In
addition to modeling a varying number of

MEs, NePSim models a varying number of
threads per ME. The MicroC compiler can
create six or more ME executables, which can
be fed into NePSim. Intel’s SDK for the
IXP1200, however, can’t run more than six
MEs. This feature lets us explore future NP
architectures with even more MEs, such as the
IXP2400 or the IXP2800.

Provides instruction set extensibility in microc-
ode assembly code. Users can tag instructions
with flags when experimenting with an
instruction set architecture optimization.
Also, users can create new instructions and
insert them into the assembly code without
fear of modifying PC-relative or offset fields in
other instructions. SDK cannot achieve this
functionality.

Provides faster execution speed. Like SDK, NeP-
Sim has a comprehensive set of statistical vari-
ables. Unlike SDK, however, the simulator
lets us collect data selectively, thereby increas-
ing the simulation speed. On average, we can
simulate 120 K instructions per second (on a
900-MHz Pentium III machine), which is
about 10 times faster than the SDK.

Validation
Validating NePSim against the IXP1200

architecture is crucial because the performance
and power simulation is useful only if it is sat-
isfactorily accurate. Verifying NePSim’s func-
tional properties by comparing program results
is relatively simple. However, performance ver-
ification requires significant effort to make this
process accurate, efficient, and formal.

We built a verification backend tool called
Iveri that formally specifies the simulator
properties in a verification language. First, we
run the same benchmarks on NePSim and
SDK to get two simulation traces. We treat
the SDK trace as the standard reference trace.
The log traces contain events annotated with
information in a predefined format. Iveri
processes the log traces and prints a detailed
report stating how many times a property is
violated and where it is violated in the log
trace. Using this information, we go back to
the simulator and trace the simulation until
we discover a bug. Thus, through Iveri, we can
formally and accurately describe the perfor-
mance properties or requirements of a new

36

NETWORK PROCESSORS

IEEE MICRO

design. Chen et al. provide a detailed specifi-
cation for Iveri.4

Next, we compare the verification results of
overall NePSim throughput and average pro-
cessing time against those of the IXP1200.
(We provide verification results of individual
major components such as SRAM and
SDRAM in a longer version of this article
published as a technical report.8) We ran four
benchmarks ported to NePSim and measured
the performance in terms of throughput
(Mbps) and average packet processing time
(cycles). The benchmark descriptions appear
later in this article. Figures 2 and 3 show the
comparisons. We observed an average error of
1 percent in throughput and 6 percent in aver-
age processing time across the four bench-
marks. The error in average processing time
is due mainly to the inaccuracy of our
SDRAM model. Such a timing error affects
the packet processing order and time. Overall,
though, we think the simulation can produce
relatively dependable results.

Power modeling
We extracted and combined various power

models from Xcacti,5 Wattch,6 and Orion7 for
different hardware structures in NePSim.
XCacti is an enhanced version of Cacti 2.0
that includes power modeling for cache writes,
misses, and writebacks. We first classify the
IXP1200 hardware component structures into
five categories: ALU and shifter, registers,
cachelike structures, queues, and arbiters. Reg-
isters include general-purpose register files,
transfer register files, and control register files
for each ME. Cachelike structures include the
control store for each ME and the scratchpad
memory in the IX bus unit. Queue-type struc-
tures include each ME’s command FIFO,
receive and transmit FIFOs in the IX bus unit,
and groups of queues in the SDRAM and
SRAM units. The arbiter type includes each
ME’s context event arbiter, the command bus
arbiter, and reference arbiters in the SDRAM
and SRAM units. The IXP1200 uses 0.28-
µm technology. However, Xcacti, Wattch, and
Orion do not supply the necessary scaling fac-
tors for 0.28 µm. (The scaling factors serve to
scale wire capacitance, resistance, transistor
length, area, voltage, threshold voltage, and
sense voltage.6,7,9) Therefore, we use 0.25-µm
technology because it is the closest available

feature size to 0.28 µm, and we should expect
to obtain lower overall power consumption
than that reported for the IXP1200. Table 1
lists the components we modeled, the tools
we adopted, and the corresponding
configurations.

Only the IXP1200 chip’s total power con-
sumption was available. To the best of our
knowledge, each component’s power break-
down has never been reported. Therefore, we
validate our modeling on the basis of the total
power. According to the IXP1200 datasheet,
the IXP core’s power, excluding I/O, is typi-
cally 4.5 W at 232 MHz, with a 2-V supply
voltage and 0.28-µm technology. This
wattage includes all the MEs; the memory
units; the IX bus unit, which contains the con-
trol store; and the StrongARM core. The lat-
ter consumes an average of 0.5 W, leaving
approximately 4 W for the rest of the chip.
From our power models, each ME consumes
0.468 W, the IX bus unit (containing the
scratchpad memory) consumes 0.363 W, the
SRAM unit 0.0639 W, and the SDRAM unit

37SEPTEMBER–OCTOBER 2004

0

200

400

600

800

1,000

1,200

T
hr

ou
gh

pu
t (

M
bp

s)

url ipfwdr md4 nat Average

IXP1200
NePSim

Figure 2. NePSim and IXP1200 throughput comparison.

url ipfwdr md4 nat Average

IXP1200
NePSim

0

5,000

10,000

15,000

20,000

25,000

P
ro

ce
ss

in
g

tim
e

(c
yc

le
s)

Figure 3. NePSim and IXP1200 processing time comparison.

0.0643 W. These are average values. Assum-
ing every component switches on in every
cycle, the total power consumption is 0.468 ×
6 + 0.363 + 0.0639 + 0.0643 = 3.3 W. The
difference, 4.0 – 3.3 = 0.7 W, results from our
use of a smaller technology, 0.25 µm instead
of 0.28 µm. Also, there are other structures
that we did not model—for example, inter-
nal buses and the clock. We will include these
in our NePSim upgrade.

Power and performance analysis
Because NePSim can provide both power

and performance statistics, we take this oppor-
tunity to study the NP power/performance
tradeoffs that cannot be determined using
Intel’s SDK. We assume the maximum pack-
et arrival rate because we are interested in an
NP’s processing capability. In addition, we
assume 16 Ethernet interfaces for receiving
packets and 16 for transmitting packets. The
SRAM and SDRAM frequency is 116 MHz,
according to the IXP1200 datasheet. The
unloaded latencies for SRAM, SDRAM, and
scratchpad memory are 16, 33, and 12 cycles,
respectively, for a 232-MHz ME.

Benchmark descriptions
We compiled and ported four representa-

tive NP applications for our experiments:
Internet Protocol (IP) forwarding (ipfwdr),
URL routing (url), a message-digest algorithm
(md4), and network address translation (nat).
Each benchmark application uses four receiv-
ing MEs and two transmitting MEs. The
threads on receiving MEs receive and process
packets independently (unordered). The other
two MEs transmit processed packets through
output interfaces.

The ipfwdr is a sample of IP forwarding
software provided in Intel’s SDK.3 This appli-
cation implements an IPv4 router that for-
wards IP packets between networks. The
processing includes Ethernet and IP header
validation and trie-based routing-table
lookup. The routing table resides in SRAM,
and the output port information is in
SDRAM. The rest of the MEs transmit the
processed packets to the next-hop router on
the basis of output port information.

The url routing program routes packets on
the basis of their contained URL request. This
is a primary task of content-aware switches

38

NETWORK PROCESSORS

IEEE MICRO

Table 1. Component modeling information.

Hardware component Model type Tool Configuration
Two general-purpose register files per ME Array XCacti Two 64-entry files, one

read/write port per file
Four transfer register files per ME Array XCacti Four 32-entry files, one

read/write port per file
One control register file per ME Array XCacti One 32-entry file, one

read/write port
One control store per ME and scratchpad memory Cache without tag path XCacti 4 Kbytes, 4 bytes per block,

direct mapped, 10-bit address
ALU and shifter ALU and shifter Wattch (cc1 32 bits

clock-gating
technique)

One command FIFO per ME Array Wattch Two-entry, 64-bit width
Receive FIFO, transmit FIFO
High-priority queues Eight-entry (SDRAM and SRAM)
Order queues 24-/16-entry (SDRAM/SRAM)
Odd-/even-bank queues 16-entry (SDRAM)
Read-only queues 16-entry (SRAM)
Command bus arbiter Matrix and round-robin Orion Three priority requests, six

arbiter round-robin requests
(maximum)

One context arbiter per ME Round-robin arbiter Four round-robin requests
Reference arbiters Matrix Up to four priority requests

that often examine the payload of packets
when processing them. The url then performs
a string-matching algorithm that we ported
from NetBench. Because the string patterns
are initialized in SRAM, url’s code must gen-
erate SRAM accesses in later comparisons.
Also, because they must be scanned for pat-
tern matching, many requests are generated
to SDRAM, which stores payload data.

The network address translation program,
nat, uses the source and destination IP address-
es and port numbers to compute an index.
This index serves as a hash-table lookup to
retrieve a replacement address and port. Thus,
each packet accesses the SRAM to look up the
hash table. SDRAM accesses aren’t necessary.

The md4 algorithm works on arbitrary-
length messages and provides a 128-bit fin-
gerprint, or digital signature. Designers use
this algorithm to implement a Secure Sockets
Layer or firewall at the edge routers. The algo-
rithm moves data packets from SDRAM to
SRAM and accesses SRAM multiple times to
compute the digital signature. This program
is both memory and computation intensive.

Researchers have studied ME distribution
for receiving and transmitting data. For NPs
such as the IXP1200, with six MEs, the usual
configuration is four MEs (16 threads) for
receiving and two MEs (eight threads) for
transmitting. Researchers have tested this 4:2
ratio to provide maximum throughput, and
we adopted this configuration throughout our
experiments.

Performance observations
In the first set of experiments, we studied

the impact of having more MEs on the total
packet throughput, as measured in Mbps.
Intuitively, a benchmark’s throughput should
increase with the number of MEs or threads,
because this configuration exploits higher
packet-level parallelism. However, for mem-
ory-intensive benchmarks (url and md4),
increasing the number of threads means
increasing memory contention, because the
memories are shared among all threads.
Throughput tends to level off after a certain
point, as shown in Figures 4a and 4b. Figure
4b also shows that for memory-intensive
applications, doubling the core frequency
doesn’t double the throughput.

A strange result from these two graphs is the

decrease in Mbps for nat as the number of
MEs increases. It turned out that, unlike other
programs, nat is not memory bound. To show
this, we measured the average ME idle time
corresponding to different ME-to-memory
speed ratios—that is, 2:1 versus 4:1, as used in
Figures 4a and 4b, respectively. When a pro-
gram is memory bound, all the threads in an
ME are often swapped out of pipeline waiting
for their memory references, resulting in an
idle ME. For such a program, the slower the
memory, the longer the ME idle time.

As Figure 5 shows, nat doesn’t have much ME
idle time, even when the ME-to-memory speed
ratio is 4:1. This implies that all MEs are busy,
but, because the throughput declines, they are
not producing much useful work. We traced
nat’s execution and found that the bottleneck
lies in the transmitting threads. The receiving
threads process packets fast enough, but they
cannot allocate new memory slots for incom-
ing packets because the transmitting threads

39SEPTEMBER–OCTOBER 2004

0

200

400

600

800

1,000

1,200

T
hr

ou
gh

pu
t (

M
bp

s)

1 2 3 4
No. of microengines

nat
ipfwdr
md4
url

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000

T
hr

ou
gh

pu
t (

M
bp

s)

1 2 3 4
No. of microengines

nat
ipfwdr
md4
url

(a)

(b)

Figure 4. Impact of number of micro-
engines on throughput: four threads per
ME at 232 MHz (a), four threads per ME at
464 MHz (b).

don’t release memory slots fast enough. The
transmitting threads should release the memo-
ry slots once a packet has been sent. At this time,

all the receiving threads are busy requesting new
memory slots, but few can get them. This phe-
nomenon suggests that a 3:3 receiving/trans-
mitting ME ratio might work better for nat than
the traditional 4:2 configuration.

Where does the power go?
The second set of experiments addresses

IXP1200 and ME power consumption char-
acteristics. In particular, we want to identify
the components that consume the bulk of the
power. Figure 6 plots the IXP1200’s power
distribution among the MEs, and Figure 7
plots the power consumed by an ME’s indi-
vidual components.

In Figure 6, MEs 0 through 3 are receiving
MEs and MEs 4 and 5 are transmitting MEs.
Almost all receiving MEs consume the same
amount of power; the transmitting MEs con-
sume about 5 percent more. The ALU con-
sumes the most power (45 percent on average),
followed by the control store (28 percent),
where the program is stored. This is because
the control store is accessed on almost every
cycle. The general-purpose register (GPR) files,
where instruction operands and results reside,
constitute the third power-hungry component
(13 percent). Even when data is loaded from
the memory to the transfer register files, it is
moved again to GPRs for ALU operations. We
assumed that the control memory size (1,024
words) and the number of GPRs (128) that
we set on NePSim were the same on the
IXP1200. If these numbers vary, power con-
sumption varies accordingly.

The fourth component is the static power.
We included static-power estimation in Fig-
ure 7 because of the significant ME idle time.
For 0.25-µm technology, the static power is
less than 5 percent (we chose 2 percent in this
experiment) of the dynamic power. The result
in Figure 7 shows the static-power budget aver-
aging about 7 percent. This indicates that even
though the dynamic power of MEs dominates,
future NPs might adopt smaller technology
feature sizes and higher clock frequencies,
making the static power more important when
considering potential ME idle time.

Performance and power observations
Next, we want to determine whether the per-

formance variation is consistent with the power
variation. Particularly, with the trend toward

40

NETWORK PROCESSORS

IEEE MICRO

0
10
20
30
40
50
60
70
80
90

100

url ipfwdr md4 nat Average

P
ow

er
 c

on
su

m
pt

io
n

(p
er

ce
nt

ag
e)

Non-ME
ME 5
ME 4
ME 3
ME 2
ME 1
ME 0

Figure 6. Simulated IXP1200 power consumption break-
down among microengines.

0

10

20

30

40

50

60

70

80

90

100
Static power
Command FIFO
Control store
Transfer register
General-purpose register
Shifter
Arithmetic logic unit

P
ow

er
 c

on
su

m
pt

io
n

(p
er

ce
nt

ag
e)

url ipfwdr md4 nat Average

Figure 7. Microengine power consumption breakdown, by component.

0

5

10

15

20

25

30

35

40

45

Id
le

 ti
m

e
(p

er
ce

nt
ag

e)

ME memory speed = 2:1
ME memory speed = 4:1

url ipfwdr md4 nat Average

:
:

Figure 5. Average microengine idle time
with different speed ratios for the core and
the memory.

adding more processing capabilities on chip—
for example, adding more cores—how do per-
formance and power consumption respond?
To discover this, we measured the normalized
increase in performance and power for the four
applications with a growing number of MEs.
The core and memory frequency ratio is set at
4:1. The results appear in Figure 8.

These graphs show that both performance
and power consumption grow with the addi-
tion of MEs, except for nat’s performance
(explained earlier). Our first observation is that
ME power consumption doesn’t multiply with
an increase in the number of MEs. In other
words, two MEs consume less than twice the
power of one ME because ME idle time
increases as MEs are added, since more threads
are competing for the same amount of memo-
ry. We measured average ME idle time, varying
the number of MEs. Figure 9 shows the results.

The most important observation from Fig-

ure 8 is the trend in the performance/power
curve pair for each application. In each case,
the gap between the two curves widens as the
number of MEs increases. In other words,
power consumption increases faster than per-
formance. Franklin and Wolf reached similar
conclusions using an analytical model.2 (See
the “Existing work on network processors”
sidebar.) Therefore, designers of future NPs
will find power consumption a greater con-
straint than processing capability. For this rea-
son, we next present a technique that uses
classic dynamic voltage scaling (DVS) to con-
serve power in MEs.

Reducing processing core power
Wide use of DVS for microprocessors has

produced significant power savings. DVS
exploits microprocessor utilization variance,
reducing voltage and frequency when the
processor has low activity and increasing them

41SEPTEMBER–OCTOBER 2004

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

iz
ed

1 2 3 4

ipfwdr.perf.
ipfwdr.power

1.0

1.5

2.0

2.5

3.0

3.5

4.0
N

or
m

al
iz

ed

1 2 3 4

url.perf.
url.power

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

iz
ed

1 2 3 4

nat.perf.
nat.power

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

iz
ed

1 2 3 4

md4.perf.
md4.power

No. of microengines No. of microengines

No. of microengines No. of microengines

Figure 8. Analysis of power efficiency with a varying number of microengines, each with four threads, by application.

when there’s a demand for peak processor per-
formance. In the work we’ve described so far,
we identified a significant percentage of low-
activity or idle time for MEs. Therefore, there
is plenty of room for deploying DVS to con-
serve power.

DVS policy
Figure 9 shows that average ME idle time is

abundant because most of the benchmarks are
memory bound. During idle time, all threads
are in a wait state, and the MEs run with their
lowest level of activity. Applying DVS while

MEs are not very active can reduce total power
consumption substantially. Our scheme starts
by using hardware to observe ME idle time
periodically. Once the percentage of idle time
in a past period exceeds a threshold, we scale
down the voltage and frequency (VF) by one
step, unless the ME hits the minimum allow-
able VF. If the percentage is below the thresh-
old, indicating that in the past period the ME
was relatively busy, we scale up the VF by one
step, unless they are already at the maximum
allowable values.

There are four issues to consider:

• transition step, meaning whether to use
continuous or discrete changes in VF;

• transition status, indicating whether we
let the ME continue working during VF
regulation;

• transition time between two different VF
states; and

• transition logic complexity, which is the
overhead of the control circuit that mon-
itors and determines a transition.

Deploying DVS
We use discrete VF levels, similar to those

of Intel’s XScale technology, on a frequency
range from 600 MHz to 400 MHz and a volt-
age range from 1.3 V to 1.1 V. These ranges
comply with Intel’s IXP2400 configurations.
We set the frequency step at 50 MHz and
compute the voltage as in XScale. On the basis
of previous study and current circuit technol-
ogy, we set the VF transition latency between
two adjacent levels to 10 µs. We convert this
delay to stall cycles and insert them into the
simulator.

The hardware required to implement the
DVS policy is trivial. First we need a timer
that signals after a certain number of cycles.
A register suffices. To track ME idle time, we
use an accumulator that counts the number
of ME idle cycles. When the timer signals a
DVS period, the accumulator compares its
result with a preinitialized value, T, to deter-
mine whether there are enough idle cycles in
the past period. T is simply the threshold that
we set; for example, an idle time of 10 per-
cent translates to 2,000 cycles for T in a peri-
od of 20,000 cycles. Figure 10 shows a
schematic diagram of our DVS policy con-
trol mechanism.

42

NETWORK PROCESSORS

IEEE MICRO

Existing work on network processors
Franklin and Wolf developed an analytic performance model that captures a generic net-

work processor’s (NP’s) processing performance and power consumption. The modeled pro-
totypical NP contains several identical multithreaded general-purpose processors clustered
together to share a memory interface. They used Wattch1 and Cacti2 to measure power con-
sumption. Their extended research explored the NP design space and showed the perfor-
mance/power impact of different systems.3 NePSim’s advantage over their model is that we
target a real NP architecture (the IXP1200) and perform accurate cycle-level simulation and
power modeling. We also tried to port network applications so that they could execute in NeP-
Sim as well as in the IXP1200. Therefore, our statistics are more realistic and dependable.

References
1. D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for Architectural-

Level Power Analysis and Optimizations,” Proc. 27th Int’l Symp. Computer
Architecture (ISCA), IEEE CS Press, 2000, pp. 83-94.

2. CACTI, HP-Compaq Western Research Lab, http://research.compaq.com/wrl/
people/jouppi/CACTI.html.

3. M. Franklin and T. Wolf, “Power Considerations in Network Processor Design,”
http://www.ecs.umass.edu/ece/wolf/papers/npw2003.pdf.

0
5

10
15
20
25
30
35
40
45

Id
le

 ti
m

e
(p

er
ce

nt
ag

e)

1 2 3 4
No. of microengines

md4
url
nat
ipfwdr

Figure 9. Average core idle time with differ-
ent numbers of microengines and active
threads (four threads per ME at 464 MHz).

We start the voltage and fre-
quency at 1.3 V and 600
MHz. We set the SRAM and
SDRAM frequencies at 200
MHz and 150 MHz, respec-
tively. Figure 11 shows the
results with the DVS period
set at 15,000, 20,000, and
30,000 cycles and with 10 per-
cent idle time as the threshold.
We chose an interval that is
long enough to accommodate
the VF transition latency. Fig-
ure 11 shows that DVS can
save up to 17 percent of power
consumption with a perfor-
mance loss of less than 6 per-
cent. On average, we achieve
8.1 percent, 7.5 percent, and
7.0 percent power savings
with only 0.5 percent degradation in through-
put for intervals of 15,000, 20,000, and 30,000
cycles, respectively. DVS hardly affects
throughput because the MEs have enough idle
cycles to cover the stall penalties. We also test-
ed using thresholds other than 10 percent and
achieved similar results.

Future work
In addition to NP performance and power

consumption, it is often important to know
the power dissipation in external modules,
such as memories. We are adding power esti-
mation for SRAM and SDRAM modules and
hope to complete this part of the project soon.
Then we will release NePSim with the mem-
ory module power calculation. Current NeP-
Sim source code is available for download at
http://www.cs.ucr.edu/~yluo/nepsim/.

We believe there are many other techniques
for reducing power consumption. For exam-
ple, shutting down MEs during their low-
activity periods could suppress dynamic
power aggressively. However, turning off MEs
might involve a program change, because the
compiler currently premaps each ME to a sub-
set of I/O ports. If the control store is suffi-
ciently large, different versions of a program
can be preloaded and selected to execute on
the fly. Otherwise, the MEs might request a
program change from the StrongARM core,
which could increase delay and power con-
sumption. We are planning to study this.

It would also be interesting to model the
StrongARM core and let it work together with
the six MEs. In addition, the current version
of NePSim is a model for the IXP1200. We
will extend it to incorporate more-advanced
products in the IXP family, such as the
IXP2400 and 2800, thereby facilitating
research on a broader range of NPs. MICRO

43SEPTEMBER–OCTOBER 2004

Microengine

No. of cycles
greater than
threshold ?

Threshold value
of idle cycles

Idle-cycle
accumulator

Timer
control register

Control
signals

Do nothing
No

Yes
Frequency
synthesizerVoltage

regulator

Figure 10. Dynamic voltage scaling (DVS) policy control mechanism.

0

2

4

6

8

10

12

14

16

18

url ipfwdr md4 nat Average

T
hr

ou
gh

pu
t a

nd
 p

ow
er

 r
ed

uc
tio

n
(p

er
ce

nt
ag

e)

Throughput at 15 Kcycles
Power at 15 Kcycles
Throughput at 20 Kcycles
Power at 20 Kcycles
Throughput at 30 Kcycles
Power at 30 Kcycles

Figure 11. Normalized power and performance results when
employing dynamic voltage scaling for the IXP1200 proces-
sor. Power savings is substantial, while performance degra-
dation is insignificant.

Acknowledgments
This research was supported by Intel’s IXA

University Program and National Science
Foundation Grant No. CCR0220096.

References
1. Intel, “IXP1200 Network Processor Family

Hardware Reference Manual,” http://www.
inte l .com/design/network/manuals /
27830309.pdf.

2. M. Franklin and T. Wolf, “Power Considera-
tions in Network Processor Design,” http://
www.ecs.umass.edu/ece/wolf/papers/
npw2003.pdf.

3. “Intel IXP1200 Network Processor Family:
Development Tools User’s Guide,” http://
www.intel.com/design/network/manuals/
IXP1200_devtool.htm.

4. X. Chen, “Utilizing Formal Assertions for
System Design of Network Processors,”
Proc. Design, Automation and Test in
Europe Conf. and Exhibition Designers’
Forum (DATE 04), IEEE CS Press, 2004.

5. M. Huang et al., “L1 Data Cache Decompo-
sition for Energy Efficiency,” Proc. Int’l
Symp. Low Power Electronics and Design
(ISLPED 01), ACM Press, 2001, pp. 10-15.

6. D. Brooks, V. Tiwari, and M. Martonosi,
“Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations,”
Proc. 27th Int’l Symp. Computer Architec-
ture (ISCA), IEEE CS Press, 2000, pp. 83-94.

7. H.-S. Wang et al., “Orion: A Power-
Performance Simulator for Interconnection
Networks,” Proc. 35th Int’l Symp. Micro-
architecture (Micro 35), IEEE CS Press,
2002, pp. 294-305.

8. Y. Luo et al., NePSim: A Network Processor
Simulator with Power Evaluation Framework,
tech. report, Computer Science and Eng.
Dept., University of California, Riverside,
2003, http://www.cs.ucr.edu/index.php/
research/publications.

9. CACTI, HP-Compaq Western Research Lab,
http://research.compaq.com/wrl/people/
jouppi/CACTI.html.

Yan Luo is a PhD candidate in the Comput-
er Science and Engineering Department at the

University of California, Riverside. His
research interests include network processors,
low-power microprocessor architecture, Inter-
net routers, and parallel and distributed pro-
cessing. He has an ME from Huazhong
University of Science and Technology, China,
and is a student member of the IEEE.

Jun Yang is an assistant professor in the Com-
puter Science and Engineering Department
at the University of California, Riverside. Her
research interests include network processors,
low-power microprocessor architecture, and
secure microprocessor designs. Yang has a
PhD in computer science from the Universi-
ty of Arizona. She is a member of the IEEE
and the ACM.

Laxmi N. Bhuyan is a professor of computer
science and engineering at the University of
California, Riverside. His research interests
include network processor architecture, Inter-
net routers, and parallel and distributed pro-
cessing. Bhuyan has a PhD from Wayne State
University. He is a Fellow of the IEEE, the
ACM, and the American Association for the
Advancement of Science.

Li Zhao is a PhD candidate in the Comput-
er Science and Engineering Department at the
University of California, Riverside. Her
research interests include computer architec-
ture, networking software, and performance
evaluation. She has a BS in scientific infor-
mation from Xidian University, China, and
an MS in physics from the Institute of High
Energy Physics, Chinese Academy of Science.
Zhao is a student member of IEEE.

Direct questions and comments about this
article to Yan Luo, Dept. of Computer Sci-
ence and Engineering, University of Califor-
nia, Riverside, CA 92521; yluo@cs.ucr.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

44

NETWORK PROCESSORS

IEEE MICRO

