

Loop Level Analysis of Security and Network
Applications

Dinesh C Suresh, Satya R. Mohanty, Walid A. Najjar, Laxmi N. Bhuyan and Frank Vahid

Department of Computer Science
 University of California, Riverside

Riverside, California, 92521
{dinesh, satya, najjar, bhuyan, vahid}@cs.ucr.edu

Abstract--It has been known that loops constitute the most

executed segments of programs and therefore are the best
candidates for hardware implementation. We present a set of
profiling tools that are specifically dedicated to loop profiling and
do support combined function and loop profiling. One tool relies
on an instruction set simulator and can therefore be augmented
with architecture and micro-architecture features simulation
while the other is based on compile-time instrumentation of gcc
and therefore has no slow down compared to the original
program

Instruction profiling tools can be broadly classified into
two categories – instrumentation based instruction
profilers and simulation based instruction profilers. An
instrumentation based profiler instruments the compiler
to add counters to various basic blocks of the program.
During execution the counter values are written to a
separate file. On the other hand, a simulation based
instruction profiler uses an instruction set simulator to
accomplish instruction profiling. Simulation based
profilers can be further classified into static profilers and
dynamic profilers. In dynamic profiling the instruction
profile is obtained during the execution of the code on an
instruction-set simulator while in static profiling the
execution is written to a trace and the trace is processed
to get instruction counts. For very large applications, the
trace generated by a static profiler can grow to
unmanageable proportions. Even though a dynamic
profiling method is slow compared to the compiler-
based instrumentation approach, a variety of
architectural parameters can be tuned and studied while
a program gets profiled on the simulator.

Index Terms—Loop analysis, profiling, hardware software

partitioning

I. INTRODUCTION

Software programs spend most of the time in a small
fraction of code, a feature known as the “90-10 rule” –
90% of the execution time comes from 10% of the code.
In order to speed up program execution, we need to
identify the critical code that contributes to the bulk of
the execution time. For embedded system applications,
this frequently executed portion of the code is often
made up of a few loops. Besides optimization, mapping
the frequently executed portion to hardware would be an
efficient way of speeding up program execution. For
mapping an application to hardware, knowledge of the
time spent in different portions of the application is
necessary. Profilers like gprof are helpful to the extent of
determining the time spent on function calls. However,
to make judicious hardware/software partitioning
decisions, knowledge of the program execution time at
the granularity of loops is imperative. Instruction
profiling tools can be tuned to provide useful
information regarding the percentage of time spent in
different parts of a program.

In this paper, we present a loop analysis tool set that is
equipped with two different instruction profilers - an
instrumentation based instruction profiler and a
simulation based instruction profiler. We call our toolset
as Frequent Loop Analysis Toolset (FLAT). FLAT
consists of two major tools – FLATC, an
instrumentation based loop analysis tool and FLATSIM,
a simulation based loop analysis tool. We use FLAT to
analyze well-known cryptographic algorithms and
network applications and report the speedup that can be
achieved by mapping time-consuming loops in these
applications to hardware.

 This work was supported in part by NSF Award ITR 0083080

Figure 1: Tool flow for compiler based instruction
profiling

Figure 2 Tool flow for simulation based
instruction profiling

Disassembled
instructions

FLATSIM Simics

Loop & Function
statistics

objdump

Executable

Loop & Function
statistics

objdump

FLATC Disassembled
instructions

Executable

GCC

Basic block

S/w Source

II. RELATED WORK

trace generation. The analyzer code is generated
dynamically and is cached for reuse. ALTO [13]

Harvard Atom Like Tool (HALT [4]) provides a
flexible way to add routines to program produced by the

develops whole-program data flow analysis and code
optimization techniques for link time program
optimization and is targeted to the DEC Alpha
architecture.

SUIF compiler. Users indicate interesting parts of the
program by labeling them with SUIF annotations. Then
Halt looks for these annotations, and inserts function
calls to analysis routines that match the type of the
annotation. Halt ships with a number of useful analysis
routines; users may modify these or supply their own.
Using different analysis routines, Halt provides a
number of hardware simulators, performs branch-stream
analysis, and records statistics for profile-driven
optimizations. Halt and its associated libraries have been
used in projects on branch prediction, code layout,
instruction scheduling, and register allocation. It has
been ported to MIPS and ALPHA processors

Intel’s Vtune [14] performance analyzer collects,
analyzes and displays software performance data from
the program-level down to a specific function, module or
instruction in a developer's source code. Vtune runs on
windows and linux and is targeted for all Intel
processors.

[2], [3] provide a detailed analysis of cryptographic
algorithms. They propose addition of new instructions to
the instruction set in order to speedup the execution of
security applications. In this paper, rather than analyzing
the applications at the instruction level, we study them at
the granularity of loops and functions. We present a
toolset that is dedicated to performing loop-level
analysis of applications. We also examine the
performance benefits associated with mapping the first
four frequent loops or functions of each application to
hardware.

Optimally profiling and Tracing Programs [10] inserts
counters at all nodes in the control flow graph in order to
record the execution count of the basic blocks and the
program. ProfileMe [6] samples instructions as they
move through an out-of-order issue pipeline and reports
statistics like cache miss rates. LooAn [1] is a profiling
tool that gives loop and function level information.
However, since it is a static profiler, trace files scale up
to unmanageable proportions for very large programs.

 SpixTool [15] is an instruction profiling toolset intended

for the SPARC architecture and it consists of the
following two tools – Spix and Spixstat. Spix generates
basic block execution profile; while Spixstat generates
statistics on instruction count, branch behavior, opcode

Shade [12] combines instruction set simulation with
trace generation capability. It uses a user-specified trace
analyzer to control program execution and the extent of

usage, etc. Loop information can be easily deduced from
the tool’s output.

Cacheprof [16] is an execution-driven memory simulator
for the x86 architecture. It annotates each instruction that
reads and writes memory and links a cache simulator
into the resulting executable. Upon execution, the data
references are trapped and sent to the simulator. Besides
producing a procedure-level summary, Cacheprof
reports number of memory references and the number of
misses for each line of the source code.

FLAT is intended to provide loop/function level
information for a wide variety of platforms. FLAT_C
works for all platforms to which the GNU C Compiler
(gcc) has been ported. FLAT_SIM is capable of
producing loop level statistics for a variety of platforms
like x86, Strong ARM, MIPS and SPARC. FLAT_SIM
can produce loop information from the executable even
when the source code is not available.

III. FREQUENT LOOP ANALYSIS TOOL SET (FLAT)
Instruction profiling tools provide information based on
which useful hardware/software partitioning decisions

can be made. Frequent Loop Analysis Tool set (FLAT)
is a profiling tool written in python and it provides the
execution time of a given application at the granularity
of both loops and functions. Loop profiles can be
obtained through two different ways. The first method is
to instrument the compiler to output the frequency of a
loop. The second method is to use an instruction set
simulator to find the execution count of loops. Both
methods have their own advantages and disadvantages.

Table 1: FLAT_C’s output for 3DES application

Loop
 Name

Frequency

 Loop
 Size

Total
Instructions %

<Program> 1 13171 4394609445 100.00
<permute.1> 6051888 357 1792703712 40.79
<doencrypt.1.1> 3025944 51 98175072 2.23
<doencrypt.1> 2689728 262 90442126 2.06
<perminit.1.1.1> 33280 287 1967104 0.04
<perminit.1.1> 32768 331 404672 0.01
<spinit.2.1.1> 2560 136 199680 0.00
<setkey.2.2> 784 262 110176 0.00
<spinit.2.1> 2048 303 95200 0.00
<setkey.2.1> 912 161 86200 0.00

 Functions

Function Name

Frequency

 Loop
 Size

Total
Instructions %

<f> 5379456 387 2001157632 45.54
<permute> 5379456 491 1944000912 44.24
<doencrypt> 336215 321 193996674 4.41
<endes> 336216 487 150288552 3.42
<perminit> 32 475 2379512 0.05
<spinit> 32 591 332845 0.01
<setkey> 56 813 238733 0.01
<main> 8 1158 4588 0.00
<desinit> 1 375 235 0.00
<_init> 0 48 0 0

The instrumentation-based approach is a lot faster while
the simulation-based approach is more effective in
tuning the various architectural aspects of the
application.

During hardware/software partitioning, frequently
executed functions often prove to be the favorite
candidates for hardware mapping. However, a frequently
executed function could have lots of infrequently
executed loops that contribute towards the total
execution time of the function. Since loops perform the
bulk of computation, returns for the silicon real estate
would be maximized if a frequently executed loop of the
program were chosen instead of the frequent function
mentioned above. The output provided by FLAT is
useful in deciding whether a loop or function needs to be
mapped onto hardware. FLAT considers functions as
loops that iterate once for each call. FLAT comprises of
two profiling tools - FLATC and FLATSIM.

FLATC uses the GNU C Compiler to profile the
application for basic block frequencies. The source
program to be compiled is compiled with the “-a”
option. This ensures that a file containing basic block
frequencies is written after execution. FLATC uses the
disassembled instructions to identify the presence of
loops and functions. Every loop in the source program
corresponds to a short backward branch instruction in
the assembly program. Once the loops and function calls
are identified, the percentage execution is determined
from the execution percentage of basic blocks.

FLATSIM uses the Simics [11] instruction set simulator
to do the instruction profiling. Simics™ is a full system
simulation platform, capable of simulating high-end
target systems. Simics can boot and run operating
systems and commercial workloads. It provides a
controlled, deterministic, and fully virtualized
environment for a variety of hardware and software
engineering tasks. Hence, we chose to instrument the
Simics modules to get realistic loop profile estimates.

Simics is not an open source simulator. However, the
source code for the add-on modules is included with the

distribution. The functionality of the simulator can be
extended by modifying the existing modules or by
creating custom modules. One such module that is
supplied with the Simics distribution is the id-splitter
module. The id-splitter module in Simics handles all
cache accesses and redirects them to the instruction or
data cache accordingly. FLAT_SIM relies on getting the
instruction profile from a modified version of the id-
splitter module. The suggested modification to the id-
splitter module is as follows. A tree structure containing
all the loop-addresses is introduced into the id-splitter
module. During execution, if an instruction belongs to
one of the loops, the counter associated with the loop is
incremented. Finally information about loops and
function calls are written to a file. FLAT_SIM analyses
this file and prints out information regarding the loop
execution.

Table 1 shows the output of FLAT for 3DES application.
Each entry in the table contains a loop name, number of
times the loop was called, the static loop size in bytes,
total number of instructions executed in the loop and the
percentage of instruction cycles contributed by the loop.
FLAT maintains a Directed Acyclic Graph (DAG) like
representation for handling loops and functions. Every
loop and function is associated with a name. The loops
and functions are named in a hierarchical fashion. For
example, the loop name <doencrypt.1> in table 1 points
to the first loop in the function called doencrypt. The
first sub-loop of this loop would be named as
<doencrypt.1.1>. The function statistic consists of the
function name, number of times it was called, static size,
total number of instructions executed inside the function
and percentage of time spent in the function.

 FLAT obtains loop information from the disassembled
object code. Hence, if the compiler resolves the
dependencies across threads and schedules the
instructions accordingly, multithreaded applications can
also be profiled effectively.

IV. BENCHMARKS

We analyze an extensive collection of security (AES,
3DES, rc4, rc6, idea, blowfish, seal [21] and sha1 [22])
and network applications (crc, dh, ipchains, drr, nat,
route and md5 - all from Netbench [6]).
DES [20] was published in 1977 and it is based on
IBM's work on Lucifer. It uses a 56-bit key to generate
sixteen 48 bit per-round keys, by taking a different 48-
bit subset of the 56 bits for each of the keys. The 64-bit
input is subjected to a series of permutations and the
encryption of a given block also depends on the previous

encrypted block. 3-DES (pronounced Triple DES) is an
extension to DES, it performs DES three times using
three different unrelated keys and achieves a high level
of security.

 IDEA [18] is best known as a component of Pretty
Good Privacy (PGP). It is a block cipher that uses a 128-
bit length key to encrypt successive 64-bit blocks of
plaintext. The procedure is quite complicated using sub
keys generated from the key to carry out a series of
modular arithmetic and XOR operations on segments of
the 64-bit plaintext block. The encryption scheme uses a
total of fifty-two 16-bit sub keys. The cipher Blowfish
[19] is a symmetric block cipher that takes a variable
length key from 32 to 448 bits and is considered an
alternative to DES or IDEA. RC4 [23] is a stream cipher
algorithm devised by Ron Rivest. It uses a variable
length key from 1 to 256 bytes to initialize a 256-byte
state table. This table is used for generating pseudo-
random bytes and then a pseudo-random stream that is
XORed with the plaintext to give the cipher text. The
key is often limited to 40 bits but can be as much as
2048 bits. RC6 [24] is a cipher first introduced by the
RSA Labs. Circular shifts and a quadratic function are
some nonlinear elements that provide security to this
cipher. It uses 44 keys each 32 bits long. Rijndael is a
block cipher invented by Joan Daemen and Vincent
Rijmen and it is the current AES [17] standard. It has a
variable block and key length, both of which can be
multiples of 32 bits.

 In this paper we also focus attention on Netbench
applications. The Netbench applications comprise of
about 9 applications that are representative of
commercial applications for network processors. There
are two micro-level programs CRC: the CRC-32
checksum calculation program and TL, which is the
Table Lookup algorithm for radix tree routing tables.
There are four IP-Level programs, so named because
they base decisions on source or destination IP of the
packet. Route, NAT, DRR and IPCHAINS constitute the
IP-Level programs. Route implements the table lookup
along with the Internet checksum. DRR (Deficit Round
Robin) is a scheduling method used in network switches
and it is characterized by the presence of different
queues for all the different connections through the
routers. Network Address Translation (NAT) operates
on a router and translates private addresses in a network
to legal addresses before forwarding the packets onto
another network. IPCHAINS is a firewall application
that filters incoming IP packets according to some well-
defined policies.

To demonstrate the usefulness of our profiling tools we
consider a System on a Configurable Platform (SoCP)
that consists of an FPGA with an embedded CPU.
Examples of such system include the Xilinx Virtex II
Pro [8], the Altera Excalibur [7] and the Triscend A7 [9].

Finally there are some application level programs with
intensive processing requirements. DH (Diffie-Hellman)
is a public key based encryption/decryption algorithm
and is widely deployed in several Virtual Private
Networks.

MD5 (Message Digest Algorithm) creates a secure
signature for each outgoing packet. The signature is
verified at the destination and packets without matching
signature are discarded.

Table 2. Percentage Execution for the first four loops
of security/network applications

V. ANALYSIS OF PROFILE DATA
Table 2 shows the percentage execution time for the first
four most frequent loops of security and network
applications. We find that the first four frequent loops
take up roughly 20% of the code size and contribute
nearly 88% towards the total execution time. Compile-
time optimizations, algorithmic improvements and
hardware mapping are the different alternatives available
to speedup the application. Normally, large code size
often proves to be a hindrance in hardware mapping as it
consumes a lot of programmer hours. Since the frequent
loops take up a fraction of the code size and still provide
a major contribution towards the execution time, they
are ideal candidates for hardware mapping. Figure 3
shows the percentage of the total execution time spent in
the first four loops of cryptographic and network
applications.

Table 3. Overall Speedup for the first four loops of
security/network applications

O
co
im
ob
se
on
in
co
S

So

C

F

w
ex
C
H
m
co

Benchmark

Loop1

Loop2

Loop3

Loop4

AES 3.75 8.15 15.9 15.9
Blowfish 2.41 5.59 8.07 9.48
CRC 5.61 13.78 14.07 14.17
DES 1.75 5.36 6.9 8.89
DH 1.5 1.88 2.45 2.82
DRR 1.21 1.36 1.56 1.77
IDEA 1.83 4.36 5.9 8.12
Ipchains 2.13 3.81 4.57 5.17
MD5 1.43 2.14 3.57 4.03
NAT 1.48 2.02 3.18 4.23
RC4 9.1 9.1 9.11 9.11
RC6 5.32 5.72 5.72 5.72
Route 2.01 2.98 3.55 4.31
Seal 2.16 6.92 7.43 7.86
SHA1 3.44 8.69 12.98 16.21
Average 2.19 3.61 4.67 5.4

Benchmark

Loop1

Loop2

Loop3

Loop4

AES 77.79 15.32 6.34 0.00
Blowfish 62.06 25.10 5.82 1.96
CRC 87.23 11.20 0.16 0.06
DES 45.54 40.79 4.41 3.45
DH 35.39 14.31 13.12 5.66
DRR 18.08 10.15 10.05 7.74
IDEA 48.10 33.68 6.36 4.92
Ipchains 56.41 21.88 4.63 2.7
MD5 32.17 24.47 19.77 3.38
NAT 34.24 19.32 19.18 8.30
RC4 94.47 0.01 0.01 0.00
RC6 86.19 1.37 0.00 0.00
Route 53.45 17.10 5.63 5.29
Seal 56.97 33.83 1.05 0.78
SHA1 75.31 18.61 4.04 1.62
Average 57.56 19.14 6.71 3.06
n such systems it is possible to migrate the most
mmonly executed code segment onto hardware by
plementing it as a circuit on the FPGA. The obvious
jective is the speed-up that can be achieved. In this
ction we describe an analysis of this speed-up based
 the results obtained from the profiling tool. Note that
 this analysis we will not assume any overlap in
mputation between the CPU and the FPGA on the

oCP. This is a pessimistic but fair assumption.

CP time = CPU time + FPGA time

PU time = SW_only time – SW_Loop time

PGA time = SW_Loop time/HW_speedup

here SW_only time is the time from a software only
ecution and the SW_Loop time is the time taken on a

PU by the loop that will be mapped to hardware. The
W_speedup is the speedup expected on the loop by
apping it to hardware. From past results [1] we have
mputed this speedup to be 17 in number of cycles.

0
10
20
30
40
50
60
70
80
90

100

es sh crc es dh drr ea ins d5 na
t

rc4 rc6 ute ea
l a1 ge

%
 e

xe
cu

tio
n Loop1

Loop2

Loop3

Loop4

s

Ho
tha
tha

Fo
HW

Th
ove

No
exe
dif
a
blo

wfi d id
ipc

ha m ro s sh
av

era

nchmarkbeFigure 3. Percentage execution for the first 4 loops of security and network application

cumulative speedup for first 4 loops

0.00

5.00

10.00

15.00

20.00

ae
s

blo
wfis

h crc de
s dh drr ide

a

ipc
ha

ins md5 na
t

rc4 rc6 rou
te

se
al

sh
a1

av
era

ge

benchmark

Sp
ee

du
p

loop1 loop2 loop3 loop4

k
Figure 4. Cumulative speedups for the first 4 loops of each benchmar
wever, our experience shows that the clock frequency
t can be obtained on an FPGA is about 10 times lower
n a CPU frequency.

r the remainder of this analysis we will assume that
_speedup = 1.7.

e overall speedup S is the ratio of the SW_only time
r the SoCP time.

ution%Loop_exec.
.meSW_only ti

meSW_Loop ti -
 S

1.7
time SW_Loop time SW_Loop- timeSW_only

timeSW_only
time) FPGA time (CPU

timeSW_only S

−
=

+
=

+
=

+
=

5881
1

71
11

1

te that the speedup is a direct function of the loop
cution time. Figure 4 shows the speed-up values for

ferent applications. Applications like RC4, CRC,

RC6, AES and sha1 have significantly higher speedups
than the rest of the applications. For these applications,
the first frequent loop/functions contributes more than
75% of the execution time. Roughly 90% of the
execution time is contributed by the first two loops of
security applications and the first 3 loops of the network
applications. On an average, the first loop contributes
about 58% of the total execution time while the first 2
frequent loops contribute nearly 78% of the total
execution time.

In our current implementation, the loop names in the
output of FLAT correspond to the high-level source code
only when the program is not optimized. Possible future
work includes extending FLAT to provide loop-level
analysis for optimized applications.

VI CONCLUSION

In this paper, we perform loop-level analysis of a few
popular cryptographic and network applications. We
propose a toolset that identifies the time consuming
portions of these programs at the granularity of loops as
well as functions. We report the possible speed-ups that
can be realized by mapping the first four frequent loops
to hardware. Our results support a strong case for
hardware/software co-design of these applications.

REFERENCES
[1] J. Villarreal, D. Suresh, G. Stitt, W. Najjar, F. Vahid
“Improving software performance through configurable
logic”, Design Automation for Embedded systems,
November 2002
[2] L. Wu, C. Weaver and T. Austin, “Cryptomaniac: A
Fast flexible architecture for secure communication”,
International Symposium on Computer Architecture,
June 2001
[3] J. Burke, J. McDonald and T. Austin, “Architectural
Support for Fast Symmetric-Key Cryptography”,
Proceedings of ASPLOS-IX, October 2000
[4] C. Young, “The Harvard Atom like Tool Manual”,
http://citeseer.nj.nec.com/121315.html
[5] J. Dean, J. Hicks, C. Waldspurger, W. Weihl, G.
Chrysos, “ProfileMe: Hardware Support for Instruction-
Level Profiling on Out-of-Order Processors”,
International Symposium on Micro architecture, 1997
[6] G. Memik, W.H. Smith, and W. Hu, “NetBench: A
Benchmarking Suite for Network Processors”, In
Proceedings of International Conference on Computer-
Aided Design (ICCAD), pp. 39-42, Nov. 2001, San Jose
/ CA
[7] Altera Corporation, “Altera Excalibur”,
http://www.altera.com/products/devices/excalibur/exc-
index.html

[8] Xilinx Inc., “Xilinx virtex II pro handbook”,
http://www.xilinx.com/publications/products/v2pro/hand
book/
[9] Triscend corp., “Triscend A-7 Chip”,
http://www.triscend.com/products/a7.htm
[10] T. Ball and J. Larus, “Optimally Profiling and
Tracing Programs”, ACM Transactions on Programming
Languages and Systems, 1994
[11] Simics Simulator. http://www.simics.net
[12] SpixTools.
http://www.sun.com/microelectronics/shade/
[13] R. Muth, S. Debray, S. Watterson and K.
Bosschere, ALTO : A Link-Time Optimizer for the
Compaq Alpha, Software Practice and Experience, Jan.
2001
[14] Intel’s Vtune,

http://www.intel.com/software/products/vtune/
[15] Shade Kit,

http://www.sunlabs.com/techrep/1993/abstract-
12.html

[16] cacheprof. http://www.cacheprof.org
[17] AES algorithm,
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/
[18] IDEA encryption,
http://www.finecrypt.net/idea.html.
[19] Blowfish Encryption,
http://www.counterpane.com/blowfish.html
[20] DES Algorithm, http://www.aci.net/kalliste/des.htm
[21] H. Handschuh and H. Gilbert, “ Cryptanalysis of the
SEAL Encryption Algorithm”, Fast Software Encrytion,
vol. 1267 of Lecture Notes in Computer Science, pp. 1-
12, Springer-Verlag, 1997
[22] Sha1 Algorithm,
http://www.faqs.org/rfcs/rfc3174.html
[23] RC4 Algorithm,
http://burtleburtle.net/bob/rand/isaac.html
[24] RC6 Algorithm,
http://www.rsasecurity.com/rsalabs/rc6/

http://citeseer.nj.nec.com/121315.html
http://www.altera.com/products/devices/excalibur/exc-index.html
http://www.altera.com/products/devices/excalibur/exc-index.html
http://www.xilinx.com/publications/products/v2pro/handbook/
http://www.xilinx.com/publications/products/v2pro/handbook/
http://www.triscend.com/products/a7.htm
http://www.simics.net/
http://www.sun.com/microelectronics/shade/
http://www.intel.com/software/products/vtune/
http://www.sunlabs.com/techrep/1993/abstract-12.html
http://www.sunlabs.com/techrep/1993/abstract-12.html
http://www.cacheprof.org/
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/
http://www.finecrypt.net/idea.html
http://www.counterpane.com/blowfish.html
http://www.aci.net/kalliste/des.htm
http://www.faqs.org/rfcs/rfc3174.html
http://burtleburtle.net/bob/rand/isaac.html
http://www.rsasecurity.com/rsalabs/rc6/

	INTRODUCTION
	Related Work
	Optimally profiling and Tracing Programs [10] inserts counters at all nodes in the control flow graph in order to record the execution count of the basic blocks and the program. ProfileMe [6] samples instructions as they move through an out-of-order issu

	Frequent Loop Analysis tool SET (FLAT)
	Benchmarks
	Analysis of profile data
	
	FPGA time = SW_Loop time/HW_speedup

	VI Conclusion

