
LATA: A Latency and Throughput-Aware Packet
Processing System∗

Jilong Kuang and Laxmi Bhuyan
Computer Science & Engineering Department

Unviersity of California, Riverside
900 University Ave, Riverside, CA 92521, USA

{jkuang, bhuyan}@cs.ucr.edu

ABSTRACT
Current packet processing systems only aim at producing high
throughput without considering packet latency reduction. For
many real-time embedded network applications, it is essential that
the processing time not exceed a given threshold. In this pa-
per, we propose LATA, a LAtency and Throughput-Aware packet
processing system for multicore architectures. Based on parallel
pipeline core topology, LATA can satisfy the latency constraint
and produce high throughput by exploiting fine-grained task-level
parallelism. We implement LATA on an Intel machine with two
Quad-Core Xeon E5335 processors and compare it with four other
systems (Parallel, Greedy, Random and Bipar) for six network
applications. LATA exhibits an average of 36.5% reduction of la-
tency and a maximum of 62.2% reduction of latency for URL over
Random with comparable throughput performance.
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1. INTRODUCTION
The explosive growth of network bandwidth requires orders-of-

magnitude increase in packet processing power. The advent of
commodity multicore platforms has opened a new era of computing
for network applications to take advantage of these low-cost ma-
chines. More and more network packet processing systems have
been developed on such platforms ranging from general-purpose
processors (e.g., Intel’s Xeon [2]) to network processors (e.g., In-
tel’s IXP platform [1]) and programmable logic devices (e.g., NetF-
PGA [5]). To exploit available parallelism for better throughput,
these systems usually take one of the following three forms:

1. Spatial parallelism, where multiple concurrent packets are
processed in different processors independently. Typical ex-
amples can be found in early work for TCP (Transmission
Control Protocol) parallelism [9] and recent work in scalable
DPI (Deep Packet Inspection) design [15].
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2. Temporal parallelism (pipelining), where multiple processors
are scheduled into a pipeline to overlap periodic executions
from different threads. It has been widely adopted in network
processors, including Shangri-La [10], auto-partitioning [11],
statistical approach [18] and Greedy [25].

3. Hybrid parallelism, which integrates both spatiality and tem-
porality to enjoy the advantages from both sides. It forms
a parallel pipeline core topology, where each stage contains
multiple parallel cores, such as Random [23] and Bipar [26].

Although the above approaches aim to maximize the through-
put, none of them have considered latency reduction issue in packet
processing because they employ coarse-grained packet-level paral-
lelism. As emerging latency-sensitive applications become popu-
lar, such as online gaming, VoIP, fast IP-lookup and real-time DPI,
latency plays a more important role than throughput [20]. There-
fore, it is necessary to design a packet processing system that can
attain high throughput under given latency constraints.

Traditional task scheduling algorithms, such as list-based schedul-
ing [8] and clustering-based scheduling [24], can reduce program
latency by exploiting fine-grained task-level parallelism. However,
without pipelining, they suffer from significant throughput dete-
rioration when executing periodical packet processing tasks. Pa-
pers [27] and [17] have presented some research results on reducing
protocol latency for high-speed gateways and telecommunication
systems based on hybrid parallelism. Developing a packet pro-
cessing system that considers both latency and throughput for
multicore architectures is both interesting and challenging.

In this paper, we propose LATA, a LAtency and Throughput-
Aware packet processing system for multicore architectures. It
adopts hybrid parallelism with parallel pipeline core topology in
fine-grained task level to achieve low latency and high throughput.
We accomplish the above goal through the following three steps.
First, we design a list-based pipeline scheduling algorithm from the
task graph. Second, we apply a deterministic search-based refine-
ment process to reduce latency and improve throughput through
local adjustment. Third, we devise a cache-aware resource map-
ping scheme to map the program onto a real machine.

To the best of our knowledge, LATA is the first to consider both
latency and throughput in packet processing systems. We imple-
ment LATA on an Intel machine with two Quad-Core Xeon E5335
processors and conduct extensive experiments to show its better
performance over other systems such as Parallel [9], Greedy [25],
Random [23] and Bipar [26]. Based on six real packet process-
ing applications chosen from NetBench [19] and PacketBench [21],
LATA exhibits an average of 36.5% reduction of latency across all
applications without substantially degrading the throughput. It
shows a maximum of 62.2% reduction of latency for URL applica-
tion over Random with comparable throughput performance.

The rest of this paper is organized as follows. Section 2 intro-
duces LATA system design. Section 3 presents LATA schedul-
ing, refinement and mapping algorithms. Section 4 describes the



experiment framework. The performance evaluation is shown in
Section 5 and Section 6 concludes this paper.

2. LATA SYSTEM DESIGN
Figure 1 shows LATA’s system design flowchart. Given an ap-

plication, we first generate its corresponding task graph with both
computation and communication information. Then, we proceed
in a three-step procedure to schedule and map the task graph ac-
cording to our novel design. Last, we deploy the program onto a
real multicore machine to obtain its performance result.
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Figure 1: LATA system design flowchart.

2.1 Program Representation
We use program dependence graph (PDG) to represent a pro-

gram as shown in Figure 2(a). PDG can also be called task graph,
which is a weighted directed acyclic graph (DAG) defined by tu-
ple G=(V, E, C, T ), where V ={ni,i=1:v} is the set of nodes and
v=|V |, E={ei,j=<ni, nj>} is the set of communication edges and
e=|E|. Each node represents a task and each edge represents a
communication from one task to the other. C is the set of edge
communication times and T is the set of node computation times.
ci,j is the communication time on edge ei,j and ti is the computa-
tion time on node ni [14].

We assume the DAG has a single starting point denoted by head
node nhead and a single ending point denoted by end node nend.
As an illustration in Figure 2(a), each node represents a basic
block or a first-level loop in the program, which constitutes the
tasks to be scheduled. Although the computation time for each
node is easy to obtain (e.g., by inserting timers in the code), the
communication time for multicore architectures is hard to measure
due to the memory hierarchy. We address this issue next.

2.2 Communication Measurement
We can not accurately calculate the communication time be-

tween two cores in a multicore architecture like Figure 8 unless
we know the exact location of the cores. In LATA design, we
use the average communication cost based on data cache access
time, as given in Equations 1 and 2. Commavg means the av-
erage communication cost to transfer a unit data set, which can
be approximated by system memory latencies (L1, L2 and main
memory access time) and program data cache performances (L1
and L2 cache hit rate). DataSize refers to the transferred data
set size between two communicating tasks.

Comm = Commavg ×DataSize (1)

Commavg = TL1 ×HitL1 + TL2 × (1−HitL1)×HitL2

+TMEM × (1−HitL1)× (1−HitL2) (2)

2.3 Problem Statement
We define latency as the schedule length of a program and

throughput as the system throughput. The problem statement
is: given the latency constraint L0, schedule a program in parallel
pipeline core topology so as to maximize the throughput Th.

The aim is to rearrange the tasks shown in Figure 2(a) into the
parallel pipeline task graph shown in Figure 2(b), so that the total
execution time T1 + T2 + T3 + T4 is minimized while maintaining
the throughput as high as possible. As we know, the throughput
can be calculated by the inverse of the longest stage time 1

Tmax
in

pipelining. Thus, we form our objective function in Equation 3,
where L is the scheduled latency.

Maximize Th =
1

Tmax
(s.t. L ≤ L0) (3)

2.4 DAG Generation
As shown in Figure 1, LATA’s system design consists of DAG

generation, LATA scheduling, refinement and mapping, and fi-
nally implementation and evaluation. We briefly explain the DAG
generation in this section and defer other parts to the following
sections. To generate the DAG, we first convert the original C
program into the SUIF control flow graph (CFG) [7]. For the ease
of dependency analysis, we include all the functions of an appli-
cation into one single file. After that, we write a Machine SUIF
pass [4] to extract the PDG following Ferrante’s algorithm based
on both control and data flow information [13]. Finally, by using
the Halt library in Machine SUIF to instrument source code, we
profile the program in the task level for both the computation time
and communication time.

To measure the computation time, we feed the program with
continuous traffic traces to obtain the average execution time and
frequency for each task. To measure the communication time, we
first use LMbench [3] to get the L1, L2 and main memory access
latencies. Then, we use SUIF/machine SUIF compilers to profile
the variable liveness set at the entry of each basic block to measure
the transferred data set size. Finally, we measure the program L1
and L2 data cache hit rate by PAPI [6]. After collecting all these
data, we can get the communication time following Equation 2.

3. LATA SCHEDULING, REFINEMENT AND
MAPPING

3.1 List-based Pipeline Scheduling Algorithm
LATA constructs the parallel pipeline topology based on tradi-

tional list scheduling algorithm, which is effective in both perfor-
mance and complexity [16]. Given a DAG, we define node priority
based on the computation top level assuming the same unit com-
putation time for each node. According to [22], the computation
top level of ni is the length of the longest path ending in ni, ex-
cluding ti and all communication time. The purpose of assuming
the same unit computation time is to find out all task-level par-
allelism, since nodes in the same level are independent and hence
can be scheduled in parallel. The head node nhead belongs to level
−1. The level of a certain node depends on the highest level among
its predecessors. If its highest level predecessor belongs to level i,
then that node belongs to level i+1.
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Figure 2: Parallel pipeline scheduling from a DAG.
We define ready nodes as those nodes whose predecessors have

already been scheduled. Therefore, a ready node can be safely
scheduled next. LATA starts off by putting the head node into the
list, and then iteratively attaches ready nodes in the task graph to
the last nodes in the list. This step guarantees that nodes in the
list are sorted according to their priorities.

After the list is constructed, LATA schedules nodes with the
same priority into the same pipeline stage in parallel. Each par-
allel node takes up one processor and we finally obtain a parallel
pipeline topology. In this way, latency can be reduced by hiding
the computation time of less expensive tasks. Figure 2(b) shows
the parallel pipeline scheduling from Figure 2(a).

In the parallel pipeline topology, we denote a sequential section
as a stage with only sequential tasks, such as S1 and S4. Similarly,
a parallel section refers to a stage with parallel tasks, such as S2



and S3. We define communication critical path (CCP) as the com-
munication time between two stages, where CCPi=max{ci,j}(ni∈
Vi and nj∈Vi+1). The complexity of this step comes from 1) prior-
ity assignment, which is O(V +E) according to [22], 2) a precedence
order among the tasks and 3) CCP calculation. Mergesort with
a complexity of O(V logV ) can be used to order the nodes. The
complexity associated with calculating CCP is simply O(S·E). In
conclusion, the complexity is O(V logV +S·E).
3.2 Search-based Refinement Process

This step focuses on iteratively finding a better scheduling topol-
ogy by local adjustment of tasks in two phases. The first phase
aims at reducing latency and the second phase aims at improv-
ing throughput. Although optimizing task scheduling problem is
NP-complete in general [12], our heuristic adopts greedy algorithm
and works well in practice with low time complexity.
3.2.1 Latency Reduction

Latency can be reduced by reducing either computation time or
communication time. Because computation dominates the overall
execution time for most packet processing applications running on
multicore architectures, we prioritize computation reduction in de-
signing LATA. Hence, LATA first applies latency hiding to reduce
computation time. Then, CCP elimination and CCP reduction
are used to reduce communication time.

Computation reduction: We define critical node as the node
in a pipeline stage which dominates the computation time. Then,
Latency hiding can be defined as a technique that places a critical
node from one stage to one of its adjacent stages without violating
dependencies, so that its computation time is shadowed by the
other critical node in the new stage. Backward hiding (BaH) refers
to placing a critical node into its precedent stage. Forward hiding
(FoH) refers to placing a critical node into its following stage.

Figure 3 illustrates two cases of latency hiding, where the node
length reflects the computation time. For all the figures shown in
this section, bold lines between two stages represent CCPs. Fig-
ure 3(a) is the same as Figure 2(b). In Figure 3(b), we place E
into its precedent stage with B, where the computation time of E
is shadowed by D. In Figure 3(c), E is placed into its following
stage and E’s computation time is shadowed by G.
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Figure 3: Latency hiding on node E.

For each critical node, we test whether we can place it into one
of its two adjacent stages without violating dependencies or in-
creasing the latency. To break the tie in some cases, we favor the
stage with more latency reduction. If both stages happen to re-
duce the same amount of latency, we favor BaH over FoH. This
heuristic increases chances of more potential latency reduction in
future iterations. The complexity is O(S·E2) for each iteration,
because we have to update the CCP and latency for each attempt,
which results in O(E2). The total complexity is O(V ·S·E2) after
O(V ) iterations in this step.

Communication reduction: There are two techniques in com-
munication reduction, namely CCP elimination and CCP reduc-
tion. CCP elimination is to eliminate communication time by
combining two adjacent stages into one. If every node has only
one predecessor in a certain stage, we can attach nodes in that
stage to their predecessors in the precedent stage.

As shown in Figure 4, the first elimination combines the last

two stages together. G is attached after F , since F is the only
predecessor of G in Figure 2(a). The second elimination shown in
the figure combines the last two stages again. This time, we attach
E to B and FG to C. From Figure 4(c) we see that two CCPs
haven been eliminated from the original pipeline scheduling, which
results in the latency reduction by 6.

CCP reduction is to reduce the CCP weight by switching a node
associated with the current CCP to one of its adjacent stages.
Figure 5 shows two reduction techniques BaS and FoS. Backward
switch (BaS) refers to switching a node backward to its precedent
stage. Forward switch (FoS) refers to switching a node forward
to its following stage. For each CCP, we consider the two nodes
associated with it. Both BaS and FoS are tested on the task in
the two nodes. If any latency reduction can be obtained, we take
that action. To break the tie in some cases, we favor the one with
more CCP reduction. In case of equal CCP reduction, we choose
BaS rather than FoS due to the same reason as in latency hiding.

In Figure 5(b), E is switched backward to B, so communication
time between B and E is eliminated, and communication time be-
tween C and F becomes the new CCP with less weight. Figure 5(c)
shows the case where B is switched forward to E. Similarly, we
see a decreased CCP between the two stages.

As we decrease the latency, Tmax will possibly increase, which
is unfavorable for the throughput according to Equation 3. So, for
each CCP, whether we apply CCP reduction or CCP elimination
is decided by Q, a beneficial ratio defined by Q= ∆L

∆Th
. We start

off by selecting the biggest CCP. Then both techniques are tested
to get the ratio Q. We take action on the one whose resulting Q is
larger, which guarantees minimal throughput sacrifice. This pro-
cess is iteratively executed until the latency constraint is achieved.
The complexity for both techniques is O(E·V ) in each iteration.
Therefore, the total complexity is O(E2·V ) after O(E) iterations.
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3.2.2 Throughput Improvement
So far, we have reduced the latency by various techniques. In

this section, we focus on improving throughput without violating
the latency constraint. According to Equation 3, we can improve
throughput by reducing Tmax through decomposition. During the
previous latency reduction process, chances are that many nodes
are comprised of several tasks. If a node with Tmax consists of
more than one task, it can be decomposed into two separate nodes
to reduce the bottleneck stage time Tmax.

We define decomposition as to decompose one node with multiple
tasks into two separate nodes without violating the dependencies.
There are four decomposition techniques depending on how the
two decomposed nodes are located as shown in Figure 6.

• SeD (Sequential Decomposition): Decompose two tasks from
one processor into two adjacent tasks in different processors
in a sequential section.

• PaD (Parallel Decomposition): Decompose two tasks from
one processor into two parallel tasks in different processors
in a parallel section.

• BaD (Backward Decomposition): Decompose two tasks from
one processor into one task in the current section and the
other in the precedent section.



• FoD (Forward Decomposition): Decompose two tasks from
one processor into one task in the current section and the
other in the following section.

We proceed the refinement process by iteratively applying the
decomposition on current Tmax node until no more throughput
gain can be made. During each iteration, we first locate the node
where Tmax comes from. Then, for each task within that node, we
attempt to apply the four decomposition techniques. After record-
ing all possible decomposition points and corresponding techniques
where positive results appear, we choose the task where the reduc-
tion of Tmax is maximized as the potential decomposition point.
If the latency constraint is not violated, we take that action.

The complexity is O(V 2) for each iteration and there are O(V )
iterations. Hence, the overall complexity is O(V 3).
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Figure 6: Illustration of four decomposition techniques. Thick
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3.3 Cache-Aware Resource Mapping
3.3.1 Pre-mapping

The first step, pre-mapping, assigns a pre-defined number of vir-
tual processors (8 in LATA) to scheduled nodes, considering both
computation time balancing and communication time minimiza-
tion. First, we check all parallel sections to see if we can combine
two independent parallel nodes into one without increasing the
latency nor reducing the throughput. After this, if we still end
up with more scheduled nodes than real nodes, we iteratively bi-
partition the pipeline into two parts with the cutting point being
the minimal CCP. This guarantees a minimal communication over-
head [26]. For each bipartition step, we assign virtual processors
in proportion to the workload in each portion. With respect to
workload, we refer to the total computation time of all the tasks
in that stage. At the same time, we avoid assigning more than one
virtual processor to a single task.

This recursive algorithm terminates when 1) there is only one
virtual processor left unmapped or 2) there is only one stage left
with extra virtual processors. In the first case, we assign all the
remaining tasks into that virtual processor. In the second case,
we assign all the remaining virtual processors into that stage, each
virtual processor taking a fair share of workload by round-robin.

3.3.2 Real Mapping
The second step, real mapping, addresses specific task-to-core

mapping. Figure 7(a) shows the tree structure of the processing
units (PUs) on Xeon chip. From bottom up, a group of two cores
shares the same last level cache (L2). Two of these groups (4 cores)
share the same socket (S1 or S2). Two of these sockets (8 cores)
share the same chip. Obviously, the communication cost between
cores is asymmetric as illustrated by the different thickness of the
curves in Figure 7(a). As a result, we can take advantage of the
tree hierarchy to implement a cache-aware resource mapping.

First, we extract all the communication edges out of the sched-
uled topology and sort those edges in decreasing order. Figure 7(b)
shows a sample scheduling topology after pre-mapping, where all
the arrows represent the communication time. The thicker the
arrow, the more time-consuming the communication. Second, we
start off by picking the most time-consuming edge and then assign
the two associated nodes to nodes with minimal communication

cost. In our example, A and C are picked first and are assigned
to C0 and C2, respectively. Third, we iteratively apply the same
greedy algorithm until all the nodes are mapped to real cores as
shown in Figure 7(c). During each iteration, we just pick the
thickest edge out of all the remaining edges and assign the un-
mapped nodes with the cores that incur the least communication
cost among all the unmapped cores.

When the real system provides more cores than the original
scheduled topology, we simply apply real mapping first and then
put extra cores to the bottleneck stage for packet-level parallelism.
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Figure 7: The hierarchy of processing units (PUs) on Xeon

chip with communication asymmetry and illustration of cache-

aware mapping.
The complexity in this section is dominated by pre-mapping pro-

cess. Due to the bipartitioning, there are O(logS) iterations. For
each iteration, the complexity is simply O(V logV ), which is from
the sorting algorithm. Thus, the total complexity is O(V logV ·logS)
in the algorithm. Considering the first two steps in LATA system
design, we conclude that LATA has a total time complexity of
O(V 3+V ·E2·S). Since LATA is designed off-line, this complexity
is acceptable for packet processing systems.

4. EXPERIMENT FRAMEWORK
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We implement and evaluate LATA along with four other systems
(Parallel [9], Greedy [25], Random [23] and Bipar [26]) to show its
performance advantage in both latency and throughput. Latency
is measured by the average execution time of one packet in mi-
croseconds (usec) and throughput is measured by million packets
per second (mpps).

We build our LATA packet processing system on a vendor mul-
ticore machine as shown in Figure 8. The target platform, an Intel
Clovertown machine, consists of two sockets. Each socket has a
Quad-Core Xeon E5335 processor with two cores sharing a 4MB
L2 cache. The L1, L2 and main memory access latencies turn out
to be 3, 14 and 217 CPU cycles, respectively, as measured by LM-
bench [3]. Figure 9 illustrates the overall system design. LATA
assumes a single incoming and outgoing queue. The central part
consists of an 8-core machine organized into a parallel pipeline core
topology to exploit both spatial and temporal parallelism. The
hardware configuration is set by default as an 8-core machine with
instruction cache up to 4k instructions. The instruction cache size
is an important parameter in partitioning programs and is used
when we compare LATA with other Network Processor (NP) sys-
tems, whose processing engine has limited memory [1]. Our system
is running Linux-2.6.18 OS and we use Pthread libraries to syn-
chronize different tasks.



Six applications are chosen from NetBench [19] and Packet-
Bench [21], including five IP-level programs (Flow, IPv4-trie, Route,
DRR and IPchains) and one application-level program (URL).
Their functionalities and code sizes (the number of instructions)
are listed in Table 1. Our selection of applications is based on
the following three metrics: 1) code size should be large; 2) ap-
plications should be representative; and 3) applications should be
parallelized. The packet trace is from NetBench with 10, 000 pack-
ets. The routing table used for IPv4-trie is MAE-WEST [21] and
the routing table size for DRR, IPchains and Route is set to 128
by default. We scale URL’s results by a factor of 0.01 due to figure
space limitations. For LATA, we assume the latency constraint is
75% of the sequential execution time for each application.

Table 1: Packet processing applications.
Application Functionality Code Size

URL URL-based switching 1428
Flow Flow classification 3190

IPv4-trie IPv4 routing based on trie 4596
Route IPv4 routing based on radix 6600
DRR Deficit-round robin scheduling 7633

IPchains Firewall based on IP source 14735

We classify the four systems into two groups according to the
form of parallelism. In the first group, LATA is compared with
Parallel system (spatial parallelism), where every processor in-
dependently executes different packets in parallel as in [9]. No
memory constraint is considered in this group. We also imple-
ment a list scheduling algorithm (List) called HLFET (Highest
Levels First with Estimated Times) [8] as a reference for the best
achievable latency. In the second group, we compare LATA with
three NP systems based on pipelining (temporal parallelism) as
in Greedy [25] and parallel pipelining (hybrid parallelism) as in
Random [23] and Bipar [26]. These systems have limited memory
constraints for each processor.

5. PERFORMANCE EVALUATION
5.1 Comparison with Parallel System
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Figures 10 and 11 show the latency and throughput for six ap-
plications by LATA, Parallel and List. We observe that Parallel
suffers from high latency due to its sequential execution of tasks.
Compared with Parallel, LATA reduces the latency by an average
of 34.2%. Particulary, for URL, LATA achieves the maximal la-
tency reduction of 62.2%. In addition, LATA’s throughput is close
to that of Parallel in spite of the 75% latency constraint. This
is because LATA is capable of optimizing its parallel pipeline core
topology to produce good throughput. With respect to List, which
is designed to produce the lowest latency, LATA actually matches

its latency in most cases by aggressively exploiting task-level par-
allelism. Furthermore, LATA outperforms List in throughput by
an average of 41.0% and a maximum of 56.7% for Route.

5.2 Comparison with Three NP Systems
Figures 12 and 13 exhibit the latency and throughput for the

three NP systems. Except LATA, all other systems adopt packet-
level parallelism, which suffer from high latency. The slightly lower
latency by Bipar and Greedy over Random comes from less com-
munication overhead due to shorter pipeline length. LATA, on the
other hand, exposes a substantial latency decrease by an average
of 37.3% and maximum of 62.2% for URL compared with Ran-
dom. Considering the throughput, we observe that LATA catches
up with other systems in 5 out of 6 applications in spite of the
75% latency constraint, except the Flow application. However,
the average of 30.4% throughput loss in Flow is compensated by
26.0% performance gain in latency reduction. This tradeoff once
again proves LATA’s uniqueness in satisfying the stringent latency
constraint while attaining a comparable throughput.
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Figure 12: Latency by LATA, Greedy, Random and Bipar.
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Figure 13: Throughput by LATA,Greedy,Random and Bipar.

5.3 Latency Constraint Effect
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Figure 14: Latency and throughput of Flow by LATA.

In this section, we show how the latency constraint affects the
throughput of LATA by alleviating the latency constraint from
75% to 100%. We choose the Flow application as an example be-
cause its throughput by LATA is the worst in Figure 13. From
Figure 14, we observe that as the latency constraint becomes less
stringent, the throughput improves accordingly. In fact, when
there is no constraint (at the point of 100%), LATA produces
the same throughput as other systems do. This is because LATA
spares nodes from parallel sections to help reduce the bottleneck
stage time by applying decomposition. Originally, those nodes are
used to satisfy latency constraints, causing many tasks from se-
quential sections to be fed into few nodes, which deteriorates the
throughput with large Tmax. This figure also shows the latency
performance at each point with an increasing trend, which follows
the changing latency constraint. In a word, not only can LATA
achieve low latency without substantial throughput loss when the
latency constraint is stringent, but also it can attain high through-
put when the latency constraint is light.



5.4 Scalability Performance of LATA
We evaluate LATA’s scalability by varying the number of cores.

Figure 15 demonstrates the latency and throughput for Route.
As the number of cores increases, we observe a decreasing trend
of latency, which reflects the fact that LATA exploits task-level
parallelism to reduce program execution time. When the core
resource is not plenty (less than 3), no task-level parallelism can
be exploited. When the number of cores increases from 3 to 6, task-
level parallelism gradually benefits and an obvious time decrease
can be observed. As the core resource continues to increase (more
than 6), the latency has reached the lower bound.

In addition, the increasing bars show that the throughput im-
proves with more cores. We can make two interesting observations.
First, there is a slight throughput decrease when the number of
cores increases from 2 to 3. This seemingly contradictory result
can be explained by the fact that LATA prioritizes latency reduc-
tion when the latency constraint has not been satisfied. In this
case, the extra core is used to reduce latency rather than improve
throughput. We can clearly see the latency reduction during that
period from the latency curve. Second, while the latency becomes
saturated after 6 cores, the throughput continues to improve. This
is because that extra cores can reduce bottleneck stage workload,
which results in better throughput for the whole system.
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Figure 15: Latency and throughput of Route by LATA.

5.5 Instruction Cache Size Performance
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Figure 16: Throughput of IPv4-trie by LATA, Greedy, Ran-

dom and Bipar.

Lastly, we analyze the effect of the instruction cache size for
IPv4-trie. Figure 16 shows the throughput when the cache size
varies. As the cache size increases, we observe an increasing trend
of throughput. Bipar produces the best throughput in most cases
due to its minimal communication cost and balanced workload as-
signment. Greedy, which performs the worst, suffers from imbal-
anced task assignment, especially when the cache size is 4k. LATA
and Random sit between Bipar and Greedy. However, LATA has
the least cache requirement. When the cache size is as small as
1k, LATA produces the best throughput. Its throughput slowly
grows as the cache size increases from 2k to 4k. After that, LATA’s
performance catches the best. Since the code size is less than 5k
for IPv4-trie, all systems produce the same best throughput at 5k
point. The corresponding latency performance is similar to that
of Figure 12 and hence, we omit it due to space limitations.

6. CONCLUSION
In this paper, we design, implement and evaluate LATA, a la-

tency and throughput-aware packet processing system. By adopt-
ing hybrid parallelism with parallel pipeline core topology in fine-
grained task level, LATA is able to achieve low latency and high

throughput. LATA consists of a list-based pipeline scheduling al-
gorithm, a deterministic search-based refinement process and a
cache-aware resource mapping scheme. Compared with four other
systems for six real network applications, LATA exhibits an av-
erage of 36.5% reduction of latency across all applications and a
maximum of 62.2% reduction of latency for URL over Random
with comparable throughput performance.
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