CS 203A
Advanced Computer Architecture

Lecture 2

Instruction Sets, Pipelining

RISC Vs CISC

* CISC (complex instruction set computer)
- VAX, Intel X86, IBM 360/370, etc.

* RISC (reduced instruction set computer)
- MIPS, DEC Alpha, SUN Sparc, IBM 801

RISC vs. CISC

« Characteristics of ISAs

CISC RISC
Variable length Single word
instruction instruction
Variable format Fixed-field
decoding

Memory operands Load/store
architecture

Complex operations Simple
operations

RISC vs. CISC Instruction Set Design

* The historical background:
- Infirst 25 years (1945-70) performance came from both
technology and design.
- Design considerations:
o small and slow memories: compact programs are fast.
o small no. of registers: memory operands.
o attempts to bridge the semantic gap: model high level language
features in instructions.
o no need for portability: same vendor application, OS and
hardware.
o backward compatibility: every new ISA must carry the good
and bad of all past ones.

Result: powerful and complex instructions that are
rarely used.

1/7/09

N

1/7/09

Top 10 80x86 Instructions

° Rank instruction Integer Average Percent total executed
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%

Total 96%
° Simple instructions dominate instruction frequency

5

RISC vs. CISC Instruction Set Design

. Emer'gence of RISC
- Very large scale integration (processor on a chip)

- Registers - load/store ISA. Micro-store occupied about 70% of
chip area: replace micro-store with registers.

- Increased difference between CPU and memory speeds.
- Complex instructions were not used by new compilers.

- reduced reliance on assembly programming, new ISA can be
introduced.

- standardized vendor independent OS (Unix) became very
popular in some market segments (academia and research) -
need for portability

+ Early RISC projects: IBM 801 (America), Berkeley
SPUR, RISC I and RISC IT and Stanford MIPS.

(V)

The MIPS Instruction Formats

All MIPS instructions are 32 bits long. The three instruction

formats: 31 26 21 16 11 6 0

R-t op | rs [rt | rd | shamt | funct |
-Type 6 bits 5bits 5bits 5bits 5 bits 6 bits

31 26 21 16 0

- I-type [op . | rs. [rt | |mmedfa‘re |

6 bits 5 bits 5 bits 16 bits
31 26 0
- J—‘rype | op | target address |

The different fiel%giasre: 26 bits

- op: operation of the instruction

- rs,rt, rd: the source and destination register specifiers

- shamt: shift amount

- funct: selects the variant of the operation in the "op" field
- address / immediate: address offset or immediate value

- target address: target address of the jump instruction

MIPS Instruction Layout

I-type instruction
6 5 5 16

Opcode rs rt Immediate

Encodes: Loads and stores of bytes, half words, words,
double words. All immediates (rt = rs op immediate)

Conditional branch instructions (rs is register, rd unused)
Jump register, jump and link register
(rd = 0, rs = destination, immediate = 0)

R-type instruction
6 5 5 5 5 6

Opcode rs rt rd shamt funct

Register-register ALU operations: rd - rs funct rt
Function encodes the data path operation: Add, Sub, . . .
Read/write special registers and moves

J-type instruction
6 26

Opcode Offset added to PC

Jump and jump and link
Trap and return from exception

© 2003 Elsevier Science (USA). All rights reserved.

1/7/09

>

MIPS Addressing Modes/Instruction Formats

« All instructions 32 bits wide

Register (direct) [op | rs| rt | rd | |

[register |

Immediate lop | rslrt | immed |

Displacement " T T T iomed | Memory
[register F+{+)—

PC-relative [op | rs] vt | immed ll Memory
-z —O—

Summary: Instruction Set Design (MIPS)

+ Use general purpose registers with a load-store architecture: YES

* Provide at least 16 general purpose registers plus separate floating-point
registers: 31 GPR & 32 FPR

+ Support basic addressing modes: displacement (with an address offset size
of 12 to 16 bits), immediate (size 8 to 16 bits), and register deferred; : YES:
16 bits for immediate, displacement (disp=0 => register deferred)

+ All addressing modes apply to all data transfer instructions : YES

+ Use fixed instruction encoding if interested in performance and use variable
instruction encoding if interested in code size : Fixed

+ Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and 32-bit
and 64-bit TIEEE 754 floating point numbers: YES

+ Support these simple instructions, since they will dominate the number of
instructions executed: load, store, add, subtract, move register-register, and,
shift, compare equal, compare not equal, branch (with a PC-relative address at
least 8-bits long), jump, call, and return: YES

+ Aim for a minimalist instruction set: YES

1/7/09

(&)

Pipelining: 5-stage Execution

- 5 stage "RISC" load-store architecture
1. Instruction fetch (IF):
+ get instruction from memory/cache
2.Instruction decode, Register read (ID):
* translate opcode into control signals and read regs
3.Execute (EX):

+ perform ALU operation, load/store address, branch
outcomes

4. Memory (MEM):

+ access memory if load/store, everyone else idle
5.Writeback/retire (WB):

* write results fo register file

11

Solution

Overlap execution of instructions
- Start instruction on every cycle, e.g. the new instruction can be
fetched while the previous one is decoded - pipeline. Each cycle

performing a specific task; number of stages is called pipeline
depth (5 here)

Non-pipelined

fime 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[TF [TD [EXIMEMWB] TF [1D [EX MEM WB[IF [ID [EXIMEMWB]

TF IO [EXMEMWS] | |
[IF [ID [EXIMEMWAB]
| IF [ID [EX MEM WB]

Pipelined

o™

1/7/09

Pipeline Progress - Instn moves with all control signals, addresses,
data items => different register lengths at different stages

M
U
X
[PC+1|
wl 0]
E. regA :; —
a2 regB . o valAl
=) | —
g || =»{E
5| {2 S am
gorofl |
& Ry
offset |
Bits 11-15 h’
Bits 16-20 ;J |dest|
IF/ ID/ EX/ Mem/
ID EX Mem WB

13

Pipelined Control

- Group control lines by pipeline stage needed
- Extend pipeline registers with control bits

WB
Instruction

YyVY
3

MemToReg
RegWrite

| -
IF/ID ID/EX EX/MEM MEM/WB
14

N

Pipelined Datapath (with Pipeline Regs)

Fetch Decode : Execute ; Memory ~Write |
! ! . Back
0 '
M
u
x
r 1
IF/ID ID/EX EX/MEM MEM/WB
H Read‘ 4
& "] reqster
E R d:‘eaaWd "
s ead
217 register 2
ud I § Read
Write data2 [
register
Imem —{%e Regs
16 32
Sign
extend
5
64 bits 133Bits 102 Dits

A pipeline with multi-cycle FP operations:

Arithmeftic Pipeline: Ex. MIPS R4000

Integer unit

i

FP/integer multiply

M4| MSI Meé

A2I A3| A4

FP/integer divider

DI

© 2003 Elsevier Science (USA). All rights reserved.

wWB
FP adder

1/7/09

loco

Pipeline Hazards

* Hazards are caused by conflicts between
instructions. Will lead to incorrect behavior
if not fixed.

-Three types:

o Structural: two instructions use same h/w in the same
cycle - resource conflicts (e.g. one memory port,
unpipelined divider etc).

o Data: two instructions use same data storage
(register/memory) - dependent instructions.

o Control: one instruction affects which instruction is
next - PC modifying instruction, changes control flow
of program.

Handling Hazards

* Force stalls or bubbles in the pipeline.
- Stop some younger instructions in the stage
when hazard happens

- Make younger instr. Wait for older ones to
complete

- Implementation: de-assert write-enable signals
Yo pipeline registers
* Flush pipeline
- Blow instructions out of the pipeline

- Refetch new instructions later - solving control
hazards
- Implementation: assert clear signals on pipeline
registers
18

NO

