
1/7/09

1

1

Lecture 2

Instruction Sets, Pipelining

CS 203A
Advanced Computer Architecture

2

RISC Vs CISC

•  CISC (complex instruction set computer)
–  VAX, Intel X86, IBM 360/370, etc.

•  RISC (reduced instruction set computer)
–  MIPS, DEC Alpha, SUN Sparc, IBM 801

1/7/09

2

3

RISC vs. CISC

•  Characteristics of ISAs

4

RISC vs. CISC Instruction Set Design
•  The historical background:

–  In first 25 years (1945-70) performance came from both
technology and design.

–  Design considerations:
o  small and slow memories: compact programs are fast.
o  small no. of registers: memory operands.
o  attempts to bridge the semantic gap: model high level language

features in instructions.
o  no need for portability: same vendor application, OS and

hardware.
o  backward compatibility: every new ISA must carry the good

and bad of all past ones.

Result: powerful and complex instructions that are
rarely used.

1/7/09

3

5

Top 10 80x86 Instructions

6

RISC vs. CISC Instruction Set Design
•  Emergence of RISC

–  Very large scale integration (processor on a chip)
–  Registers – load/store ISA. Micro-store occupied about 70% of

chip area: replace micro-store with registers.
–  Increased difference between CPU and memory speeds.
–  Complex instructions were not used by new compilers.
–  reduced reliance on assembly programming, new ISA can be

introduced.
–  standardized vendor independent OS (Unix) became very

popular in some market segments (academia and research) –
need for portability

•  Early RISC projects: IBM 801 (America), Berkeley
SPUR, RISC I and RISC II and Stanford MIPS.

1/7/09

4

7

The MIPS Instruction Formats
•  All MIPS instructions are 32 bits long. The three instruction

formats:

–  R-type

–  I-type

–  J-type
•  The different fields are:

–  op: operation of the instruction
–  rs, rt, rd: the source and destination register specifiers
–  shamt: shift amount
–  funct: selects the variant of the operation in the “op” field
–  address / immediate: address offset or immediate value
–  target address: target address of the jump instruction

op target address
0 26 31

6 bits 26 bits

op rs rt rd shamt funct
0 6 11 16 21 26 31

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

op rs rt immediate
0 16 21 26 31

6 bits 16 bits 5 bits 5 bits

8

MIPS Instruction Layout

1/7/09

5

9

MIPS Addressing Modes/Instruction Formats

op rs rt rd

immed

register

Register (direct)

op rs rt

register

Displacement

+

Memory

immed op rs rt Immediate

immed op rs rt

PC

PC-relative

+

Memory

•  All instructions 32 bits wide

10

Summary: Instruction Set Design (MIPS)

•  Use general purpose registers with a load-store architecture: YES
•  Provide at least 16 general purpose registers plus separate floating-point

registers: 31 GPR & 32 FPR
•  Support basic addressing modes: displacement (with an address offset size

of 12 to 16 bits), immediate (size 8 to 16 bits), and register deferred; : YES:
16 bits for immediate, displacement (disp=0 => register deferred)

•  All addressing modes apply to all data transfer instructions : YES
•  Use fixed instruction encoding if interested in performance and use variable

instruction encoding if interested in code size : Fixed
•  Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and 32-bit

and 64-bit IEEE 754 floating point numbers: YES
•  Support these simple instructions, since they will dominate the number of

instructions executed: load, store, add, subtract, move register-register, and,
shift, compare equal, compare not equal, branch (with a PC-relative address at
least 8-bits long), jump, call, and return: YES

•  Aim for a minimalist instruction set: YES

1/7/09

6

11

Pipelining: 5-stage Execution

•  5 stage “RISC” load-store architecture
1. Instruction fetch (IF):

•  get instruction from memory/cache
2. Instruction decode, Register read (ID):

•  translate opcode into control signals and read regs
3. Execute (EX):

•  perform ALU operation, load/store address, branch
outcomes

4. Memory (MEM):
•  access memory if load/store, everyone else idle

5. Writeback/retire (WB):
•  write results to register file

12

Solution
•  Overlap execution of instructions

–  Start instruction on every cycle, e.g. the new instruction can be
fetched while the previous one is decoded – pipeline. Each cycle
performing a specific task; number of stages is called pipeline
depth (5 here)

Pipelined

Non-pipelined

IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

time

1/7/09

7

13

PC Inst
mem

R
eg

is
te

r f
ile

M
U
X A

L
U

M
U
X

1

Data
memory

+
+

M
U
X

IF/
ID

ID/
EX

EX/
Mem

Mem/
WB

M
U
X

Bits 11-15
Bits 16-20 dest

offset

valB

valA

PC+1 PC+1
target

ALU
result

dest

valB

dest

ALU
result

mdata

eq? instruction

0

R2

R3

R4

R5

R1

R6

R0

R7

regA
regB

data
dest

Pipeline Progress – Instn moves with all control signals, addresses,
data items => different register lengths at different stages

14

Pipelined Control

- Group control lines by pipeline stage needed
–  Extend pipeline registers with control bits

C o n t r o l

E X

Mem

W B

W B

W B

I F / I D I D / E X E X / M E M M E M / W B

I n s t r u c t i o n

Mem

RegDst
ALUop
ALUSrc

Branch
MemRead
MemWrite

MemToReg
RegWrite

1/7/09

8

15

Pipelined Datapath (with Pipeline Regs)

A d d r e s s

4

3 2

0

A d d A d d
r e s u l t

S h i f t
l e f t 2

I n s t
 r u c

 t i o n

M
u
x
0

1

A d d

P C

0

A d d r e s s

W r i t e
d a t a

M
u
x
1

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s t e r 1
R e a d
r e g i s t e r 2

1 6
S i g n

e x t e n d

W r i t e
r e g i s t e r
W r i t e
d a t a

R e a d
d a t a

1

A L U
r e s u l t

M
u
x

A L U Z e r o

Imem
Dmem

Regs

IF/ID ID/EX EX/MEM MEM/WB

64 bits 133 bits 102 bits 69 bits

5

Fetch Decode Execute Memory Write  
 Back

16

A pipeline with multi-cycle FP operations:
Arithmetic Pipeline: Ex. MIPS R4000

1/7/09

9

17

Pipeline Hazards

• Hazards are caused by conflicts between
instructions. Will lead to incorrect behavior
if not fixed.
– Three types:

o  Structural: two instructions use same h/w in the same
cycle – resource conflicts (e.g. one memory port,
unpipelined divider etc).

o  Data: two instructions use same data storage
(register/memory) – dependent instructions.

o  Control: one instruction affects which instruction is
next – PC modifying instruction, changes control flow
of program.

18

Handling Hazards

•  Force stalls or bubbles in the pipeline.
–  Stop some younger instructions in the stage

when hazard happens
–  Make younger instr. Wait for older ones to

complete
–  Implementation: de-assert write-enable signals

to pipeline registers
•  Flush pipeline

–  Blow instructions out of the pipeline
–  Refetch new instructions later – solving control

hazards
–  Implementation: assert clear signals on pipeline

registers

