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Abstract

In many graph-based applications, the graphs tend to grow,

imposing a great challenge for GPU-based graph processing.

When the graph size exceeds the device memory capacity

(i.e., GPU memory oversubscription), the performance of

graph processing often degrades dramatically, due to the

sheer amount of data transfer between CPU and GPU.

To reduce the volume of data transfer, existing approaches

track the activeness of graph partitions and only load the

ones that need to be processed. In fact, the recent advances

of unified memory implements this optimization implicitly

by loading memory pages on demand. However, either way,

the benefits are limited by the coarse-granularity activeness

tracking – each loaded partition or memory page may still

carry a large ratio of inactive edges.

In this work, we present, to the best of our knowledge,

the first solution that only loads active edges of the graph to

the GPU memory. To achieve this, we design a fast subgraph

generation algorithm with a simple yet efficient subgraph

representation and a GPU-accelerated implementation. They

allow the subgraph generation to be applied in almost every

iteration of the vertex-centric graph processing. Furthermore,

we bring asynchrony to the subgraph processing, delaying

the synchronization between a subgraph in the GPUmemory

and the rest of the graph in the CPU memory. This can safely

reduce the needs of generating and loading subgraphs for

many common graph algorithms. Our prototyped system,

Subway (subgraph processing with asynchrony) yields over

4X speedup on average comparing with existing out-of-GPU-

memory solutions and the unified memory-based approach,

based on an evaluation with six common graph algorithms.
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1 Introduction

In many graph-based applications, graphs naturally grow

over time. Considering web analytics [10, 47], the sizes of

web graphs quickly increase as more webpages are crawled.

In social networks [42, 54] and online stores [51], graphs

related to user interactions (e.g., following and liking) and

product purchases (e.g., who bought what item) also grow

consistently. These growing graphs pose special challenges

to GPU-based graph processing systems. When the size of

an input graph exceeds the GPU memory capacity, known as

memory oversubscription, existing GPU-based graph systems

either fail to process (such as CuSha [32], Gunrock [67], and

Tigr [45]), or process it with dramatic slowdown [21, 55].

State of The Art. Existing efforts [21, 33, 55] in addressing

the GPU memory oversubscription for graph applications

mainly follow ideas in out-of-core graph processing, such as

GraphChi [34], X-Stream [52], and GridGraph [74]. Basically,

the oversized graph is first partitioned, then explicitly loaded

to the GPUmemory in each iteration of the graph processing.

Hereinafter, we refer to this explicit memory management as

the partitioning-based approach. A major challenge for this

approach is the low computation to data transfer ratio due

to the nature of iterative graph processing. As a result, the

data movement cost usually dominates the execution time,

as shown in Figure 1. For this reason, one focus in optimizing

this approach is asynchronously streaming the graph data to

the GPU memory to overlap the data transfer with the GPU

kernel executions [21, 33, 55]. Unfortunately, as Figure 1

indicates, for many graph applications, the computation cost

is substantially smaller than the data transfer cost. Moreover,

it varies significantly over iterations. Both factors limit the

benefits of this overlapping. A more promising direction is to

directly reduce the data movements between CPU and GPU.

To achieve this, GraphReduce [55] and Graphie [21] track

the partitions with to-be-processed (active) vertices/edges

and only load those to the GPU memory, which have shown

promises in reducing data movements. However, the benefits

of this activeness checking are limited to the partition level.

For example, a partition with few active edges would still be

loaded entirely. Moreover, for real-world power-law graphs,
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Figure 1. Time Breakdown of Partitioning-based Approach

(six analytics on two real-world graphs from Section 4).

most partitions may stay active due to their connections to

some high-degree vertices, further limiting the benefits.

As a more general solution, unified memory recently has

become available with the release of CUDA 8.0 and the Pascal

architecture (2016) 1. It allows GPU applications to access the

host memory transparently with memory pages migrated

on demand. By adopting unified memory, graph systems do

not have to track the activeness of graph partitions, instead,

the memory pages containing active edges/vertices will be

automatically loaded to the GPU memory triggered by the

page faults. Despite the ease of programming and on-demand

“partition” loading, unified memory-based graph systems

suffer from two limitations: First, on-demand page faulting

is not free. As shown later, there are significant overheads

with page fault handling (such as TLB invalidations and

page table updates); Second, similar to the explicit graph

partition activeness tracking, the loaded memory pages may

also contain a large ratio of inactive edges/vertices, wasting

the CPU-GPU data transfer bandwidth.

Unlike prior efforts and unified memory-based approach,

this work aims to load only the active edges (and vertices),

which are essentially a subgraph, to the GPU memory. The

challenges lie in the costs. Note that the subgraph changes

in every iteration of the graph processing. The conventional

wisdom is that repetitively generating subgraphs at runtime

is often too expensive to be beneficial [63]. Contrary to the

wisdom, we show that, with the introduction of (i) a concise

yet efficient subgraph representation, called SubCSR; (ii) a

highly parallel subgraph generation algorithm; and (iii) a

GPU-accelerated implementation, the cost of the subgraph

generation can be low enough that it would be beneficial to

apply in (almost) every iteration of the graph processing.

On top of subgraph generation, we bring asynchrony to

the in-GPU-memory subgraph processing scheme. The basic

idea is to delay the synchronization between a subgraph (in

GPU memory) and the rest of the graph (in host memory).

After the subgraph is loaded to GPU memory, its vertex

values will be propagated asynchronously (to the rest of the

graph) until they have reached a local convergence before

the next subgraph is generated and loaded. In general, this

1CUDA 6.0 supports automatic data migration between CPU and GPU

memories, but does not support GPU memory oversubscription.

changes the behavior of value convergences and may not

be applicable to every graph algorithm. However, as we

will discuss later, it can be safely applied to a wide range of

common graph algorithms. In practice, the asynchrony tends

to reduce the number of iterations and consequently the

number of times a subgraph must be generated and loaded.

Together, the proposed techniques can reduce both the

number of times the input graph is loaded and the size of

loaded graph each time.We prototyped these techniques into

a runtime system called Subway. By design, Subway can

be naturally integrated into vertex-centric graph processing

systems with the standard CSR graph representation. Our

evaluation with six commonly used graph applications on a

set of real-world and synthesized graphs shows that Subway

can significantly improve the efficiency of GPU-based graph

processing under memory oversubscription, yielding 5.6X

and 4.3X speedups comparing to the unified memory-based

approach and the existing techniques, respectively.

Contributions. In summary, this work makes three major

contributions to GPU-based graph processing:

• First, this work presents a highly efficient subgraph
generation technique, which can quickly and (often)

significantly “shrink” the size of the loaded graph in

each graph processing iteration.

• Second, it brings asynchrony to the in-GPU-memory
subgraph processing, making it possible to reduce the

times of subgraph generations and loading.

• Third, it compares the proposed techniques (Subway)
with existing out-of-GPU-memory graph processing

solutions, unified memory-based graph processing, as

well as some of the state-of -the-art CPU-based graph

systems. The source code of Subway is available at:

https://github.com/AutomataLab/Subway.

Next, we first provide the background of this work.

2 Background

This section first introduces the basics of graph applications

and their programming model, including a discussion of the

major issues in GPU-based graph processing.

2.1 Graph Applications and Programming Model

As a basic yet versatile data structure, graphs are commonly

used in a wide range of applications to capture their linked

data and to reveal knowledge at a deeper level, ranging from

influence analysis in social networks [43] and fraud detection

in bank transactions [53] to supply chain distribution [64]

and product recommendations [26]. As a sequence, there

have been consistent interests in developing graph process-

ing systems, covering shared-memory graph processing (e.g.,

Galois [44] and Ligra [56]), distributed graph processing

(e.g., Pregel [38] and Distributed GraphLab [36]), out-of-core

graph processing (such as GraphChi [34] and X-Stream [52]),
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Figure 2. Graph Representation and Vertex-Centric Graph Processing (Connected Components).

and GPU-accelerated graph processing (such as CuSha [32]

and Gunrock [67]). More details about these graph systems

and others will be shown later in Section 5.

To support graph application developments, vertex-centric

programming [38] has been widely adopted as a popular

graph programming model, thanks to its simplicity, high

scalability, and strong expressiveness. It defines a generic

vertex function f (·) based on the values of neighbor vertices.
During the processing, the vertex function is evaluated on

all (active) vertices iteratively until all vertex values stop

changing or the iterations have reached a limit. Depending

on the value propagation direction, the vertex function can

be either pull-based (gathering values along in-coming edges)

or push-based (scattering values along out-going edges) [44].

Algorithm 1 illustrates the push-based vertex function

for connected components (CC), where the graph is in CSR

(Compressed Sparse Row) format, a commonly used graph

representation that captures the graph topology with two

arrays: vertex array and edge array. As shown in Figure 2-(b),

the vertex array is made up of indexes to the edge array for

locating the edges of the corresponding vertices (Line 8-9 in

Algorithm 1). In addition, the vertex function also accesses

activeness labeling array to check vertex activeness (Line 4)

and update its neighbors’ (Line 12), as well as the value

array for reading and updating the connected component

IDs (Line 7 and 10-11). Its iterations on the example graph

are shown in Figure 2-(c). Initially, all vertices are active

with connected component IDs the same as their vertex IDs.

After three iterations, the vertices fall into two connected

components, labelled with the smallest vertex IDs.

2.2 GPU-based Graph Processing

With the abundant parallelism exposed by the vertex-centric

programming, GPUs built with up to thousands of cores have

great potential in accelerating graph applications [9, 22, 25,

32, 41, 45, 67, 71]. Despite this promise, two main challenges

arise in GPU-based graph processing: the highly irregular

graph structures and the ever-increasing graph sizes.

The graph irregularity causes non-coalesced accesses to

the GPU memory and load imbalances among GPU threads.

Existing research on GPU-based graph processing, including

CuSha [32], Gunrock [67], and Tigr [45], mainly focus on

addressing the graph irregularity problem and have brought

Algorithm 1 Vertex Function (CC) on CSR.

1: /* Connected Components */

2: procedure CC

3: tid = getThreadID()

4: if isActive[tid] == 0 then

5: return

6: end if

7: sourceValue = value[tid]

8: for i = vertex[tid] : vertex[tid+1] do

9: nbr = edge[i]

10: if sourceValue < value[nbr] then

11: atomicMin(value[nbr], sourceValue)

12: isActiveNew[nbr] = 1 /* active in next iter. */

13: end if

14: end for

15: end procedure

significant efficiency improvements. For example, CuSha

brings new data structures (i.e., G-Shards and Concatenated

Windows) to enable fully coalesced memory accesses. In

compaison, Gunrock designs a frontier-based abstraction

which allows easy integrations of multiple optimization

strategies. More directly, Tigr proposes to transform the

irregular graphs into more regular ones.

However, big gap remains in efforts towards the second

challenge - processing oversized graphs. Despite that GPU

memory capacity has been increasing, it is still too limited

to accommodate many real-world graphs [21, 55]. There are

two basic strategies to handle such cases: (i) partitioning-

based approach and (ii) unified memory-based approach.

Partitioning-based Approach. This approach follows the

ideas in out-of-core graph processing [34, 52, 74] – it first

partitions the oversized graph such that each partition can

fit into the GPU memory, then loads the graph partitions

into the GPU memory in a round-robin fashion during the

iterative graph processing. Most existing solutions adopt

this strategy, including GraphReduce [55], GTS [33], and

Graphie [21]. To improve the processing efficiency under

GPUmemory oversubscription, twomain optimizations have

been proposed: the first one tries to hide some data transfer

cost by asynchronously streaming the graph partitions to the

GPU memory while the kernels are executing [21, 33, 55];

The second optimization tracks the activeness of each graph
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partition and only loads the oneswith active edges (i.e., active

partitions) to the GPU memory [21, 55]. Unfortunately, as

discussed in Section 1, the benefits of both optimizations are

limited by the sparsity nature of iterative graph processing

– in most iterations, only a small subset of vertices tend

to be active (a.k.a the frontier). First, the sparsity results

in low computation-to-transfer ratio, capping the benefits

of overlapping optimization. Second, in each loaded active

partition, there might still be a large portion of inactive edges

(i.e., their vertices are inactive) due to the sparsity.

Unified Memory-based Approach. Rather than explicitly

managing the data movements, a more general solution is

adopting unified memory [2], a technique has been fully

realized in recent Nvidia GPUs. The main idea of unified

memory is defining a managed memory space in which both

CPU and GPU can observe a single address space with a

coherent memory image [2]. This allows GPU programs to

access data in the CPU memory without explicit memory

copying. A related concept is zero-copy memory [1], which

maps pinned (i.e., non-pageable) host memory to the GPU

address space, also allowing GPU programs to directly access

the host memory. However, a key difference is that, in unified

memory, the memory pages containing the requested data

are automatically migrated to the memory of the requesting

processor (either CPU or GPU), known as on-demand data

migration, enabling faster accesses for the future requests.

Adopting the unified memory for graph applications is

straightforward: when allocatingmemory for the input graph,

use a new API cudaMallocManaged(), instead of the default

malloc(). In this way, when the graph is accessed by GPU

threads and the data is not in the GPU memory, a page fault

is triggered and the memory page containing the data (active

edges) is migrated to the GPU memory. On one hand, this

implicitly avoids loading memory pages with only inactive

edges, sharing similar benefits with the partition activeness-

tracking optimization in the partitioning-based approach.

On the other hand, it also suffers from a similar limitation

– loaded memory pages may contain a large ratio of inac-

tive edges. Moreover, as we will show later, the page fault

handling introduces substantial overhead, compromising the

benefits of on-demand data migration.

In addition, unified memory can be tuned via APIs such

as cudaMemAdvise() and cudaMemPrefetchAsync() [2] for

better data placements and more efficient data transfer (more

details will be given in Section 4). In addition, a recent work,

ETC [35], also proposes some general optimization strategies,

such as proactive eviction, thread throttling, and capacity

compression. However, as we will show in Section 4, such

general optimizations either fail to improve the performance

or bring limited benefits, due to their inability in eliminating

the expensive data transfer of inactive edges in each iteration

of the graph processing.

Table 1. Ratio of Active Vertices and Edges

V-avg (max): average ratio of active vertices (maximum ratio);

E-avg (max): average ratio of active edges (maximum ratio).

friendster-snap [6] uk-2007 [4]

Algo. V-avg (max) E-avg (max) V-avg (max) E-avg (max)

SSSP 4.4% (43.3%) 9.1% (85.1%) 4.6% (60.4%) 5.1% (67.7%)

SSWP 2.1% (38.4%) 5.2% (78.3%) 0.6% (12.6%) 0.6% (12.4%)

BFS 2.1% (32.3%) 4.1% (75.8%) 0.6% (12.6%) 0.6% (12.4%)

CC 8.1% (100%) 9.8% (100%) 3.2% (100%) 3.2% (100%)

SSNSP 2.1% (32.3%) 4.1% (75.8%) 0.6% (12.6%) 0.6% (12.4%)

PR 6.6% (100%) 24.1% (100%) 1.1% (100%) 1.7% (100%)

In summary, both the existing partitioning and unified

memory-based methods load the graph based on coarse-

grained activeness tracking, fundamentally limiting their

performance benefits. Next, we present Subway, a low-cost

CPU-GPU graph data transfer solution based on fine-grained

activeness tracking.

3 Subway

The core to Subway is a fast subgraph generation technique

which can quickly extract a subgraph from a standard CSR

formatted graph based on the specified vertices. When fed

with the active vertices (i.e., the frontier), this technique

can “shrink” the original graph such that only a subgraph

needs to be loaded to the GPU memory. In addition, Subway

offers an in-GPU-memory asynchronous subgraph processing

scheme, which can reduce the needs of subgraph generation

and loading. Together, these techniques can significantly

bring down the cost of CPU-GPU data transfer, enabling

efficient out-of-memory graph processing on GPUs. Next,

we present these techniques in detail.

3.1 Fast Subgraph Generation

For many common graph algorithms, it is often that a subset

of vertices are active (need to be processed) in an iteration of

the graph processing. In most iterations, the ratio of active

vertices is often very low, so as to the ratio of active edges.

Table 1 reports the average and maximum ratios of active

vertices and edges across all iterations, collected from six

graph algorithms on two real-world graphs. In these tested

cases, the average ratios of active vertices and active edges

are always below 10%. Motivated by this fact, we explore the

possibility of separating the active parts of the graph from

the rest and only load those to the GPU memory. This can

greatly improve the state of the art [21, 55] which is only

able to separate the inactive partitions. Despite the promise,

the key challenge with this fine-grained separation is the

cost. Recent work [63] shows that dynamically restructuring

a graph could be very expensive in the out-of-core graph

processing. Fortunately, in GPU-based graph processing, we

can always leverage the power of GPU to accelerate this

subgraph generation. Along with a concise design of the
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Figure 3. SubCSR Representation.

subgraph representation and a highly parallel generation

algorithm, we find that the cost of subgraph generation can

be quite affordable in comparison to the benefits that it brings.

Next, we first introduce the subgraph representation, then

present its generation algorithm.

Subgraph Representation. Subway assumes that the input

graph is in CSR format 2, the commonly used graph format in

GPU-based graph processing (see Section 2). Also, following

a prior assumption [21], Subway allocates the vertex array

(and its values) in the GPU memory and the edge array

(usually dominating the graph size) in the host memory, as

shown in Figure 3-(a). This design completely avoids writing

data back to host memory at the expense of less GPUmemory

for storing the graph edges. Recall that the task is to separate

the active vertices and edges (i.e., a subgraph) from the rest

of the graph, while satisfying two objectives:

• First, the representation of the separated subgraph

should remain concise, just like the CSR format;

• Second, the vertices and edges of the subgraph can be
efficiently accessed during the graph processing.

To achieve these goals, we introduce SubCSR – a format

for representing a subset of vertices along with their edges

in a CSR-represented graph. Figure 3-(b) shows the SubCSR

for the active vertices and edges of the CSR in Figure 3-(a).

At the high level, it looks close to the CSR representation.

The main difference is that the vertex array in the CSR is

replaced with two arrays: subgraph vertex array and offset

array. The former indicates the positions of active vertices

in the original vertex array, while the latter points to the

starting positions of their edges in the subgraph edge array.

In the example, the active vertices are V2, V6, and V7, hence

their indices (2, 6, and 7) are placed in the subgraph vertex

array. The subgraph edge array in the SubCSR consists only

the edges of selected vertices. Obviously, the size of SubCSR

is linear to the number of selected vertices plus their edges.

To demonstrate the access efficiency of SubCSR, we next

illustrate how SubCSR is used in the (sub)graph processing.

Algorithm 2 shows how aGPU thread processes the subgraph

after it is loaded to the GPU memory. Comparing it with

2Note that using edge list, another common graph format, does not simplify

the subgraph generation, but increases the memory consumption.

Algorithm 2 Vertex Function (CC) on SubCSR.

1: /* Connected Components */

2: procedure CC

3: tid = getThreadID()

4: vid = subVertex[tid] /* difference: an extra array access */

5: if isActive[vid] == 0 then

6: return

7: end if

8: sourceValue = value[vid]

9: for i = offset[tid] : offset[tid+1] do

10: nbr = subEdge[i]

11: if sourceValue < value[nbr] then

12: atomicMin(value[nbr], sourceValue)

13: isActiveNew[nbr] = 1

14: end if

15: end for

16: end procedure

Algorithm 1, except that vertex[] and edge[] are replaced

with offset[] and subEdge[], the only difference is at Line

4, an extra access to the subgraph vertex array subVertex[].

This extra array access may slightly increase the cost of

vertex evaluation. However, as shown in the evaluation, this

minimum increase of computation can be easily outweighed

by the significant benefits of subgraph generation.

Next, we describe how to generate the SubCSR efficiently

for a given set of active vertices with the help of GPU.

Generation Algorithm. Algorithm 3 and Figure 4 illustrate

the basic ideas of GPU-accelerated SubCSR generation. The

inputs to the algorithm include the CSR (i.e., vertex[] and

edge[] ), the vertex activeness labeling array isActive[] 3,

and the degree array degree[] (can also be generated from

CSR). The output of the algorithm is the SubCSR for active

vertices (i.e., subVertex[], offset[], and subEdge[]). At

the high level, the generation follows six steps.

Step-1: Find the indices of active vertices subIndex[] using

an exclusive prefix sum over the vertex activeness labeling

array isActive[] (Line 2). Assuming the active vertices are

V2, V6, and V7, this step puts the IDs of active vertices into

corresponding positions of subIndex[] (see Figure 4).

Step-2: Create the subgraph vertex array subVertex[]with

a stream compaction based on subIndex[], isActive[],

and the array index tid (Line 3, 11-18). If a vertex is active,

put its ID (such as 2, 6, or 7 in the example) into subVertex[].

Step-3: Based on the degree array of CSR degree[] (assume

it is available or has been generated), create a degree array

subDegree[] for the active vertices, where the degrees of

inactive vertices are reset to zeros (Line 4, 20-29).

Step-4: Compute the offsets of active vertices subOffset[]

with an exclusive prefix sum over subDegree[] (Line 5). In

3Note that using a labeling array of the same length as edge[]may simplify

the subgraph generation, but this large labeling array may not fit into the

GPU memory, thus making its maintenance very expensive.
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Algorithm 3 SubCSR Generation.

1: procedure genSubCSR(vertex[], edge[], isActive[], degree[])

2: subIndex[] = gpuExclusivePrefixSum(isActive[])

3: subVertex[] = gpuSC1(isActive[], subIndex[])

4: subDegree[] = gpuResetInactive(isActive[], degree[])

5: subOffset[] = gpuExclusivePrefixSum(subDegree[])

6: offset[] = gpuSC2(isActive[], subIndex[], subOffset[])

7: subEdge = cpuSC(vertex[], edge[], subVertex[], offset[])

8: return subVertex[], offset[], subEdge[]

9: end procedure

10:

11: /* GPU stream compact vertex indices */

12: procedure gpuSC1(isActive[], subIndex[])

13: tid = getThreadID()

14: if isActive[tid] == 1 then

15: subVertex[subIndex[tid]] = tid

16: end if

17: return subVertex[]

18: end procedure

19: /* GPU reset degrees of inactive vertices */

20: procedure gpuResetInactive(isActive[], degree[])

21: tid = getThreadID()

22: if isActive[tid] == 0 then

23: subDegree[tid] = 0

24: else

25: subDegree[tid] = degree[tid]

26: end if

27: return subDegree[]

28: end procedure

29: /* GPU stream compact offset array */

30: procedure gpuSC2(isActive[], subIndex[], subOffset[])

31: tid = getThreadID()

32: if isActive[tid] == 1 then

33: offset[subIndex[tid]] = subOffset[tid]

34: end if

35: return offset[]

36: end procedure

37: /* CPU stream compact edge array */

38: procedure cpuSC(vertex[], edge[], subVertex[], offset[])

39: parallel for i = 0 to numActiveVertices do
40: v = subVertex[i]

41: subEdge[offset[i]:offset[i+1]]

42: = edge[vertex[v]:vertex[v+1]]

43: end parallel for

44: return subEdge[]

45: end procedure

the example, the offset of the first active vertex (V2) is always

zero, and since V2 has two edges (see degree[]), the second

active vertex (V6) has offset two. Similarly, V7 has an offset

of four. Note that this step depends on the reset in Step-3.

Step-5: Compact subOffset[] into offset[] by removing

the elements of inactive vertices (Line 6, 31-38). Note that

this step needs not only isActive[], but also subIndex[].

Step-6: Finally, compact the edge array edge[] to subEdge[]

by removing all inactive edges (Line 7, 40-48). This requires

1 2 0 2 0 1 4 5 3 3 6 5 7 6

0 0 0 1 1 1 1 2

0 0 2 0 0 0 2 1

0 0 1 0 0 0 1 1

degree[]

subDegree[]

isActive[]

subIndex[]

2 6 7subVertex[]

subOffset[] 0 0 0 2 2 2 2 4

offset[] 0 2 4

edge[]

subEdge[]

0 2 4 6 8 9 11 13vertex[]

0 1 5 7 6

Figure 4. SubCSR Generation for Example in Figure 3.

to access the CSR as well as subVertex[] and offset[].

Basically, edges of active vertices are copied from edge[] to

subEdge[]. Note that offset[] is critical here in deciding

the target positions of the copying.

Though there are six steps, each step only involves a few

simple operations. More importantly, all the six steps are

highly parallel, making it straightforward to take advantage

of the massive parallelism of GPU. More specifically, as the

comments in Algorithm 3 indicate, the first five steps are

offloaded to the GPU, where the activeness labeling array

isActive[] is maintained. After the fifth step, two arrays

(subVertex[] and offset[]) are transferred back to the

host memory, where the sixth step is performed. At the end

of the generation, the SubCSR for the active vertices are

formed in the host memory and are ready to be loaded to

the GPU memory.

Cost-Benefit Analysis. In Algorithm 3, the first five steps

have a time complexity of O(|V|), where V is the vertex set;

while the last step takes O(|Eactive |), where Eactive is the set

of active edges. Hence, the overall time complexity of SubCSR

generation is O(|V| + |Eactive |). Since set V is fixed, the cost of

SubCSR generation varies depending on the amount of active

edges. On the other hand, the benefit of SubCSR generation

comes from the reduced data transfer: instead of loading the

whole edge array (with a size of |E|, where E is the edge set)

to the GPU memory, only the SubCSR of active vertices is

loaded, with a size of |Eactive | + 2 ∗ |Vactive |, where Vactive is
the set of active vertices. Note that, there is also data transfer

during the SubCSR generation (between Step-5 and Step-6),

with a size of 2 ∗ |Vactive |. Therefore, the total saving of

data transfer is |E| - |Eactive | - 4 ∗ |Vactive |. Assuming the

CPU-GPU data transfer rate is rtrans , then the time saving
Strans = rtrans ∗ (|E| - |Eactive | - 4 ∗ |Vactive |).

Assuming the concrete cost of SubCSR generation isCдen ,

that is,Cдen = O(|V| + |Eactive |), then, theoretically speaking,

ifCдen < Strans , applying SubCSR would bring net benefit to
the out-of-memory graph processing on GPUs. In practice,

we can set a threshold for enabling SubCSR generation based
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on a simpler metric – the ratio of active edges, denoted as

Pactive . As Pactive increases, the cost of SubCSR generation

increases, but the benefit decreases. Hence, there is a sweet

spot beyond which the SubCSR generation will not bring

any net benefit (i.e., the threshold). Based on our evaluation

(Section 4), we found Pactive = 80% is a threshold that works

well in general for tested applications and graphs. In fact,

for most tested cases, we found Pactive is below (often well

below) 80% for almost all iterations of the graph processing,

making the SubCSR generation applicable across (almost) all

iterations. When Pactive is beyond 80%, SubCSR generation
would be disabled and the conventional partitioning-based

approach would be employed as a substitution.

Oversized SubCSR Handling. Though Pactive is usually
low enough that the generated SubCSR can easily fit into

the GPU memory, there are situations where the SubCSR

remains oversized. To handle such cases, the conventional

partitioning-based approach can be adopted. Basically, an

oversized SubCSR can be partitioned such that each partition

can fit into the GPU memory, then the SubCSR partitions are

loaded into GPU memory and processed one after another.

The partitioning of SubCSR is similar to the partitioning of

the original graph (CSR): logically partition the subgraph

vertex array subVertex[] such that each vertex array chunk,

alongwith its offset array offset[] and subgraph edge array

subEdge[], are close to but smaller than the available GPU

memory size. Since logical partitioning is free and the total

cost of SubCSR loading remains the same, handling oversized

SubCSR keeps the benefits of SubCSR generation.

3.2 Asynchronous Subgraph Processing

Traditionally, there are two basic approaches to evaluate

the vertex function: the synchronous approach [38] and the

asynchronous approach [34, 36]. The former only allows the

vertices to synchronize at the end of each iteration, that is, all

(active) vertices read values computed from the last iteration.

This design strictly follows the bulk-synchronous parallel

(BSP) model [62]. By contrast, the asynchronous approach

allows the vertex function to use the latest values, which

may be generated in the current iteration (intra-iteration

asynchrony). In both schemes, a vertex is only evaluated

once per iteration. This simplifies the development of graph

algorithms, but results in a low computation to data transfer

ratio, making the data transfer a serious bottleneck under

GPU memory oversubscription. To overcome this obstacle,

Subway offers a more flexible vertex function evaluation

strategy – asynchronous subgraph processing.

Asynchronous Model. Under this model, after a subgraph

(or a subgraph partition) is loaded into the GPU memory, it

will be processed asynchronously with respect to the rest

of the graph in the host memory. Algorithm 4 illustrates

its basic idea. Each time when a subgraph partition, say

Pi , is loaded to the GPU memory (Line 6), the vertices in

Algorithm 4 Asynchronous Subgraph Processing

1: do /* whole-graph-level iteration */

2: Vactive = getActiveVertices(G)

3: Gsub = genSubCSR(G, Vactive )

4: /* the subgraph may be oversized, thus partitioned */

5: for Pi in partitions of subgraph Gsub do

6: load Pi to GPU memory

7: do /* partition-of-subgraph-level iteration */

8: for vi in vertices of Pi do

9: f (vi ) /* evaluate vertex function */

10: end for

11: while anyActiveVertices(Pi ) == 1

12: end for

13: while anyActiveVertices(G) == 1

Pi are iteratively evaluated until there is no active ones in

Pi (Line 7-11). This adds a second level of iteration inside

the whole-graph level iteration (Line 1-13). The outer level

iteration ensures that the algorithmwill finally reach a global

convergence and terminate, while the inner level iteration

maximizes the value propagations in each loaded subgraph

partition. Since the inner iteration makes the vertex values

“more stable” – closer to their eventual values, the outer level

iterations tend to converge faster. Thus, there will be less

need for generating and loading subgraphs (Line 3 and 6).

Next, we illustrate this idea with the example in Figure 5.

Example. Initially, all the vertices are active (also refer to

Figure 2-(c)). Assume that their edges cannot fit into the GPU

memory, hence the (sub)graph is partitioned into two parts:

P1 and P2, as shown in Figure 5-(a). First, P1 is loaded to the
GPU memory and processed iteratively until their values are

(locally) converged. Note that, at this moment, the values of

V4 and V5 have been updated (under a push-based scheme).

After that, P2 is loaded to the GPU memory and processed in

the same way. Since vertices in P2 observe the latest values (3
for V4 and V5), they can converge to “more stable” values, in

this case, their final values. The whole processing takes only

one outer iteration to finish, comparing to three iterations

in the conventional processing (see Figure 2-(c)).

Note that choosing the above asynchronous model does

not necessarily reduce the total amount (GPU) computations,

which include both the inner and outer iterations. According

to our experiments, the change to the total computations

fluctuates slightly case by case (see Section 4). On the other

hand, the saving from reduced subgraph generation and

loading is significant and more consistent. As shown in the

above example, it only needs to load the (sub)graph into the

GPU memory once, rather than three times.

Related Ideas. One closely related processing scheme is the

TLAG model (“think like a graph”) proposed in distributed

graph processing [61]. In this case, a large input graph is

partitioned and stored on different computers connected

by the network. During the iterative processing, different

7



V1

V2

V4
V5

V6

V7

V0 V0 V1 V2 V3

0 1 3V3

V4 V5 V6 V7

3 7

Figure 5. Example under Asynchronous Model.

computers send messages to each other to synchronize their

values. To reduce the amount of messages generated in the

distributed system, TLAG lifts the programming abstraction

from vertex level to partition level. In the new abstraction,

graph programming becomes partition-aware, permitting

vertex values to be freely propagated within each partition.

As the vertex values may become “more stable” when they

are propagated to the other partitions, the communications

across partitions tend to be reduced, so as to the messages

generated in the distributed systems.

Both TLAG and asynchronous subgraph processing extend

the conventional intra-iteration asynchrony to some kind of

inter-partition asynchrony. However, the key difference is

that, in TLAG, all partitions are processed simultaneously,

while in asynchronous subgraph processing, the partitions

are processed in serial, one partition at a time. The difference

makes the latter “more asynchronous” than the former: in

a partition-by-partition processing, a later loaded partition

can directly observe the latest values computed from earlier

partitions, while in TLAG, the latest values from the other

partitions are not exposed until all partitions have reached

their local convergences. Due to this reason, asynchronous

subgraph processing may converge even faster than TLAG.

For example, it takes onemore outer iteration for the example

in Figure 5 to converge when implemented in TLAG.

Correctness. The use of asynchronous subgraph processing

may alter the value propagation priority (i.e., preferring to

evaluate vertices in the “current” partition), similar to TLAG.

Therefore, it may not be suitable for every graph algorithm,

especially those that are sensitive to the value propagation

order. For example, prior work [61] has shown that TLAG

is applicable to three major categories of graph algorithms:

graph traversal, random walk, and graph aggregation. But,

for some other algorithms (e.g., PageRank), it requires some

changes to the algorithm design. As a general sufficient (but

not necessary) condition, as long as the final vertex values

do not depend on the vertex evaluation order, it is ensured

that the asynchronous subgraph processing will preserve

the convergence and the converged values. It is not hard

to manually verify that the commonly used graph traversal

algorithms, such as SSSP (single-source shortest path), BFS

(breath-first search), SSWP (single-source widest path), and

CC (connected components), all satisfy the above condition.

In addition, after adopting the accumulative update-based

algorithm [70], PageRank can also satisfy this condition, thus

runs safely under asynchronous subgraph processing. The

correctness of these graph algorithms has also been verified

by our extensive experiments (see Section 4).

Note that, automatically reasoning about the necessary

correctness conditions for a specific graph algorithm under

asynchronous subgraph processing is a challenging research

problem not covered by this work. For this reason, Subway

provides asynchronous subgraph processing as an optional

feature, enabled only when the correctness has been verified.

3.3 Implementation

We prototyped Subway as a runtime system with both the

fast subgraph generation technique (Section 3.1) and the

asynchronous subgraph processing (Section 3.2). In order

to demonstrate the effectiveness of Subway, we integrated

it into an existing open-source GPU-based graph process-

ing framework, called Tigr 4 [45]. In fact, Subway uses Tigr

for in-memory graph processing when the input graph fits

into GPU memory. Another reason we choose Tigr is for

its use of the standard vertex-centric programming and the

CSR graph representation, which make it immediately ready

to adopt Subway. For simplicity, we refer to this integrated

graph system as Subway when the reference context is clear.

By default, the fast subgraph generation is enabled when

the ratio of active vertices in the current iteration is beyond

the threshold 80%. By contrast, the asynchronous subgraph

processing scheme is disabled by default for the correct-

ness reason mentioned earlier. In the implementation of fast

subgraph generation, we used the Thrust library [7] for

the exclusive prefix sum in the first and fourth steps of the

SubCSR generation, and the Pthread library for the parallel

edge array compaction in the sixth step (see Section 3.1).

In-Memory Processing. Subway automatically detects the

size of the input graph, when the graph fits into the GPU

memory, it switches to the in-memory processing mode (i.e.,

Tigr). The performance of Subway would be the same as Tigr,

which has been compared to other well-known GPU-based

frameworks such as Gunrock [67] and CuSha [32], showing

promising results [45]. On the other hand, when the graph

cannot fit into the GPU memory, optimizations from Tigr

would be disabled and the system mainly relies on Subway

runtime (subgraph generation and asynchronous processing

if applicable) for performance optimizations.

4 Evaluation

In this section, we evaluate the prototyped system Subway

under the scenarios of GPU memory oversubscription, with

an emphasis on the cost of CPU-GPU data movements and

the overall graph processing efficiency.

4https://github.com/AutomataLab/Tigr
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4.1 Methodology

Our evaluation includes the following approaches:

• Basic Partitioning-based Approach (PT): This one follows

the basic ideas of partitioning-based memory management

without further optimizations. It logically partitions the

graph based on the vertex array, then loads the partitions

into the GPU memory one by one during each iteration of

the graph processing. We include this approach to make

the benefits reasoning of other approaches easier.

• Optimized Partitioning-based Approach (PT-Opt): On top

of PT, we incorporated several optimizations from existing

solutions [21, 55], including asynchronous data streaming

(with 32 streams), active partition tracking (see Section 1),

and reusing loaded active partitions [21]. This approach

roughly approximates the state-of-the-art in GPU-based

graph processing under memory oversubscription.

• Optimized Unified Memory-based Approach (UM-Opt): To

adopt unified memory, we allocated the graph (i.e., edge

array) with cudaMallocManaged() 5, so active edges can

be automatically migrated to the GPU memory as needed.

After that, we tried to optimize this approach based on

CUDA programming guidance [2] and ideas from a recent

work on unified memory optimizations, ETC [35]. First,

we provided a data usage hint via cudaMemAdvise() API

to make the edge array cudaMemAdviseSetReadMostly.

As the edge array does not change, this hint will avoid

unnecessary writes back to the host memory. Based on our

experiments, this optimization reduces the data transfer by

47% and total processing time by 23% on average. Second,

we applied thread throttling [35] by reducing the number

of active threads in a warp. However, we did not observe

any performance improvements. A further examination

revealed two reasons: (i) the maximum number of threads

executing concurrently on a GPU is much smaller than

the number of vertices (i.e., 2048×30 on the tested GPU
versus tens of millions of vertices), so the actual working

set is much smaller than the graph (assuming that each

thread processes one vertex), easily fitting into the GPU

memory; (ii) the accesses to the edge array exhibit good

spatial locality thanks to the CSR representation. For these

reasons, thread throttling turned out to be not effective.

Besides the above two optimizations, another optimization

we considered but found not applicable is prefetching [2].

The challenge is that the active vertices in next processing

iteration are unpredictable, so to the edges needed to load.

Finally, some lower-level optimizations such as memory

page compression [35] and page size tuning 6 might be

applicable, but they are not the focus of this work; we leave

systematic low-level optimizations to the future work.

5The version of CUDA driver is v9.0.
6The default page size, 4KB, is used in our evaluation.

To the best of our knowledge, this is the first time that

unified memory is systematically evaluated for GPU-based

graph processing, since it is fully realized recently.

• Synchronous Subgraph Processing (Subway-sync): In this

approach, the asynchronous processing scheme in Subway

is always disabled. Therefore, its measurements will solely

reflect the benefits of subgraph generation technique.

• Asynchronous Subgraph Processing (Subway-async): In the

last approach, the asynchronous processing scheme in

Subway is enabled, but may be disabled temporarily as

needed, depending on the ratio of active edges.

Datasets and Algorithms. Table 2 lists the graphs used in

our evaluation, including five real-world graphs and one

synthesized graph. Among them, friendster-konect and

twitter-mpi are from the Koblenz Network Collection [3],

friendster-snap is from the Stanford Network Analysis

Project [6], uk-2007 and sk-2005 are two web graphs from

the Laboratory for Web Algorithmics [4], and RMAT is a

widely used graph generator [11]. In addition, Table 2 reports

the numbers of vertices and edges, the range of estimated

diameters, and the in-memory graph sizes with and without

the edge weights, respectively.

Table 2. Graph Datasets

|V|: number of vertices; |E|: number of edges; Est. Dia.: estimated

diameter range; Sizew : in-memory graph size (CSR) with edge

weights; Sizenw : in-memory graph size (CSR) without edge weights.

Abbr. Dataset |V| |E| Est. Dia. Sizew Sizenw

SK sk-2005 [4] 51M 1.95B 22-44 16GB 8GB

TW twitter-mpi [3] 53M 1.96B 14-28 16GB 8GB

FK friendster-konect [3] 68M 2.59B 21-42 21GB 11GB

FS friendster-snap [6] 125M 3.61B 24-48 29GB 15GB

UK uk-2007 [4] 110M 3.94B 133-266 32GB 16GB

RM RMAT [11] 100M 10.0B 5-10 81GB 41GB

There are six widely used graph analytics evaluated. They

include breath-first search (BFS), connected components

(CC), single-source shortest path (SSSP), single-source widest

path (SSWP), single-source number of shortest path (SSNSP),

and PageRank (PR). Note that SSSP and SSWP work on

weighted graphs, thus, the sizes of their input graphs are

almost doubled comparing to other algorithms. To support

asynchronous subgraph processing, PageRank and SSNSP

are implemented using accumulative updates [70].

Evaluation Platform. We evaluated Subway mainly on a

server that consists of an NVIDIA Titan XP GPU of 12 GB

memory and a 64-core Intel Xeon Phi 7210 processor with

128 GB of RAM. The server runs Linux 3.10.0 with CUDA 9.0

installed. All GPU programs are compiled with nvcc using

the highest optimization level.

Out-of-GPU-memory Cases. With edge weights (required

by SSSP and SSWP), none of the six graphs in Table 2 fit

into the GPU memory. In fact, besides the first two graphs
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(SK and TW), the sizes of the other four graphs, as shown in

the second last column of Table 2, are well beyond the GPU

memory capacity (12GB). Without weights, three graphs (SK,

TW, and FK) fit into the GPU memory. In the following, we

only report results of the out-of-GPU-memory cases.

Next, we first compare the overall performance of different

approaches, then focus on evaluating UM-Opt and the two

versions of Subway: Subway-sync and Subway-async.

4.2 Overall Performance

Table 3 reports the overall performance results, where the PT

column reports the raw execution time, while the following

ones show the speedups of other methods over PT.

First, PT-Opt shows consistent speedup over PT, 2.0X on

average, which confirms the effectiveness of optimizations

from existing work [21, 55]. By contrast, UM-Opt does not

always outperform PT, depending on the algorithms and

input graphs. The numbers in italics correspond to the cases

UM-Opt runs slower than PT. We will analyze the benefits and

costs of UM-Opt in detail shortly in Section 4.3. On average,

UM-Opt still brings in 1.5X speedup over PT.

Next, Subway-sync shows consistent improvements over

not only PT (6X on average), but also existing optimizations

PT-Opt (3X on average) and unified memory-based approach

UM-Opt (4X on average). The significant speedups confirm

the overall benefits of the proposed subgraph generation

technique, despite its runtime costs. Later, in Section 4.4, we

will breakdown its costs and benefits.

Finally, Subway-async shows the best performance among

all, except for six algorithm-graph cases, where Subway-sync

performs slightly better. More specifically, it yields up to

41.6X speedup over PT (8.5X on average), 15.4X speedup over

PT-Opt (4.3X on average), and 12.2X speedup over UM-Opt

(5.7X on average). In addition, it outperforms synchronous

Subway (Subway-sync) by 1.4X on average. These results

indicate that, when asynchronous subgraph processing is

applicable (ensured by developers), it is worthwhile to adopt

it under the out-of-GPU-memory scenarios. We will evaluate

Subway-async in depth in Section 4.5.

4.3 Unified Memory: Benefits and Costs

To better understand the inconsistent benefits from unified

memory, we further analyze its benefits and costs with more

detailed measurements. First, as mentioned earlier, recent

releases of unified memory (CUDA 8.0 and onwards) come

with on-demand data migration, which essentially resembles

the partition activeness-tracking optimization [21, 55]. With

this new feature, CUDA runtime only loads the memory

pages containing the data that GPU threads need, skipping

the others. In the context of vertex-centric graph processing,

on-demand data migration avoids loading the memory pages

consisting only inactive edges. To confirm this benefit, we

measured the volume of data transfer between CPU and GPU

in UM-Opt and compared it with that in PT. The data was

Table 3. Performance Results

Numbers (speedups) in bold text are the highest among the five methods;

Numbers (speedups) in italics are actually slowdown comparing to PT.

PT PT-Opt UM-Opt Subway-sync Subway-async

SSSP

SK 118.3s 1.5X 3.5X 5.8X 9.5X

TW 20.4s 1.7X 0.8X 2.9X 6.0X

FK 53.0s 1.7X 0.6X 4.2X 8.0X

FS 68.5s 1.6X 0.7X 4.2X 6.7X

UK 492.7s 2.9X 1.9X 6.5X 15.6X

RM 66.6s 1.3X 0.6X 2.0X 3.1X

SSWP

SK 174.7s 1.8X 5.2X 13.2X 23.1X

TW 19.7s 2.2X 1.2X 4.4X 7.0X

FK 50.3s 2.1X 1.2X 7.4X 13.1X

FS 71.3s 1.8X 1.1X 8.0X 12.5X

UK 350.8s 3.7X 4.9X 38.8X 36.3X

RM 58.3s 1.1X 0.5X 2.2X 3.7X

BFS

FS 30.9s 1.9X 0.9X 6.7X 9.6X

UK 176.3s 3.2X 10.3X 28.8X 21.8X

RM 32.7s 1.5X 0.7X 3.2X 3.7X

CC

FS 22.9s 2.1X 1.1X 4.2X 5.7X

UK 388.1s 5.7X 4.0X 10.9X 26.0X

RM 25.5s 1.3X 0.5X 1.9X 2.3X

SSNSP

FS 59.1s 1.5X 0.9X 4.4X 5.6X

UK 349.4s 4.0X 8.9X 25.6X 25.2X

RM 61.7s 1.1X 0.8X 4.6X 3.9X

PR

FS 278.4s 2.5X 1.9X 2.8X 2.2X

UK 577.9s 2.7X 3.4X 16.5X 41.6X

RM 319.5s 1.2X 0.9X 3.2X 3.0X

GEOMEAN 2.0X 1.5X 6.0X 8.5X

Figure 6. CPU-GPU Data Transfer (by volume).

collected with the help of Nvidia Visual Profiler 9.0 [5]. As

reported in Figure 6, comparing to PT, the data transfer in

UM-Opt is greatly reduced, up to 99% (occurred to BFS-UK).

Moreover, unified memory also simplifies the programming

by implicitly handling out-of-GPU-memory cases.

Despite the promises, the benefits of using unifiedmemory

for graph processing are limited by two major factors. First,

the on-demand data migration is not free. When a requested

memory page is not in the GPU memory, a page fault is

triggered. The handling of page faults involves not only data

transfer, but also TLB invalidations and page table updates,

which could take tens of microseconds [2]. To estimate the

significance of this extra overhead, we first collected the

data transfer cost and the cost of graph computations, then
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Figure 7. Page Fault Overhead in Unified Memory.

subtracted them from the total runtime of UM-Opt 7. The

remaining time is used as the estimation of page fault-related

overhead. Figure 7 reports the breakdown, where overhead

related page fault takes 23% to 69% of the total time. These

substantial overhead may outweigh the benefits of reduced

data transfer. As shown in Table 3 (UM-Opt column), in 5 out

of 18 tested cases, UM-Opt runs slower than PT.

The second major factor limiting the benefits of unified

memory-based graph processing lies in the granularity of

data migration – memory pages: a migrated page may still

carry inactive edges due to the sparse distributions of active

vertices. We will report the volume of unnecessary data

migration in the next section. While reducing memory page

size may mitigate this issue, it increases the costs of page

fault handling as more pages would need to be migrated.

4.4 Subgraph Generation: Benefits and Costs

Similar to the unified memory-based approach, using our

subgraph generation brings both benefits and costs. The

benefits come from reduced data transfer – only active edges

are transferred to the GPU memory. On the other hand, the

costs of subgraph generation occur on the critical path of the

iterative graph processing – the next iteration waits until

its subgraph (SubCSR) is generated and loaded. In addition,

there is a minor cost in the subgraph processing due to the

use of SubCSR, as opposed to CSR (see Section 3.1). Before

comparing its costs and benefits, we report the frequencies

of SubCSR generation and partitioning first.

Table 4 reports how frequently the SubCSR is generated

and how many times the SubCSR/CSR is partitioned across

iterations. Here, we focus on Subway-sync, we will discuss

Subway-async shortly in Section 4.5. Note that the criterion

for enabling SubCSR generation is that the ratio of active

edges is over 80%. Among 24 algorithm-graph combinations,

in 11 cases, this ratio is always under 80%; in 10 cases, the

ratio exceeds 80% only in one iteration; and in the remaining

three cases (CC-RM, PR-FS, and PR-RM), the ratio exceeds 80%

more often: in 2 iterations, 11 iterations, and 7 iterations,

respectively. This is because RM is the largest graph among

the tested ones and algorithms PR and CC often activate more

7We also tried to measure the page fault cost with Nvidia Visual Profilers

9.0 and 10.0, which unfortunately do not produce reasonable results.

Table 4. SubCSR Generation and Partitioning Statistics

I tr : total number of iterations; I tr>80%: number of iterations with more

than 80% active edges (iteration IDs); I tr>GPU : number of iterations with

SubCSR greater than GPU memory capactity (iteration IDs).

Subway-sync Subway-async

I tr I tr>80% I tr>GPU I tr I tr>80% I tr>GPU

SSSP

SK 90 0 0 86 1(1) 1(1)

TW 15 1(5) 1(5) 10 1(1) 1(1)

FK 30 1(7) 3(6-8) 22 1(1) 1(1)

FS 27 1(7) 3(6-8) 21 1(1) 1(1)

UK 187 0 16(17-32) 179 1(1) 1(1)

RM 8 1(3) 2(3-4) 8 1(1) 3(1-3)

SSWP

SK 134 0 0 115 1(1) 1(1)

TW 15 0 0 6 1(1) 1(1)

FK 30 1(7) 2(6-7) 18 1(1) 1(1)

FS 30 0 2(6-7) 25 1(1) 1(1)

UK 134 0 0 122 1(1) 1(1)

RM 10 1(3) 2(3-4) 9 1(1) 1(1)

BFS

FS 24 0 1(6) 15 1(1) 1(1)

UK 134 0 0 122 1(1) 1(1)

RM 6 1(3) 1(3) 4 1(1) 1(1)

CC

FS 15 1(1) 2(1-2) 8 1(1) 1(1)

UK 291 1(1) 6(1-6) 122 1(1) 1(1)

RM 4 2(1-2) 2(1-2) 4 1(1) 1(1)

SSNSP

FS 24 0 1(6) 18 1(1) 1(1)

UK 134 0 0 127 1(1) 1(1)

RM 6 0 1(3) 5 1(1) 2(1-2)

PR

FS 75 11(1-11) 17(1-17) 44 1(1) 12(1-12)

UK 359 1(1) 3(1-3) 310 1(1) 1(1)

RM 45 7(1-7) 21(1-21) 33 5(1-5) 14(1-14)

edges due to their nature of computation – all vertices (and

edges) are active (100%) initially according to the algorithms.

When SubCSR is not generated (i.e., the activeness ratio is

below 80%), the graph (CSR) has to be partitioned; Otherwise,

the graph (SubCSR) only needs to be partitioned if it remains

oversized for the GPU. Both partitioning cases in general

happen infrequently, except for algorithms PR and CC and

graph RM, due to the same reasons just mentioned earlier.

Next, we report the benefits of reduced data transfer. As

Figure 8 shows, the volume of data transfer in Subway-sync

is dramatically reduced comparing to PT, with a reduction

ranging from 89.1% to 99%. It is worthwhile to note that the

reduction in Subway-sync is more significant than that in

UM-Opt (Figure 8 vs. Figure 6). On average, the data transfer

volume in UM-Opt is 3.3X of that in Subway-sync. The extra

2.3X data transfer is due to the saving of loading inactive

edges carried by the migrated memory pages.

As to the cost of subgraph generation, instead of reporting

its cost ratios, we combine the costs of subgraph generation

and the subgraph transfer together (a breakdown between

the two can be found in Figure 11), then compare the total

cost to the transfer cost without subgraph generation. As

reported in Figure 9, even adding the two costs together,

the total remains significantly less than the data transfer

cost without subgraph generation, with a reduction of time

ranging from 83% to 98%. These results confirm the subgraph
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Figure 8. CPU-GPU Data Transfer (by volume).

Figure 9. Time Costs of SubCSR Generation + Data Transfer.

Figure 10. Impacts on Numbers of (Outer) Iterations.

Figure 11. Impacts on SubCSR Generation + Transfer.

generation as a cost-effective way to reduce the data transfer.

For this reason, Subway-sync exhibits significantly higher

speedup than UM-Opt on average (see Table 3).

4.5 Asynchronous Processing: Benefits and Costs

Next, we examine the benefits and costs of asynchronous

subgraph processing. As discussed in Section 3.2, adopting

the asynchronousmodel tends to reduce the (outer) iterations

of graph processing, thus saving the needs for subgraph

Figure 12. Impacts on Graph Computation Time.

generations and loading. To confirm this benefit, we profiled

the total number of iterations in the outer loop of graph

processing (also refer to Algorithm 4). Figure 10 compares

the numbers of iterationswith andwithout the asynchronous

model. In general, the numbers of iterations are consistently

reduced across all tested cases, except for SSNSP-FS, where

the number of iterations remains unchanged. On average,

the number of iterations is reduced by 31%. Correspondingly,

the number of times for generating a subgraph and loading

it to GPU is also reduced, as shown on the right of Table 4.

Note that in asynchronous processing mode, to maximize

the value propagation within a subgraph (i.e., more inner

iterations), Subway-async always partitions and loads the

entire graph in the first outer iteration.

However, it is interesting to note that the costs of subgraph

generation and data transfer may not be reduced in the same

ratios as the number of iterations, as indicated by Figure 11.

For example, in the case of PR-UK, the number of iterations is

reduced from 434 to 278 (about 36% reduction). However, its

costs of subgraph generation and data transfer are reduced

more significantly, by 71%. The opposite situations may also

happen (e.g., in the case of PR-FS). The reason is that the

asynchronous model affects not only the number of (outer)

iterations, but also the amounts of active vertices and edges

in the next (outer) iteration, thus altering the cost of subgraph

generation and the volume of data transfer. In general, the

overall impacts on the costs of subgraph generation and data

transfer are positive, leading to a 52% reduction on average.

Among the 12 examined cases, only 2 cases (SSWP-UK and

BFS-UK) show cost increases, by up to 23%.

At last, by altering the way that values are propagated, the

asynchronous model may also change the overall amount of

graph computations, as reported in Figure 12. In general, the

changes to the graph computation time vary across tested

cases, ranging from 0.63X to 2.03X.

Adding the above impacts together (Figures 11 and 12),

adopting the asynchronous model remains beneficial overall,

yielding speedups in 18 out of 24 tested cases (see Table 3).

For the others, the performance loss is within 10% on average.
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Table 5. Subway (Out-of-GPU-memory) vs. Galois (CPU)

GPU: Titan XP (3840 cores, 12GB);

CPU: Xeon Phi 7210 (64 cores); RAM: 128GB

Subway-sync Subway-async Galois

SSSP

SK 20.28s 12.51s 5.42s

TW 6.94s 3.41s 7.94s

FK 12.54s 6.65s 22.129s

FS 16.17s 10.26s 29.28s

UK 75.47s 31.54s 13.44s

RM 33.1s 21.49s 29.63s

BFS

FS 4.65s 3.21s 8.35s

UK 6.12s 8.1s 5.07s

RM 10.2s 8.72s 17.32s

CC

FS 5.49s 4.03s 5.23s

UK 35.76s 14.93s 4.88s

RM 13.7s 11.11s 10.47s

4.6 Out-of-GPU-Memory vs. CPU-based Processing

Instead of providing out-of-GPU-memory graph process-

ing support, another option is switching to the CPU-based

graph processing, though this will put more pressure on the

CPU, which may not be preferred if CPU is already over-

loaded. Nonetheless, we compare the performance of the

two options for reference purposes. Note that the perfor-

mance comparison depends on the models of CPU and GPU.

In our setting, the GPU is Nvidia Titan XP with 3840 cores

and 12GB memory while the CPU is Intel Xeon Phi 7210

processor with 64 cores. Both processors are hosted on the

same machine with a RAM of 128GB. Note that the cost of

the CPU is 4 to 5X more expensive than the GPU (according

to our purchasing price). The CPU-based graph processing

system we chose for comparison is a state-of-the-art system,

Galois [44]. We also tried Ligra [56], another popular shared-

memory graph system, however, due to its high memory

demand, we found none of our tested graphs can be success-

fully processed on our machine. Table 5 reports the running

time of both graph systems for the graph algorithms that

both natively support. Note that Galois provides alternative

implementations for each graph analytics. We used the best

implementation in our setting: default for BFS and CC, and

topo for SSSP. Overall, we found the performance of Subway

is comparable to Galois in our experimental setup. In fact,

Subway (async version) outperforms Galois in 7 out of 12

tested algorithm-graph combinations. Also note that, as an

out-of-GPU-memory solution, the time of Subway includes

not only all the data transfer time from CPU to GPU, but

also the SubCSR generation time.

5 Related Work

Graph Processing Systems. There have been great interests

in designing graph processing systems. Early works include

Boost Graph Library [57] and parallel BGL [19]. Since the

introduction of Pregal [38], vertex-centric programming has

been adopted by many graph engines, such as Giraph [39],

GraphLab [36], and PowerGraph [17]. More details about

vertex-centric graph processing systems can be found in

a survey [40]. A number of graph processing systems are

built on distributed platforms to achieve high scalability [12–

14, 17, 18, 36, 38, 59, 73]. They partition graphs and store

the partitions across machines, based on edges [30, 50], ver-

tices [17], or value vectors [68]. Some of the distributed graph

processing systems adopt the idea of asynchronous process-

ing among machines to improve the convergence rate and/or

reduce the communication costs [14, 36, 61].

On shared-memory platforms, Ligra [56] and Galois [44]

are widely recognized graph processing systems for their

high efficiencies. Charm++ [29] and STAPL [60] are two

more general parallel programming systems, with intensive

supports for irregular computations, like graph processing.

A more relevant body of research is the out-of-core graph

processing systems. Some representative systems include

GraphChi [34], X-Stream [52], GraphQ [66], GridGraph [74],

CLIP [8], Wanderland [69], Graspan [65], and among others.

Some of their ideas have been adopted for handling GPU

memory oversubscription, as discussed earlier. In addition,

ideas in some prior work [8, 63] are also closely related to

the techniques proposed in this work, but different in both

contexts and technical details. In prior work [63], a dynamic

graph partitioning method is proposed for disk-based graph

processing, which operates on shards [34], a data structure

optimized for disk-based graph processing. In comparison,

our subgraph generation is based on CSR, a more popular

representation in GPU-based graph processing. Furthermore,

our technique features a new subgraph representation and a

GPU-accelerated generation. In another prior work, CLIP [8],

local iterations are applied to a graph partition loaded from

the disk, which resembles our asynchronous model, but in a

different context. Moreover, they only applied it to two graph

analytics. In comparison, we have discussed the correctness

of the asynchronous model and successfully applied it to a

much broader range of graph analytics.

GPU-based Graph Processing. On GPU-based platforms,

research has been growing to leverage the computation

power of GPUs to accelerate graph processing. Early works

in this area include the one from Harish and others [23],

Maximum warp [25], CuSha [32], Medusa [72], and many

algorithm-specific GPU implementations [15, 20, 27, 41, 46,

58]. More recently, Gunrock [67] introduced a frontier-based

model for GPU graph processing, IrGL [48] presents a set

of optimizations for throughput, and Tigr [45] proposed a

graph transformation to reduce the graph irregularity.

Most of the above systems assume that the input graph

can fit into the GPU memory, thus they are unable to handle

GPU memory oversubscription scenarios. To address this

limitation, GraphReduce [55] proposed a partitioning-based

approach to explicitly manage the oversized graphs, with

the capability to detect and skip inactive partitions. More
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recently, Graphie [21] further improved the design of the

partitioning-based approach, with an adoption of X-Stream

style graph processing and a pair of renaming techniques to

reduce the cost of explicit GPU memory management.

In general, Subway is along the same direction as the above

systems, with two critical advancements. First, it introduces

a GPU-accelerated subgraph generation technique, which

pushes the state-of-the-art partition-level activeness tracking

down to the vertex level. Second, it brings asynchrony to

in-GPU-memory subgraph processing to reduce the needs

for subgraph generations and reloading. As demonstrated in

Section 4, both techniques can significantly boost the graph

processing efficiency under memory oversubscription.

Besides single-GPU graph processing scenarios, priorwork

also built graph systems on multi-GPU platforms [9, 28, 31,

49, 72] and proposed hybrid CPU-GPU processing scheme [16,

24, 37]. In these cases, the idea of asynchronous processing

can be adopted among different graph partitions to reduce

inter-GPU and CPU-GPU communications, similar to that

in distributed graph processing (such as TLAG [61]).

6 Conclusion

For GPU-based graph processing, managing GPU memory

oversubscription is a fundamental yet challenging issue to

address. This work provides a highly cost-effective solution

to extracting a subgraph that only consists of the edges of

active vertices. As a consequence, the volume of data transfer

between CPU and GPU is dramatically reduced. The benefits

from data transfer reduction outweigh the costs of subgraph

generation in (almost) all iterations of graph processing,

bringing in substantial overall performance improvements.

In addition, this work introduces an asynchronous model for

in-GPU-memory subgraph processing, which can be safely

applied to a wide range of graph algorithms to further boost

the processing efficiency. In the evaluation, the proposed

system (Subway) is compared with not only the existing

techniques, but also an optimized unified memory-based

implementation. The results confirm both the effectiveness

and efficiency of the proposed techniques.
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