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ABSTRACT
Event detection applications have attracted significant attention
with the rise of user-generated spatio-temporal data over the past
decade. However, building event detection applications still en-
counter high cost and effort due to lack of system support. This
paper envisions a holistic system approach to support efficient and
easy-to-use system infrastructures for building event detection ap-
plications. We outline our vision for representing event applications
as a set of layered abstractions and discuss potential pathways to
realize these abstractions at the system level. Also, We highlight
different open problems in different system components.

1 INTRODUCTION
Detecting events from user-generated data has received a signif-
icant attention over the past decade from data management and
analysis researchers [1–5, 7–11, 14–21, 23–26, 29, 30, 32–38] as
well as major corporations such as Thomson Reuters that detects
events from news data [20, 21], and governmental units, such as the
US Department of Health and Human Services that tracks health-
related events [22] and the US Geological Survey that monitors
earthquake events [6] from social media data. This is attributed to
the availability of massive event-related data that has started to
dramatically increase since 2008, the year when Internet connec-
tivity has coupled with mobile devices, as it became much easier
for users to contribute data to online platforms. In fact, we are cur-
rently witnessing ∼48% of Internet traffic through mobile devices
worldwide where 21% of such traffic on social media platforms [27].
These percentages are even significantly higher in some localities,
e.g., UAE and Saudi Arabia encounter 96% and 88%, respectively,
of mobile Internet users [28]. As a result, tens of millions of users
can post data that is associated with the location and temporal
information around the clock from mobile devices, which has led
to unprecedented rates of user-generated spatio-temporal data.

Such an unprecedented explosion of user-generated data, along
with its inherent spatio-temporal nature, has motivated a wide
variety of event-related applications, ranging from critical and life-
saving applications to entertainment and leisure applications. For
example, several efforts have successfully designed an early earth-
quake detection approaches from Twitter feeds, where up to 75% of
earthquake detections occurred within the first two minutes from
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the initial impact and alerts were disseminated earlier than official
authorities’ first warnings in several cases [10, 11, 26]. Another
example of critical applications is detecting criminal and riot activi-
ties [3, 19]. Less critical applications include detecting traffic jams
events and road accidents to alarm commuters [1, 16, 29, 30, 34]
up to discovering breaking news faster than traditional reporting
tools [2, 18, 20, 21, 32] and detecting leisure events such as local
music concerts, festivals, and celebrations [5, 17].

Despite the plethora of research techniques that investigated
supporting effective event detection functionality for different types
of events [1–5, 7–11, 14–21, 23–26, 29, 30, 32–38], that are studied
in recent surveys [13, 31], it is still labor intensive for developers
to build event applications on top of the available rich data sources.
In fact, addressing challenges in end-to-end data-to-knowledge
pipelines is identified as one of the major challenges in the Beckman
report on database research [12]. Quoting the report ”it is still
an extremely labor-intensive journey from raw data to actionable
knowledge”, thirty top-notch database researchers concluded. This
challenge is apparent in event detection applications, where none
of the existing systems support scalable infrastructure for ease of
building event detection tasks, from data acquisition and preparing
to deploying and monitoring. As a result, whoever builds an event
detection need to develop major components from scratch, which
limits both usability and efficiency and hinders the widespread of
using event detection techniques in real-life applications.

In this paper, we envision a declarative system interface that
provides SQL-like language to define event detection pipelines.
The language allows users to specify high-level details of different
phases of the pipeline from preprocessing of different input data
sources to producing event summaries for visualization. Under the
hood, the system will encapsulate efficient end-to-end modules for
building event detection applications. Towards realizing this vision,
researchers need to address several challenges. The first challenge
is representing event detection with a set of abstract modules that
exploit the existing rich literature of event detection techniques.
These abstractions should include the common utilities to support:
(a) a wide variety of events types, e.g., earthquakes, crimes, traffic
jams, and music festivals, (b) diverse data sources and formats, e.g.,
social media and news feeds from different sources, (c) operating
in online and offline modes to detect new events from live streams
and historical data, and (d) different levels of time-sensitivity of
detected events, e.g., crime events are more time-sensitive than
traffic jams. Meeting all such requirements in a unified framework
is a major research contribution from a system perspective. Such
abstract modules will serve as building blocks specialized for event
applications, similar in spirit to SELECT-PROJECT-JOIN building
blocks for relational database queries. The second challenge is re-
alizing the developed abstractions in existing data management
systems. This realization by itself will require several major system
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Figure 1: Bird’s-eye View of Event Detection Literature

contributions that include developing optimization algorithms to
support such abstractions efficiently at a system-level. In analogy
with the previous example, plenty of algorithms have been devel-
oped to efficiently support join operations and ordering of different
relational operators in database systems.

The rest of the paper outlines our vision for the system ab-
stractions and potential pathways to realize them in existing data
management systems. Section 2 gives an overview of the existing
literature of event detection techniques. Then, Sections 3 and 4
outlines our envisioned framework and its realization in existing
systems. Finally, Section 5 concludes the paper.

2 LITERATURE OVERVIEW
Towards our vision for a unified framework for event detection
applications, we have extensively surveyed the landscape of existing
event detection techniques. The scope of this paper is not providing
a detailed review of this rich literature. In fact, recent surveys have
already provided such a detailed review [13, 31]. However, we give
a summarized overview of this literature as a foundation for our
envisioned abstractions for the unified framework. The rest of this
section gives an bird’s-eye view of the existing literature.

Figure 1 shows an overview of the event detection literature.
The literature has two major types of techniques: (1) type 1 tech-
niques for detecting arbitrary events and (2) type 2 techniques
for detecting predefined types of events. Each of these two types has
several sub-categories as depicted in Figure 1. For type 1 techniques,
the main objective is detecting any arbitrary event without any
prior information about the event type or context. Therefore, the
heart of this type is grouping similar data records into cohesive
groups to generate a set of candidate events for further processing.
As a result, the sub-categories of type 1 techniques are categorized
based on the grouping type, which is dominated with clustering
algorithms but still includes lexical, statistical, and graph-based
techniques. For type 2 techniques, there is prior information about
the type of events to be detected, e.g., earthquakes, crimes, or traffic
jams. The event type is used to induce contextual information, e.g.,
crime-related keywords, that can be used to classify data records
whether or not they are relevant to this type of events. Thus, the
heart of type 2 techniques is a classification technique that decide
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Figure 2: Envisioned Unified Framework Architecture

on the relevance of different data records. This classification could
be learning-based or lexical-based as depicted in Figure 1.

3 A UNIFIED FRAMEWORK FOR EVENT
DETECTION

In this section, we present our vision for a unified end-to-end frame-
work for event detection. The envisioned framework consists of
high-level abstractions that are can be supported at a system level
through a declarative language interface. The declarative interface
will enable a wide variety of end users with different levels of ex-
pertise, e.g., SQL developers, to easily build efficient and scalable
event detection applications. Based on our extensive survey of the
literature, Figure 2 depicts our envisioned unified framework. The
framework takes a variety of input data sources that are organized
into a scalable data store. The end users can post declarative config-
urations to define the high-level details of different pipeline stages,
e.g., specific preprocessing modules, certain clustering algorithm,
and certain scoring function. Then, the relevant data are filtered
out from the data store and pipelined into five major sequential
layers, namely, data preprocessing, feature extraction and selection,
candidate event generation, candidate event scoring, and event post-
processing. Finally, the output events are returned to end users for
visualization and further analysis. The rest of this section briefly
outlines the abstractions of each of the five layers in Figure 2.

(1) Data Preprocessing Layer. This layer will be responsible
for raw data acquisition and preparation from different data sources
to prepare input data records for subsequent layers of processing.
The preprocessing layer will include a diverse set of tasks such
as filtering, indexing, keyword extraction, geotagging, temporal
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tagging, and language detection. The specific set of needed prepro-
cessing tasks depend on the input data source. For example, news
items come with known languages, no need for language detection
that might be needed with social media free text. We next briefly
highlight the main preprocessing tasks.

The preprocessing filtering task discards non-event data, e.g.,
spams, chit-chats, and advertisements. This process is necessary to
have a reliable and high accurate result. Moreover, other filtering
predicates are used in specific techniques; for example, spatial and
temporal predicates are used to filter out data of geographic regions
and time periods that are not within the range of interest.

A handful of detection techniques take advantage of spatial,
temporal, and spatio-temporal indexes to effectively access data
within certain spatial and temporal ranges of interest. The use of
indexes is because event-related data are spatial and temporal by
nature. For example, many techniques process incoming data in a
sliding window where all the data in that window are processed
when the window ends, while other techniques employ a simple
grid index of the space, and so on.

Keyword, location, and temporal information extraction are key
operations for event detection applications. These three types of
features represent the significant features that are used in both
grouping and classification for both type 1 and type 2 techniques
that are introduced in Section 2. Various techniques are used for this
extraction including natural language processing, gazetteer-based,
and temporal-tagging techniques.

(2) Feature Selection and Extraction Layer. This layer will
encapsulate several techniques that take preprocessed data records
and associate each of them with various features to be used in sub-
sequent layers. The feature extraction will be mostly through auto-
mated techniques while feature selection will be defined within the
pipeline specifications through the declarative language interface.
Examples of major features are keywords, named entities, spatial
locations, temporal information, and semantic features. Some of
these features are prepared during the preprocessing stage, and
others are not. For example, spatial locations are mostly extracted
in preprocessing, while named entities, semantic features, and local
keywords that are associated with certain regions are not. Tech-
niques that are used in feature extraction are diverse and include
text mining, natural language processing, tokenization, spatial cor-
relation. In general, this layer involves finding data that exhibit
different types of high-level characteristics for events generation.

(3) Event Candidate Generation Layer. The input to this
layer is the data records associated with different features that are
extracted in previous stages. The output is a set of candidate events
that are generated through (a) grouping techniques for detecting
arbitrary events (type 1 techniques as in Section 2), or (b) classifi-
cation techniques for detecting predefined types of events (type 2
techniques), e.g., earthquakes, crimes, and traffic jams. The group-
ing modules will include clustering, lexical-based, graph-based, and
statistical techniques. However, clustering will represent the domi-
nated type of grouping techniques in this layer due to its popularity
and effectiveness in many existing research techniques. On another
hand, the classification techniques will be either learning-based or
lexical-based techniques according to the existing literature. How-
ever, learning-based classification, e.g., SVMs and regression, will
represent the vast majority of encapsulated techniques.

(4) Event Candidate Scoring/Labeling Layer. This layer fur-
ther enhances the set of generated candidate events from the pre-
vious layer through scoring and labeling. For detecting arbitrary
events, the generated candidate events usually have a lot of noisy
groups that do not represent actual events. Thus, the set of can-
didate groups are scored or labeled based on their group features,
e.g., temporal diffusion, spatial compactness, newsworthiness, word
co-occurrences, keyword burstiness, or named entities correlation.
Then, top scored candidates or most confidently labeled groups
are selected as output events to the next layer while the rest of
candidates are discarded as noisy groups. The declarative interface
will allow end users to specify certain scoring or labeling methods
to define this layer of the pipeline. This specification will depend
on the underlying supported application. For example, news event
discovery application will prefer newsworthiness ranking measure
while localized event detection will prefer spatial compactness.

(5) Event Postprocessing. In the last phase of the event detec-
tion pipeline, output events are postprocessed to be readily usable
for end users and their analysis tools, e.g., visualization tools. For
example, events are summarized or categorized into topics, e.g.,
politics or cultural, or being attached a spatial location to locate
them on maps. At this phase, an event is mostly represented as
a group of raw data records collectively are about the event plus
all the meta-data extracted from previous phases, e.g., features,
score, or label. The postprocessing tasks help end users to interpret
and analyze the event, or even following up on tracking the event
updates or expiring obsolete events. In some applications, events
expire or even evolve to become similar to other events after more
data arrive. So, it is essential to allow the user to expire or follow
up on events after a while to distinguish it from new coming and
similar events. Events also can be merged if the similarity between
them is significant which indicate they are about the same event.

4 POTENTIAL REALIZATION PATHWAYS
In this section we briefly discuss three possible pathways to realize
the envisioned framework in existing data management systems
highlighting their potential advantages and disadvantages.

(1) On-top Approach. One approach to realize the envisioned
framework is to build a standalone library on top of the existing
systems, e.g., Apache Spark pipelines. In that case, the framework
will treat the underlying system as a black box. This mean that
the different framework layers will be completely decoupled from
the internal operations of the underlying data management system
that works as a data store and runtime engine. In this approach, the
envisioned framework lives outside the codebase of the core data
management engine giving the main advantage of relative simple
realization as the complexity of the system internals are hidden.
However, one disadvantage in this approach is that it will not fully
utilize the optimization opportunities compared to realizing parts
of its module inside the system body. For example, performing early
pruning based on system indexes could avoid a significant irrelevant
data transfer cost to upper level layers. In addition, reordering
operations for query optimization will not be an option for an
on-top approach realization.

(2) Built-in Approach. Another approach to realize the envi-
sioned detection framework is to tightly couple its different layers



SSTD, 2019 Rami A. Alghamdi, Amr Magdy, and Mohamed F. Mokbel

with the core data management engine whenever possible. For ex-
ample, data preprocessing is coupled with the system indexing,
which will injected with new operations such as location extraction
and language detection. Feature extraction and selection layer will
be realized as a new intermediate layer between the indexing and
machine learning pipelines, and so on. The expected performance
gains of this approach is significant as it has access to all internal
system resources, so it can fully utilize all potential optimization
opportunities. However, it requires high realization cost to inject
the framework layers in the codebase of the underlying system. In
addition, managing any changes to the framework layers will also
require certain level of expertise and efforts, which is expected to
limit the system extensibility and community contributions.

(3) Centrist Approach. A third approach is to realize some
of the low-level operations, e.g., filtering, indexing, and keyword
extraction, as built-in internal operations and derive and append
other operations on-top of these basic operations. This approach
will combine half ways of both simplicity and efficiency of the pre-
vious two approaches. Although this approach may sound ideal, it
will require a careful selection for the underlying data management
system as its capabilities will highly affect the realization simplicity
and the performance gains. In addition, it requires a thoughtful
and non-straightforward design of the built-in and on-top opera-
tions to cover a wide variety of use cases while still maintains the
framework extensibility.

5 CONCLUSION
This paper has envisioned a unified framework to support a wide
variety of event detection techniques in existing data management
systems. The main goal is significantly improving the impact of the
existing rich literature of event detection techniques through easing
building such applications for end users. To this end, the paper has
proposed a set of abstractions that are organized in five main layers.
These abstractions work as building blocks for event detection
techniques, so an entire event detection pipeline can be defined
through specifying the configuration details of such layers. These
layered abstractions are envisioned to be incorporated with existing
data management systems, providing a variety of configuration
options through a declarative language interface. With realizing
such a layered approach, the cost and efforts for building a new
event detection application will be dramatically reduced, which will
broaden the impact of such critical applications in different domains.
The paper also discussed three potential realization pathways to
couple the proposed framework with the existing data management
systems highlighting the pros and cons of each pathway.
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